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Abstract: Triclosan (TCS), a broad-spectrum antimicrobial agent, has been widely used in personal
care products, medical products, plastic cutting boards, and food storage containers. Colgate Total®

toothpaste, containing 10 mM TCS, is effective in controlling biofilm formation and maintaining
gingival health. Given its broad usage, TCS is present ubiquitously in the environment. Given its
strong lipophilicity and accumulation ability in organisms, it is potentially harmful to biohealth.
Several reports suggest the toxicity of this compound, which is inserted in the class of endocrine
disrupting chemicals (EDCs). In September 2016, TCS was banned by the U.S. Food and Drug
Administration (FDA) and the European Union in soap products. Despite these problems, its
application in personal care products within certain limits is still allowed. Today, it is still unclear
whether TCS is truly toxic to mammals and the adverse effects of continuous, long-term, and low
concentration exposure remain unknown. Indeed, some recent reports suggest the use of TCS as a
repositioned drug for cancer treatment and cutaneous leishmaniasis. In this scenario it is necessary
to investigate the advantages and disadvantages of TCS, to understand whether its use is advisable
or not. This review intends to highlight the pros and cons that are associated with the use of TCS
in humans.

Keywords: antimicrobials; triclosan; TCS; endocrine disrupting chemicals; personal care products;
Colgate Total®; toxicity

1. Introduction

Triclosan (TCS), along with its congener triclocarban (TCC) (Figure 1) [1], is one of
the most widely used antimicrobial ingredients in several pharmaceuticals and personal
care products (PPCPs), such as toothpastes, facial cleansers, deodorants, soap bars, textiles,
medical devices, and plastic cutting boards [2]. It was also found in contaminated food, such
as seafoods [3]. TCS, namely 5-chloro-2-(2,4-dichlorophenoxy)phenol or 2,4,4′-trichloro-2′-
hydroxy-diphenyl ether, is an ether whereas TCC belongs to the diarylureas family [4,5].
Despite their different chemical structures, TCS and TCC are often mentioned together as
these compounds are small molecules sharing three chlorine atoms in their structures [6].

TCS (CAS#3380-34-5), also named Irgasan DP300, CH3565, GP41-353, FAT 80′023,
Irgacare MP and Irgasan [7], was first licensed for use in 1964 by the Swiss company
Ciba-Geigy and has rapidly become a ubiquitous substance to human exposure. Since then,
TCS has been used as an antimicrobial primarily in personal care products (Figure 2) [8].
Over 80% of TCS usage is contributed to cosmetics, personal care products, and household
cleaning products which contain mostly between 0.1 and 0.3% of TCS [9]. Colgate Total®

toothpaste, containing 10 mM TCS, was the number two leading toothpaste in sales in
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2016 [10] with an 11.8% increase in sales from 2015 to 2016 [11]. In toothpastes, TCS
has demonstrated an important action in reducing plaque and gingivitis [12,13]. TCS
may be also found, as a material preservative, in a vast range of consumer products
including kitchen utensils, clothes, fabrics, etc. [14,15]. Moreover, TCS-coated sutures have
shown a significant reduction of the risk of surgical site infections (SSIs) during surgical
interventions [16], even though this finding is almost controversial [17].
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The worldwide production of TCS is very high. It has been recently estimated that
it reaches 1500 tons per year and that 132 million liters of TCS-containing products are
used annually in the USA alone [18]. The production rates have increased since the out-
break of the novel coronavirus disease 2019 (COVID-19) [19] due to the high demand for
disinfection [20,21]. The injudicious use of disinfectants, including TCS, may promote the
development of antimicrobial resistance [22,23], potentially the most far-ranging global
health challenge following the COVID-19 pandemic [24]. TCS was also found in food,
such as tuna from Indonesia, Nile perch from Lake Victoria, farmed pangasius and shrimp
from Asia, mackerel from Spain, plaice, mackerel and mussels from The Netherlands, and
mussels from the North Sea and the Mediterranean Sea. Among European people, Spanish
adults, followed by Portuguese and Italian adults, had the highest exposure to bisphenol A,
methylparaben, and TCS through their seafood diet [25]. The bacteriostatic action of TCS
prevents microbes from growing at low concentrations and is due to the inhibition of an
enzyme that is involved in fatty acid synthesis, the enoyl-acyl carrier reductase (ENR). Thus,
TCS is classified among fatty acid synthase inhibitors (FASNs) [26]. Moreover, TCS directly
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kills microbes at higher concentrations by destabilizing bacterial membranes and by intro-
ducing intercalating defects into a bacterial membrane (SCCS 2010), exerting a bactericidal
activity [27]. TCS is also active against bacterial biofilms [28,29]. However, the greatest
concern over the potential health effects of TCS is related to its endocrine disrupting action,
supporting the demand of a total ban on the use in everyday products [30]. TCS belongs to
endocrine disrupting chemicals (EDCs) which are the substances that change the course of
endocrine systems in a way that adversely affects the organism itself or its progeny [31,32].
It is classified among emerging pollutants (Eps), also known as contaminants of emerging
concern (CECs) [33]. Significant concentrations of TCS have been detected in different
aquatic organisms [34]. The main absorption pathways for TCS are skin and oral absorp-
tion [35]. TCS was found to adversely affect the hypothalamic-pituitary-thyroid axis in both
experimental studies using rodents and observational studies of humans [36]. In women
of reproductive age, exposure to TCS is of particular concern given the ability of TCS to
cross the placenta and fetal blood-brain barrier and enter breast milk [37]. Exposure to TCS
has been reported to cause early menarche among the overweight or obese [38], and to
play a role in allergen and food sensitization [39]. Moreover, TCS exposure has been asso-
ciated with neurodevelopment impairment, metabolic disorders, and cardiotoxicity [40].
Recent studies describe the potential immunotoxicity of TCS in humans, often leading to
allergies [41]. Studies regarding the role of TCS in cancer are almost controversial. Some
papers report that the TCS increases the risk of cancer [42], whereas other articles suggest
TCS for repositioning in treating cancer, particularly prostate cancer [43,44]. Actually, the
growing resistance of the wide groups of bacteria, the toxicity that is exhibited on different
aquatic organisms, the adverse health effects that are observed in vitro and in vivo, and the
available epidemiological studies suggest that further efforts to monitor TCS toxicity at envi-
ronmental levels are necessary. Monitoring TCS and its occurrence in aquatic environments
have been widely described with analytical methods including chromatography-mass
spectrometry, electrochemistry, capillary zone electrophoresis, and spectrophotometry [45].
Biomonitoring studies indicate nearly universal TCS exposure among pregnant women and
children [46,47]. In September 2016, the U.S. Food and Drug Administration (FDA) devel-
oped a regulation, effective in 2017, establishing that certain active ingredients, including
TCS, TCC, and 17 other antimicrobial chemicals, used in over-the-counter (OTC) consumer
antiseptic products that are intended for use with water “are not generally recognized as
safe and effective (GRAS/GRAE) and are misbranded” [48]. Following an evaluation of
TCS by the Biocidal Products Committee of the European Chemicals Agency (ECHA), the
European Commission (EC) decided in 2016 that TCS is not approved for use in human
hygiene biocidal products [49,50], but maintained its legality as a preservative in selective
cosmetics and mouthwashes in concentrations up to 0.3% and 0.2%, respectively [18,51].
Since the beginning of February 2017, TCS was no longer available in such products in
the E.U. However, from some reports, TCS application in personal care products is still
allowed [52]. The U.S. National Institute of Environmental Health Sciences (NIEHS) and
Environmental Protection Agency (EPA) declare TCS as an EDC (NIEHS 2020) [53], while
according to the European Food Safety Authority (EFSA) and European Chemical Agency
(ECHA), it is still under assessment as EDCs (ECHA 2020) [54]. TCS has been widely used
as an antimicrobial additive in food storage containers and kitchen utensils, commonly
marketed under the trademark Microban® [55,56]. In those household articles, TCS is
generally incorporated directly into the polymer matrix before curing in concentrations up
to 1% (w/w) [57,58]. TCS is also marketed under the trade name Microban® when it is used
in plastics and clothing, and Biofresh® when it is used in acrylic fibers [59]. Microban® has
been also reported to be used to coat door handles in hospitals [60]. Given its toxicity, TCS
was removed from the list of authorized additives in materials in contact with food in the
European Union in 2010 [61] (European Commission, 2010). This action only applies to
companies and products that are manufactured within the EU. However, TCS is still present
in several antimicrobial food containers that are purchased through e-commerce and its
migration rates to food can be very high. In addition, microplastics containing TCS were
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found to leach from the inner surface of food containers when they were exposed to either
oven or microwave heating [62]. Given the numerous advantages and disadvantages that
are related to the use of TCS, in this review we want to describe a roundup of both studies,
so that each reader may be able to independently evaluate whether it is convenient to
continue using TCS. Moreover, in order to better understand the pharmacokinetic activities
that are related to TCS, also ADME (absorption, distribution, metabolism, and excretion)
properties, have been addressed.

2. Pharmacological Activities of TCS
2.1. Antimicrobial Activity

TCS has shown diverse activities as an antimicrobial agent; indeed, several reports
describe its antibacterial and antifungal activity, also against biofilms [63,64]. TCS has
demonstrated high biocidal and durable activity on polyester and cotton surfaces for
medical textile applications [65]. To a lesser extent, triclosan is used in textiles and plastics
(sportswear, bed clothes, shoes, carpets) to control the growth of disease or odor-causing
bacteria [66]. Recently, the use of TCS in self-disinfecting paints has been considered as a
promising strategy towards cleaner indoor environments by preventing the colonization of
microorganisms on the surface of walls [67].

2.1.1. Antibacterial and Antifungal Activity

TCS is an effective antimicrobial against both Gram-positive and Gram-negative bacte-
ria [68,69] and fungi [70]. The use of TCS in cutting boards may provide a hygienic barrier
only under certain conditions (low humidity, long exposure time, and clean conditions)
but not against all genera of bacteria. The study of Møretrø et al., (2011) demonstrated
that at a relative humidity of 100%, no antibacterial effect of the TCS-containing board was
found against Escherichia coli, Salmonella, Staphylococcus aureus, and Serratia spp. The only
exception was Listeria monocytogenes [71]. A recent study on the canal system of primary
teeth demonstrated that the combination of TCS with eugenol is more effective in compari-
son to amoxicillin and eugenol against Enterococcus faecalis [72], a most frequent human
nosocomial pathogen [73]. TCS exposure has been shown to reduce the susceptibility to
clinical antimicrobials, such as ciprofloxacin and levofloxacin, in E. coli isolates from urine
samples [74]. Multiple studies have demonstrated an increase of the minimum inhibitory
concentration (MIC) of TCS from approximately 4- to 60-fold for specific bacteria, which is
related to the interaction of TCS with different genes, for example ycjD and fabI genes for E.
coli and fabV gene for the Gram-negative Pseudomonas aeruginosa [75]. Recently, eugenol-
loaded TCS microemulsions have been suggested for use in place of conventional biocidal
solutions in endodontic therapy where complete elimination of microorganisms from the
treatment site is required [76]. Recently, a solution containing 0.15% TCS was studied for
the treatment of denture stomatitis affecting complete denture wearers. This treatment
promoted denture stomatitis remission and a microbial load decrease of Candida spp.,
especially Candida albicans, as well as the Gram-negative microorganisms, Staphylococcus
spp. and S. mutans, of the intaglio surface of denture [77].

2.1.2. Antibiofilm Activity

TCS has shown interesting activity against biofilms [63]. The study by Jongsma et al.
(2015) [78] analyzed the biofilm accumulation on the wires that are permanently bonded
to the anterior teeth used after orthodontic treatment to prevent the teeth from relaps-
ing to pre-treatment positions. The use of antibacterial toothpastes marginally reduced
the amount of biofilm on the wires, but significantly reduced the viability of the biofilm
organisms. Major shifts in the biofilm composition were obtained by combining a TCS-
containing toothpaste (Colgate Total®; Colgate-Palmolive Company, Piscataway, NJ, USA)
with an essential oil-containing mouth-rinse. The use of antibacterial toothpastes without
the mouth-rinse lowered the viability of adhering bacteria Lactobacilli, Streptococcus sobrinus
ATCC 33478, and S. mutans ATCC 10449. It was noticed that the combination of TCS-
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containing toothpaste with an essential oil-containing mouth-rinse yielded a reduction in
the prevalence of S. mutans from 30% to 5%, determining a drastic shift in the composition
of the oral microbiome. However, the TCS-containing toothpaste alone produced major
increases in the prevalence of adherent S. oralis/S. mitis, S. sanguinis, and S. mutans. Thus,
the authors hypothesize that the non-polar TCS could increase the hydrophobicity of the
S. mutans cell surface, facilitating the removal of S. mutans by hydrophobic oils, such as
oil-containing mouth-rinses [78]. In a recent work, it has been demonstrated that TCS may
deplete the membrane potential in Pseudomonas aeruginosa biofilms [79]. This action leads to
the inhibition of the adaptive resistance, a phenotypic response that allows P. aeruginosa to
transiently survive aminoglycosides including as tobramycin. TCS was shown to enhance
tobramycin effectiveness in vivo in a mouse wound model. The association of TCS with
tobramycin may be considered a new antibiofilm strategy as it enhances the susceptibility
of P. aeruginosa biofilms to aminoglycosides [80]. The combination of TCS with ethylenedi-
aminetetraacetic acid (EDTA) and cranberry were significantly effective in eradicating and
preventing biofilm formation of Escherichia coli strains on Foley catheters [81]. Antiseptic
mouthwashes for personal oral hygiene are widely used for their ability to inhibit dental
plaque, a complex biofilm that is formed in a series of discrete steps. Plaque begins to
form with the accumulation of Gram-positive streptococci, followed by increasing deposits,
which involve Gram-negative anaerobic bacteria. A recent study on a mouth rinse spray
containing 0.03% TCS, Plax®, showed that the growth of S. mutans is inhibited by this
mouth rinse on toothbrush bristles that were used by children [82].

2.1.3. Antiparasitic Activity

In vitro and ex vivo drug assays on promastigotes and amastigotes showed that TCS
possesses antileishmanial activity against Leishmania donovani with a half minimal inhibitory
concentration (IC50) of 30µM. Studies in silico suggested that this action was due to the
interaction of TCS with L. donovani enoyl-acyl carrier protein reductase [83]. TCS has been
studied for its activity as an antitubercular drug. It has been shown to suppress mycobacte-
rial growth at low concentrations by directly inhibiting InhA, an essential ENR, resulting
in the lysis of Mycobacterium tuberculosis while at higher concentrations it determined the
disruption of bacterial protein synthesis. It is noteworthy that, although less active than the
antitubercular drug isoniazide, TCS doesn’t require any activation and is able to directly
affect the function of InhA [84]. Several studies demonstrated the activity of TCS in the
treatment of malaria against two different targets. TCS specifically targets both wild-type
and pyrimethamine-resistant Plasmodium falciparum and P. vivax dihydrofolate reductases,
classic targets for the blood stage of the parasite. It inhibits blood-stage Plasmodium, via its
action against dihydrofolate reductase, and the liver stage of the parasite, via the inhibition
of ENR [85]. Several recent studies are aimed at obtaining new analogs of TCS that are
more active and less toxic than the parent compound [86,87].

3. Studies on Toothpastes Containing TCS

Toothpastes containing TCS have been shown to reduce plaque and gingivitis [88,89].
Most studies on toothpastes containing TCS are related to periodontitis, a highly prevalent,
chronic, non-specific, and immunologically devastating disease of periodontal tissues,
caused by microbial infection. A toothpaste containing TCS and fluoride compared to
toothpaste with fluoride, reduces plaque, gingivitis, and bleeding, but did not show a
significant effect on clinical attachment loss [90,91]. A marketed dentifrice control (Col-
gate Total®, Colgate-Palmolive, New York, NY, USA) contains 0.3% TCS along with 0.24%
sodium fluoride [10,91,92]. A recent study compared the effect of 0.3% TCS, 2.0% the
polyvinylmethyl ether maleic acid (PVM/MA) copolymer + 1450 ppm fluoride (test group)
and 1450 ppm fluoride (control group) [93]. It was demonstrated that the toothpaste con-
taining 0.3% TCS was more effective than the regular fluoride toothpaste in improving
the periodontal clinical condition around natural teeth of periodontally healthy subjects,
presenting at least one implant that had been treated for peri-implantitis, enrolled in a
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regular maintenance program for two years. They received a regular adult soft bristles
toothbrush (Colgate Palmolive, São Paulo, Brazil) as well as dental floss (Colgate Pal-
molive, São Paulo, Brazil) and interdental toothbrushes (Colgate Palmolive, São Paulo,
Brazil). TCS toothpastes reduced clinical attachment and bleeding on probing. Another
study compared three commercial dentifrice formulations, one of which contained TCS
(sodium fluoride/TCS/copolymer) and other two (stannous fluoride/sodium hexam-
etaphosphate/zinc lactate and sodium fluoride) in 35 adults. The study showed that the
sodium fluoride/TCS/copolymer toothpaste consistently determined significant reduc-
tions for a range of microorganisms (specifically six microbial types, anaerobes, Streptococci,
Actinomyces, hydrogen-sulphide (H2S)-producing bacteria, Fusobacteria, and Veillonella) in
diverse oral sites in comparison with the other two dentifrice formulations as seen 12 h
after brushing [94]. In another work, the use of a fluoride dentifrice containing TCS and the
PVM/MA copolymer in Colgate Total® toothpaste determined a greater uptake of TCS to
enamel and buccal epithelial cells than from a dentifrice containing TCS alone. Moreover,
Colgate Total® provided superior protection against plaque and gingivitis, caries, oral mal-
odor, exhibited superior stain removal, and provided protection against the progression of
periodontal disease [95]. Another study was carried out in smokers [96]. Tobacco smoking
is an established risk factor for periodontitis and is associated with periodontal attachment
and tooth loss. A TCS/copolymer/fluoride-containing dentifrice (test; Totals, Colgate;
Piscataway, NJ, USA), was compared with a fluoride-containing dentifrice (control; Dou-
ble Cool Stripes, Colgate; Piscataway, NJ, USA) that did not contain the TCS/copolymer.
The results suggest that an oral hygiene regimen including a TCS/copolymer/fluoride
dentifrice may sustain the short-term effect of non-surgical periodontal therapy in smok-
ers. A recent study on rats demonstrated the therapeutic effectiveness of TCS and an
anti-inflammatory flurbiprofen-loaded nanogels system in ligature-induced experimental
periodontitis in rats [97]. TCS activity in periodontitis is related to the activation of human
periodontal ligament fibroblasts that are induced by lipopolysaccharide from Porphyromonas
gingivalis [98]. Recently, the link between TCS and chitosan, a natural polymer that may
act as a drug delivery agent and exerts antibacterial and anti-inflammatory activities [99],
has been investigated in the prevention and/or treatment of inflammation in periodontal
diseases. Chitosan-TCS particles were able to modulate the inflammatory response in
gingival fibroblasts [100].

4. Absorption, Distribution, Metabolism, and Excretion (ADME) Properties
and Photodegradation

Exposure to TCS may occur mainly through oral intake and dermal contact [101].
Moreover, exposure to TCS via air, surface water, drinking water, and soil may also occur,
leading to the long-term exposure [102]. TCS can be absorbed through the oral mucous
membrane within one to four hours [103]. After oral ingestion of TCS, a rapid gastrointesti-
nal absorption and median urinary excretion of 54% may occur within four days [104]. The
second main exposure route to TCS is dermal exposure, with an absorption that is lower
than 10% [105]. The halogenated biphenyl ether structure of TCS is stable to hydrolysis
(in the pH range 4–9) [45]. TCS is a nonvolatile compound and has a moderate water
solubility (12 mg/L). The phenolic moiety in the TCS structure gives weak acidic properties
(pKa = 8.1 at 20 ◦C). The high octanol-water Partition coefficient (log Kow 4.76) and high hy-
drophobicity leads to bioaccumulation potential [106]. The half-life for TCS was reported to
range from 1.3–1.4 d in water to 53.7–60.3 d in sediments [107]. Recently, a great variability
in the half-life and degradation kinetics has been demonstrated depending on the nature
of medium, availability of light, initial concentration, and other factors. For example, in
drinking water it has been reported to be 41 min, in salt water 4 d, in fresh water 8 d, and in
water sediment from 120 to 540 d [34]. As an organochloride compound, TCS is sensitive
to photodegradation and its photolytic half-life has been reported to vary from 41 min in
sunlight to 39.8–55.99 d in darkness [108]. TCS is predominately excreted in urine as a
glucuronide or sulfate conjugate [104]. The short urinary half-life of 9 to 32 h makes it an
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excellent indicator of recent exposure rather than long-term exposure [109]. A study by
Dix-Cooper et al., (2019) [110] in Asian immigrant women living in Vancouver (Canada)
showed that a 12-fold increase in urinary TCS concentrations was observed among Colgate
Total® toothpaste users compared to non-users.

4.1. Metabolism and Transformation Products of TCS

TCS is transformed biologically into several compounds (Figure 3), including methyl-
triclosan (MTCS) [111], which can be formed during aerobic treatment; 2,4-dichlorophenol
(2,4-DCP); and 4-chlorocatechol [112,113].
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Similar to the parent compound, TCS transformation products have themselves demon-
strated undesirable environmental and health characteristics. MTCS has been demonstrated
to be more persistent than TCS and, similar to TCS, possesses endocrine disrupting ca-
pabilities [114,115]. TCS is excreted in the feces and urine [116]. Rats and mice show
predominantly biliary excretion into the feces, whereas guinea pigs excrete the majority of
the dose via the kidney. In humans, urinary excretion is the major route of elimination, with
fecal elimination being the secondary route. TCS is metabolized via Phase I and Phase II
reactions. Cytochrome P450 leads to monohydroxylated TCS derivatives, whereas Phase II
reactions occur via UDP-glucuronosyltransferases (UGTs) and sulfotransferases leading to
TCS glucuronide and TCS sulphate, respectively. The conjugation of TCS in the presence of
human liver microsomes or cytosol and in skin was demonstrated in vitro [117]. Recently,
TCS hydroxylated metabolites (monohydroxylated TCS) were detected in human stool,
while other conjugates of OH-TCS, namely OH-TCSG and OH-TCSS deriving respectively
from glucuronidation and sulfation reactions occurred on OH-TCS, were identified in the
urine samples. It was also demonstrated that excretions of hydroxylated metabolites are
isomer-specific and conjugate-selective [118]. TCS has a chemical structure that is similar
to dioxin.
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4.2. Photodegradation of TCS

In photochemical reactions and incineration processes TCS could be converted to
the more toxic compound 2,8-dichlorodibenzo-p-dioxin (2,8-DCDD) [119]. Photodegrada-
tion appears to be one of the major routes of elimination of TCS in aquatic environments
and takes place at a low light intensity under ultraviolet (UV) light (254, 313, or 365 nm),
simulated solar light, or artificial white light. Figure 4 shows the products deriving from
TCS photodecomposition. Recently, it was demonstrated that Fe and Mn oxides mediated
the transformation of TCS into 2,8-DCDD without sunlight at room temperature under
near dry conditions in the natural environment [120]. The photochemical formation of
dichlorodibenzodioxin from TCS in both solid phase and thin films of TCS has been demon-
strated. Moreover, highly toxic photoproducts, including 2,8-DCDD, 2,4-DCP, and possibly
dichlorohydroxydibenzofuran derivatives, were identified in water samples (Figure 4).
The photodegradation of TCS and formation of 2,8-DCDD occur over a wide range of pH
levels (3.0–9.0), with the rate of formation being faster at a basic pH. The formation of
2,7-dichlorodibenzo-p-dioxin (2,7-DCDD) has been also suggested [117]. There are three
other dioxin congeners, 2,3,7-TCDD, 1,2,8-TriCDD, and 1,2,3,8-TCDD, that have been also
described as photoproducts of chlorinated derivatives of TCS [121].
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5. Toxicity Studies on TCS

Despite the numerous and several years of studies about TCS, it remains a contro-
versial antibacterial regarding its toxicity. Rodrigues et al. (2007) [122] compared the
genotoxicity of one antiseptic that is currently used for odontologic treatment contain-
ing TCS (Plax®) and other two, containing cetylpyridinium chloride and chlorhexidine
digluconate (Cepacol® and Periogard®, respectively) by the Somatic Mutation and Recom-
bination Test in Drosophila melanogaster [123], employing flies having normal bioactivation
(the standard cross) and flies with increased cytochrome P450-dependent biotransformation
capacity (the high bioactivation cross). Plax produced negative responses in both types of
flies, as well as Periogard, while Cepacol produced positive responses in both the assays.
The recent study by Querido et al. (2022) [67] demonstrated that a self-disinfecting paint
containing TCS showed low levels of cyto- and genotoxicity, which were evaluated by
direct contact and on extracts that were obtained from leaching following ISO 10993 and
by comet assay and cytokinesis-block micronucleus assay, respectively. According to the
REACH (Registration, Evaluation, Authorisation and Restriction of Chemicals) criteria for
persistence and bioaccumulation, TCS would classify as a non-persistent and nonbioaccu-
mulative [124]. However, most studies describe TCS as a toxic agent. Below, some other
studies regarding the potential toxicity of TCS are described. Moreover, recent studies
attribute the toxicity of TCS to its metabolites. The mesocosm study that was carried out
by Contardo-Jara et al. (2021) [30] to investigate the fate and bioaccumulative potential of
TCS and its main transformation product MTCS in water and sediment demonstrates that
MTCS is bioaccumulative in contrast to its parent. Li (2021) showed that the chlorination of
TCS caused a 30-fold increase of antiestrogenic activity [125].

5.1. Effects on Hypothalamic-Pituitary-Thyroid Axis and Steroidogenesis

TCS is often considered a potential thyroid disruptor. However, its hormone disrup-
tive potential has mainly been studied in animals and requires confirmation in human
studies [126]. The adverse effects of TCS were evaluated by applying the Navigation Guide
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systematic review methodology on three studies on humans and eight studies that were
conducted in rats. The authors concluded that there was “sufficient” non-human evidence
and “inadequate” human evidence of an association between TCS exposure and thyrox-
ine concentrations, and thus TCS is “possibly toxic” to reproductive and developmental
health [127]. TCS may reduce thyroxine concentrations by activating nuclear receptors to
increase hepatic catabolism of thyroxine [128]. The results from epidemiological studies of
TCS and thyroid function in humans are not consistent [129,130]. A recent study on young
male Wistar albino rats showed that a high dose of TCS led to symptoms of hypothyroidism
that were expressed by significant changes in FT3, FT4, and TSH (triiodothyronine, thyrox-
ine, and thyroid-stimulating hormone, respectively) levels [131]. The same reduction of FT3
and FT4 was observed in Sprague-Dawley rats [132] and female mice [133]. The effects on
thyroid hormones luteinizing hormone (LH) and follicle-stimulating hormone (FSH) were
studied in vivo in female mice. The results depended on doses and dosing regimens. The
administration of TCS in concentrations up to 0.345 mmol/kg/day determined a decrease
of LH and FSH [133], while at the higher oral dose (0.639 mmol/kg/day), an increase of
both LH and FSH was detected in Sprague-Dawley rats [134]. TCS exposure has been also
related to diminished ovarian reserve. A study on about 500 females aged between 25 and
39 years showed that TCS exposure may negatively affect antral follicle count, a marker of
ovarian reserve, whereas no statistically significant associations between other parameters
of ovarian reserve (estradiol, FSH, and AMH levels) and TCS concentrations [135]. Steroido-
genesis is an important target of TCS. Studies on primary rat granulosa cells (rGCs) that
were treated with TCS demonstrated that it increased estradiol, progesterone production,
and up-regulated the ovarian steroidogenesis pathway [136]. TCS increased estradiol and
progesterone levels with upregulated steroidogenesis gene expression at concentrations
ranging from 0 to 10 µM [137]. Basini et al. (2021) [138] recently explored the effect of dif-
ferent concentrations of TCS on cultured luteal cells that were isolated from swine ovaries.
TCS was shown to interfere with the main function of the luteal cells thus suggesting that it
can disrupt the physiological function of the corpus luteum, a transient endocrine organ
that is essential for a correct ovarian cyclicity and for a successful pregnancy.

5.2. Effects on Semen

The endocrine system is important for male reproductive development because andro-
gens, such as testosterone, promote the maturation of male secondary characteristics and
the process of spermatogenesis. Male reproductive health, specifically testosterone and
sperm count were declined, which is correlated with an increase in a variety of EDCs [139].
In vitro studies showed that TCS binds to androgen receptors and exhibits an antian-
drogenic activity in human breast cancer cells [140]. This chemical reduces testosterone
production by disrupting cholesterol biosynthesis in Leydig cells [141]. TCS decreases the
weights of the testes and sex accessory organs, leading to a decrease in sperm density [142].
TCS has also exhibited a tendency to accumulate in the epididymis [143]. In rats, TCS
has shown antiandrogenic effects and detrimentally affects reproductive functions and
fertility of males. Priyanka et al. (2019) found that gestational and lactational exposure to
TCS impaired the reproduction and fertility, changed testicular physiology and functions,
and repressed the testosterone levels of F1 male rats [144]. Ha et al. (2018) found that
TCS suppressed testicular steroidogenesis via the miR-6321/JNK/Nur77 cascade [145].
Recently, the same research group demonstrated that TCS-induced miR-142-5p inhibits
P450c17 by the JAK1/STAT1 pathway and downstream Sp1/DNMT1/DAX1 cascade, fi-
nally facilitating testosterone suppression [146]. In a cross-sectional investigational study,
the association between TCS exposure that was measured by urinary TCS concentration
and semen quality in men that were recruited from male reproductive health clinics was
evaluated. TCS was shown to affect human sperm production and normal morphology
in humans, as studied in 471 men [147]. A successive study on 315 men provided evi-
dence that exposure to TCS is associated with poorer semen quality [148]. In the paper by
Nassan et al. (2019) [149], 262 men were enrolled in the Environmental and Reproductive
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Health (EARTH) between 2009 and 2017. Urinary TCS concentrations were classified into
four quartiles where the lowest quartile included all concentrations that were below the
limit of detection that ranged between 1 and 2.3 µg/L. Consistent patterns of lower percent
morphologically normal sperm were found for men with urinary TCS in the second or
third quartile compared to undetectable concentrations. This association was stronger
for samples that were obtained prior to 2013 when TCS was more often detectable in
urine [149]. However, recent studies suggest TCS is not a hormone-disrupting chemical.
Specifically, a study on male Wistar rats demonstrated the absence of effects of TCS in the
Hershberger assay, as well as on the parameters that were evaluated in the reproductive
toxicity study [150]. Another work on serum testosterone levels in human adult males
found that TCS did not reduce testosterone levels [151]; low-dose TCS exposure was not
associated with risks of abnormal semen quality in a study on 406 men from a reproductive
clinic [152]. In a study on children and adolescents aged 6–19 years, little association of
TCS and testosterone levels was found [153].

5.3. Studies on Prenatal Exposure to TCS

TCS is suspected of having endocrine-disrupting properties, but few human studies
have examined the developmental effects of prenatal TCS exposure. Some epidemio-
logical studies report that gestational urinary TCS concentrations during pregnancy are
associated with decreased birth weight and length, head circumference, and gestational
age [154,155]. Moreover, TCS exposure has been related to spontaneous abortion [156],
gestational diabetes [157], and decrease fecundity [158]. Prenatal TCS exposure in Chinese
pregnant women was associated with increased cord testosterone levels and decreased pla-
cental steroidogenic enzyme levels, namely human cytochrome P450-family19-subfamily
A-polypeptide 1 (CYP19A1 or P450arom), human 3 beta hydroxysteroid dehydrogenase
type 1 (3β-HSD), and human 17 beta hydroxysteroid dehydrogenase type 1 (17β-HSD) [159].
There are contradictory studies regarding the association between gestational TCS exposure
and birth weight: Zhong et al. (2020) [160] concluded that there is no association, while
the conclusion of Khoshhali et al. (2020) [161] suggested that gestational TCS exposure
was associated with greater birth weight. However, none of the two studies applied the
Navigation Guide criteria to their evaluations that are recommended for evaluating evi-
dence streams within environmental health. A systematic review and meta-analysis [162]
of 15 studies have been recently carried out, which makes use of a random effects model,
estimating differences in these outcomes per 10-fold increase in TCS concentrations and
considering TCS levels and infant sex as sources of heterogeneity. It makes use of the
Navigation Guide Methods, thus evaluating the risk of bias within individual studies and
across the body of evidence. The available epidemiological evidence of moderate quality
and low risk of bias provides limited evidence that gestational TCS exposure is associated
with reductions in infant birth weight. Differences in this association across studies may be
related to the level of TCS exposure in source populations. Moreover, in a major part of the
considered studies, TCS exposure was found to be higher in North America and Europe
compared to Asia. The study by Lassen et al. showed that prenatal TCS exposure was
associated with reduced anogenital distance (AGD) at three months of age in boys [163],
although this is not consistent between studies [164–166]. A recent study showed that the
exposure to TCS during gestation in mice led to cognition dysfunction and impairments
in sociability and social novelty preference, impaired acquisition of spatial learning and
reference memory in offspring that were derived from dams that were exposed to TCS,
deficits in nesting behavior, and increased anxiety-like behavior, without significant change
in depression-like behaviors [167]. A recent systematic review and meta-analysis indicated
that exposure to TCS during pregnancy has no significant influence on maternal levels of
thyroid hormone [168]. Prenatal exposure to TCS is also related to differences in maternal
FT4 and TSH concentrations. Specifically, Aker et al. suggested that prenatal exposure to
TCS may be associated with an increase of maternal FT4 and TSH [169]. Wang et al. (2017)
also found a positive association between TCS exposure during pregnancy and maternal
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FT4 levels [170]. Berger et al. (2018) found that TCS was associated with lower maternal to-
tal FT4 levels during pregnancy [171]. However, several other studies found no relationship
between TCS and thyroid hormone levels in pregnant women [172,173]. Recently, Li et al.
(2022) demonstrated that exposure to TCS is associated with abnormal placenta growth and
fetal development during pregnancy in mice. Moreover, the authors found that TCS caused
placenta dysfunction that was characterized by the significant reduction in weight and
size of the placenta and fetus by PPARγ inhibition or silence [174]. A recent study during
early pregnancy demonstrated that TCS is not associated with thyroid function [175]. A
recent study from the Health Outcomes and Measures of the Environment (HOME), on
a prospective pregnancy and birth cohort in Ohio, considered the health effects that are
associated with early-life exposure to TCS. Urinary TCS concentrations at delivery, but
not during mid- to late-pregnancy and childhood, were inversely associated with child
intelligence quotient at age eight years of age in the cohort of U.S. children that were
studied [176]. A successive study by the same group showed that increasing gestational
and childhood urinary TCS concentrations were associated with higher behavior problem
scores in eight year old boys, but not girls [177].

5.4. Studies on the Effects of TCS during Lactation

A recent study was carried out to evaluate the influence of TCS on the male reproduc-
tive system of postnatal pups. Pregnant female Wistar rats (Rattus norvegicus) and their
male offspring were studied. The lactating mother rats were dosed with 0 mg, 3 mg, and
5 mg/kg/day of TCS until 28 days after the day of delivery so that the pups consumed
TCS through breastfeeding. It was noticed that the mothers passed the detrimental effects
to their untreated male pups as shown by reduced androgen synthesis and subsequently
decreased sperm count [178].

5.5. Neurotoxic and Hepatotoxic Effects of TCS

Exposure to TCS may adversely affect neurodevelopment and may exert adverse ef-
fects on central nervous system (CNS) functions, mainly through the induction of apoptosis
and oxidative stress [179]. Neurotoxicity was demonstrated in vitro by Szychowski et al.
(2016) [180] and Park et al. (2016) [181], in mouse neocortical neurons and neural stem cells,
respectively. The chronic exposure of TCS on experimental zebrafish (Danio rerio) embryos
highlighted that TCS caused heart edema and slow heartbeat [182], delayed hatching and
increased mortality [183], and impaired lipid metabolism [184] at concentrations up to
1.25 mg/L. A recent study on neural development using Danio rerio embryos confirmed
that the exposure to TCS during neurodevelopment, especially during axonogenesis, is
toxic and suggests a possible mechanism, through which TCS-induced ectopic expression
of proneural genes may affect sequential neural development and impair glial cell func-
tion, resulting in CNS structural abnormalities during neurogenesis such as reduced axon
growth and synaptic density [185]. In vivo studies that were obtained by exposure to TCS
(0.3 and 0.6 mg/L) of adult zebrafish for 48 h showed that it induced anxiety-like behavior
by reducing acetylcholinesterase (AChE) activity in the brain. Moreover, erratic movements
that were probably related to AChE inhibition in skeletal muscle, were observed [186].
Successive studies on zebrafish larvae demonstrated that TCS is a neurotoxic agent even at
sublethal concentrations [187]. A recent study showed that chronic TCS exposure reduced
social dominance in adult mice, by inducing ultrastructural damage to hippocampal neu-
rons and synapses in adult mice and impaired memory formation in female mice [188]. TCS
has been also related to liver injury. It disrupts normal liver functioning and development
in embryonic zebrafish and induces hepatotoxicity [189]. Some of these toxic events may
be related to the involvement of gut microbiota.
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5.6. Metabolic Disorders, Nephrotoxicity, and Polycystic Ovary Syndrome (PCOS)

Several researches have revealed to some extent that TCS exposure could induce
nephrotoxicity. TCS administration induced function alterations, oxidative stress, pro-
inflammatory, and fibrotic response in mouse kidneys. The lipid accumulation related to
lipotoxicity and the decreased fatty acid oxidation may play a causative role in TCS-induced
nephrotoxicity [190]. TCS has been related to metabolic disorders such as obesity and Type
2 diabetes [191,192]. The relationship between TCS and body mass index (BMI) using
National Health and Nutrition Examination Surveys (NHANES) was investigated between
2003 and 2008: TCS exposure is associated with increased BMI [193]. TCS exposure is also
associated with decreased bone mass density and increased osteoporosis [194]. Recently,
exposure to TCS and TCC has been associated with increased risk of childhood obesity, by
examining in first morning urine of children aged 7–11 years by liquid chromatography
coupled to mass spectrometry [195]. In another study in children, a relationship between
TCS and its metabolite MTCS with predictive indicators of cardiovascular diseases and
obesity was found [196]. A recent study on a total of 674 infertile Chinese women at
18–45 years of age showed that TCS exposure at a relatively low level was associated
with PCOS [197].

5.7. Immune Response, Asthma and Allergies

Over the last decade, researchers have shown that endocrine disrupting chemicals,
such as TCS, can affect the development, function, and lifespan of immune cells. TCS
may attenuate immunity against infections or cause a hyperactivity of immune responses
such as allergies and autoimmune diseases. Exposure to TCS has been related to food and
aeroallergy and asthma exacerbation in humans, both in adults [198] and children [199].
Although TCS did not directly act as a sensitizer, it was demonstrated to increase the allergic
response in a mouse model of asthma on SKH1 mice. It was shown that repeated dermal
exposure to TCS alter the skin barrier integrity and microbiome, thus probably contributing
to the increase in allergic immune responses after dermal exposure to TCS [200]. In another
study on striped catfish Pangasianodon hypophthalmus, TCS induced immunosuppression
and reduced the survivability of this fish during the challenge to a fish pathogenic bacterium
Edwardsiella tarda [201]. The topical skin application of TCS has demonstrated to be sufficient
to induce peanut sensitivity in mice [202]. The associations between allergic diseases and
TCS has been recently studied in Taiwanese children. TCS levels were positively correlated
with serum IgE levels and significantly associated with asthma, allergic rhinitis, and atopic
dermatitis among boys [203].

6. Gut Microbiota and Microbiome Involvement in TCS Exposure

The understanding that humans readily absorb TCS and are able to pass TCS through
breastmilk has led to a need to explore the impact of TCS on the human gut microbiome.
Moreover, the extensive use of TCS over the past several decades [204], along with the
increase in inflammatory bowel disease [205] in youth populations around the world, has
raised concerns over how TCS and other antimicrobials may impact the gut microbial
community [206]. Sanidad et al. (2019) asserts that TCS could have adverse effects on the
gut microbiome and gut health [207], but the impact of TCS exposure through household
and personal care products on the developing microbiota is unknown. Thus, several
recent papers are addressed to the study of the disturbance of gut microbiota by TCS.
TCS exposure disturbs the gut microbiota in various animal model systems, including
fathead minnows [208], zebrafish [209], rats [210], and mice [211]. The perinatal exposure
of rats to TCS (50 mg/kg/day, i.e., the lowest toxic oral dose in rats) led to disturbances
of the metabolism and gut microbiota that were long-lasting and persisted even after the
exposure had been terminated [212]. TCS was also suggested to disturb the gut microbiome
in humans. Bever et al. (2018) reported that the gut microbiomes of infants who received
breast milk containing TCS had significantly lower alpha diversity with respect to the
infants who received breast milk with non-detectable levels of TCS. Moreover, the relative
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abundances of certain bacteria were also modulated in the infants who were fed TCS-
containing breast milk [213]. A randomized study of TCS-containing household and
personal care products that was carried out during the first year following birth showed
that TCS exposure did not induce global reconstruction or loss of microbial diversity. The
routine usage of TCS-containing toothpastes enhanced the relative abundance of broadly
antibiotic-resistant species from the phylum Proteobacteria in adults, as well as in infants
with high urinal concentrations of TCS [214]. A recent study, by means of the SHIME®

(simulator of the human intestinal microbial ecosystem) system, was used to simulate
the human gut microbial community in vitro, and to look at the community in the three
different regions of the gut, the ascending colon, transverse colon, and descending colon
regions, as well as in both the lumenal and mucosal phases. It was found that treatment
with TCS significantly impacted the community structure in terms of reduced population,
diversity, and metabolite production, most notably in the ascending colon region. However,
after a two-week recovery period, most of the population levels, community structure,
and diversity levels were recovered for all the colon regions [215]. The involvement of
the gut microbiota is also related to colitis and colon cancer. A brief exposure to TCS at
relatively low doses, has caused low-grade colonic inflammation, an increase in colitis,
and exacerbates colitis-associated colon cancer in mice probably via gut microbiome-
dependent mechanisms. Moreover, these effects in vivo are partially dependent on Toll-like
receptor 4 (TLR4) activation [216]. Finally, the involvement of gut microbiota and TCS
has been studied in TCS-induced liver injury. The results showed that the disease was
induced by gut microbiota via the gut–liver axis [217]. Interestingly, probiotics were used
to modulate the microbiota and palliate intestinal metabolic disorders due to TCS exposure
in animal models. Particularly, Lactobacillus plantarum ST-III increases the diversity of
the gut microbiota in zebrafish, thus lowering the toxicity of chronic exposure to TCS.
Additionally, a probiotic-rich diet reduced the risk of lipid-metabolism disorders such as
increased triglyceride and total cholesterol levels [218].

7. Mechanism of Action in Pharmacological and Toxicity Studies

Several mechanisms of action have been proposed for TCS, most of which are related
to the different effects, either positive or toxic, that are exerted by this compound [219].
TCS at low concentrations acting as a FASN inhibitor, i.e., it inhibits the synthesis of fatty
acids, which are essential for the composition of bacterial membranes and cell wall; at high
concentrations, TCS directly disrupts bacterial membranes [220]. TCS antimicrobial activity
against certain types of fungi and various types of bacteria may be related to the block of
the active site of the ENR, which is an essential enzyme for fatty acid biosynthesis in fungi
and bacteria. This enzyme is required for fatty acid and biotin biosynthesis [221] and is not
present in humans [222]. Maiden et al. (2020) [80] suggested that, in addition to its canoni-
cal mechanism inhibiting membrane biosynthesis, TCS can exert antibacterial properties by
functioning as a protonophore that targets P. aeruginosa energetics. At consumer-relevant,
non-cytotoxic doses, TCS inhibits the functions of both mitochondria and mast cells, a
ubiquitous cell type [223]. Recently, the involvement of calcium in the mechanism of action
of TCS has been suggested. TCS inhibits Ca2+ dynamics in mast cells [224], and it has been
recently demonstrated that is also inhibits Ca2+ mobilization in human Jurkat T-cells [225].
The mechanisms of neurodevelopmental impairment occurring after TCS exposure may
be connected to reactive oxygen species (ROS) activation and apoptosis induction. TCS
induced ROS overproduction which ultimately leads to oxidative stress with a loss of mem-
brane integrity, membrane depolarization, photosynthesis inhibition, and mitochondrial
membrane depolarization. TCS induced an increase in caspase 3/7 activity and altered the
expression of metacaspase genes which are indicative of apoptosis [226]. Szychowski et al.
(2016) [180] demonstrated that TCS induces aryl hydrocarbon receptor (AhR)-dependent
apoptosis in mouse neocortical neurons in vitro. The authors postulated that TCS exhibits
primary and secondary effects. The primary effects such as impairment of Cyp1a1 signaling
are mediated by TCS-induced ROS production, whereas the secondary effects of TCS are
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due to the transcriptional activity of AhR and estrogenic properties of TCS. Recent studies
associate the neurotoxicity of TCS to AChE activity both by direct binding and by indirectly
inducing increased oxidative stress [227]. Kim et al. (2018) [185] demonstrated that TCS
increased apoptosis in the CNS and particularly affected the structure of the CNS, resulting
in decreased synaptic density and shortened axon length in a study on neural development
using zebrafish models. In addition, TCS significantly up-regulated the expression of
genes that are related to axon extension and synapse formation such as a1-Tubulin and
Gap43, while decreasing Gfap and Mbp expression related to axon guidance, myelina-
tion, and maintenance. Immunotoxicity may be related to miR-19a regulation. miR-19a
is up-regulated by RNA-seq under TCS exposure. miR-19a up-regulation triggered the
down-regulation of its target gene socs3b, and simultaneously activated the downstream
IL-6/STAT3 signaling pathway [228]. The hepatic damage due to TCS exposure is also
related to gut microbiota dysbiosis. Zhang et al. (2022) [217] recently demonstrated that
TCS dramatically disturbed gut microbiota homeostasis, resulting in the overproduction
of lipopolysaccharides (LPS) and deficiency of secondary bile acids such as deoxycholic
acid and lithocholic acid. In addition, TCS considerably increased intestinal permeability
by reducing mucus excretion and expression of tight junction proteins (ZO-1, occluding,
and claudin 4), which facilitated the translocation of LPS. The LPS accumulation in blood
contributed to liver injury by triggering the inflammatory response via the TLR4 pathway.
The pulmonary toxicity of TCS is not clear. A study in rats that were exposed to single
intratracheal instillation of TCS may induce acute inflammation in the lungs and affect
the lung function ability by increasing the level of total cells count, polymorphonuclear
leukocytes, total protein (TP), lactate acid dehydrogenase, tumor necrosis factor alpha
(TNF-α), and interleukin-6 (IL-6) in bronchoalveolar lavage fluid (BALF) at one day after
instillation. However, most pulmonary toxicity marker levels except TP in BALF was re-
stored 14 days after instillation [229]. A study in Sprague–Dawley rats that were submitted
to nasal inhalation exposure showed that the no-observed-adverse-effect concentration in
rats was determined to be 0.13 mg/L. There were no treatment-related effects in rats of
either sex below this concentration. At 0.40 mg/L, rats showed an enhancement in the
incidence of postdosing salivation and a decrease in body weight [230]. Besides toxicity
after absorption of TCS, dermal toxicity has to be considered. A combined metabolomic
and lipidomic approach was used in human HaCaT keratinocytes to investigate the dermal
toxicity that was triggered by TCS at a metabolic level. TCS exposure determined the
increase of purine and glutathione (GHS) metabolism, the down-regulation of amino acid
metabolism, and the dysregulation of lipid metabolism in keratinocytes, thus leading to
overproduction of reactive oxygen species (ROS) and accumulation of ammonia. A total of
35 small molecular metabolites and 49 lipids were identified with significant changes in
human keratinocytes [231]. The role and mechanisms of TCS in endothelial cells (ECs) have
been recently investigated on human umbilical vein endothelial cell (HUVEC) function.
The treatment with TCS suppressed HUVECs viability, migration, and angiogenesis, and
enhanced the expression of inflammatory markers and ROS in HUVEC cells, at least in part
via the PI3K/Akt/mTOR signaling pathway [232]. Spontaneous abortion has been also
related to a decline of estrogen sulfotransferase activity both in mice and humans [156].

7.1. Toxicity Studies in Animal Models

In this subparagraph, studies regarding the possible mechanisms of toxicity in animal
models are summarized. Yoon et al. (2017) showed that TCS induces oxidative stress
and intracellular accumulation of toxins, at least in part, by disrupting the SKN-1/Nrf2-
mediated oxidative stress response, specifically by inhibiting the nuclear localization of
SKN-1/Nrf2 and the expression of its target genes, in both a model organism, the nematode
Caenorhabditis elegans and human mesenchymal stem cells (hMSCs) [233]. A recent study on
mosquitofish (Gambusia affinis) that were exposed to TCS showed that the up-regulations
Sirt1 and Sirt2 in Sirtuin family could activate the Nrf2/ARE signaling pathway and the
down-regulations of miR-34b and the up-regulations of miR-34a, miR-144, and miR153a-



Antibiotics 2022, 11, 735 15 of 28

5p modulated the Nrf2/ARE signaling pathway [234]. Sublethal concentrations of TCS
enhanced glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT),
and glutathione-S-transferase enzyme activity in all the tissues with an increased dose
and exposure period in the gill, liver, and muscle of an Indian major carp Catla catla [235].
Studies on the fly Drosophila melanogaster showed that TCS caused a redox imbalance
with an increase on the catalase activity and a decrease on reactive oxygen species (ROS)
level [236]. Liu et al. (2019) indicated that TCS exposure induces apoptosis of hepatocytes
through the activation of the MAPK/p53 signaling pathway [237]. Studies in the larvae
of Labeo rohita showed that TCS caused biochemical and transcriptomic alterations that
resulted in oxidative stress, an impairment of metabolic processes, and dysfunction of
the liver, kidney, and digestive system. A total of 96 h exposure to 0.06–0.097 mg/L TCS
significantly declined the levels of glucose, triglycerides, urea, and uric acid and the activity
of alkaline phosphatase, GOT and GPT [238].

7.2. Cytotoxicity Studies

Although TCS is considered to be an EDCs, it is not considered a carcinogen by the
International Agency for Research on Cancer (IARC) [7]. Indeed, recent studies suggest
its use as an anticancer agent. Actually, TCS has been proposed for repositioning as a
preventive and anticancer agent, specifically for prostate cancer, as detailed in the Section 9.
However, some in vitro and in vivo recent studies report its activity as cancerogenic in
ovary, liver, prostate, colon, breast, and oral cancers. Specifically, an in vitro assay demon-
strated that TCS can amplify the growth of BG-1 ovary cancer cells by regulating the
expressions of cell cycle- and apoptosis-related genes via ER-dependent pathways [239].
In addition, chronic dietary exposure to TCS produced an increased incidence of liver
tumors in mice, even though human studies are lacking in number. The mechanism for
liver tumor induction has been attributed to the activation of either peroxisome proliferator
activated receptor α (PPARα) or constitutive androstane receptor [240]. A recent study
in mice demonstrated that TCS treatment enhances sorafenib resistance in hepatocellular
carcinoma (HCC) cells, suggesting that exposure of TCS is detrimental to HCC patients
during chemotherapy. Specifically, TCS induced the expression of drug-resistance genes
in a highly aggressive HCC cell line, namely MHCC97-H cells, accelerates the clearance
of sorafenib, and attenuates the antiproliferation effect of sorafenib. TCS decreased the
antitumor effect of sorafenib on subcutaneous and intrahepatic growth of MHCC97-H
in nude mice [241]. A study on LNCaP prostate cancer cells demonstrated that TCS en-
hanced LNCaP cell proliferative activity and migration. The mechanism that is proposed
for cancerogenic activity of TCS is that it may enhance the progression of prostate cancer
by regulating cell cycle- and metastasis-related genes via the AR signaling pathway [242].
Sanidad et al. (2019) [207] speculated that TCS exposure exaggerates colonic inflammation
and colon cancer. Moreover, TCS has been suggested to promote breast cancer progression
via an ER-mediated signaling cascade [243]. TCS induced MCF-7 breast cancer cell line
proliferation via nongenomic ER signaling pathway that is associated with IGF-1R. TCS
promoted the cell viability of MCF-7 cells via estrogen receptor α (ERα) similar to the
positive control, 17β-estradiol (E2). In the same study, TCS was shown to induce tumor
growth also in an in vivo xenografted mouse model [244]. In another study, TCS induced
breast cancer progression via the stimulation of cell proliferation, anti-ROS production,
anti-ER stress response, and anti-apoptosis by regulating the expression of ROS-induced
ER stress-associated genes, including p-eIF2α, CHOP, Bcl-xl, and Bax [245]. In a recent
study, the effects of TCS on cell migration and invasion have been evaluated on three
human breast epithelial cell lines, namely the immortalized but non-transformed MCF-10F
breast epithelial cells, the estrogen-responsive MCF-7 breast cancer cells, and the estrogen-
unresponsive MDA-MB-231 breast cancer cells, using concentrations that are comparable
with those in human tissues. Long-term exposure to 10−7 M of TCS resulted in increased
migration and invasion as measured by xCELLigence technology for all three cell lines. The
authors suggested a mechanism involving epithelial to-mesenchymal transition (EMT), as
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the reduction in levels of E-cadherin mRNA and of E-cadherin protein was observed [246].
A recent study in a within the Multiethnic Cohort (MEC) of postmenopausal women with
breast cancer showed that breast cancer risk was weakly inversely associated with TCS
exposures, mainly among overweight/obese women [247]. Finally, TCS may affect the level
of DNA methylation in the human oral squamous carcinoma cell line (SCC-15) exerting a
toxic effect only in the highest concentrations of 50 and 100 µM. TCS influences SOD activity
in the SCC-15 cell line after 24 and 48 h treatment and decreases the mRNA expression
of DNMT3A and DNMT3B in the SCC-15 cell line after 24 h treatment [248]. Summing
up, several studies agree with the potential role of TCS in promoting cancer onset and
progression and, unfortunately, contributing to the resistance phenomena, in vitro and
in vivo models.

8. Removal from Aquatic Environment/Degradation Techniques

Due to the potential ecological and adverse health effects of TCS, several strategies are
addressed to find new technologies for specific and effective removal of TCS from water,
thus minimizing its threats in the environment. TCS mitigation from environmental matri-
ces was obtained by using various oxidoreductases, including laccases, and peroxidases
including soybean peroxidase, versatile manganese peroxidase, and horseradish peroxi-
dase [249]. Photo-degradation techniques have been widely applied to the degradation of
TCS. UV radiation at a basic pH or the presence of a catalyst may enhance TCS photodegra-
dation, whereas TCS photodegradation is inhibited at an acidic pH or under the presence of
scavengers [250]. Recently, a novel biological degradation method for the removal of TCS
in municipal wastewater has been proposed, which includes the identification of degrading
bacteria from municipal wastewater sludge. It was found that bacterial strain belonging to
Providencia rettgeri group, namely P. rettgeri MB-IIT strain, could be advantageously used to
degrade TCS that was present in the wastewater [251]. A recent study on the plant Glyceria
maxima showed that the amounts of TCS in plant shoots were 1.4–2.5 times higher than
that in roots [252]. Li (2021) [125] reported that ozonation of TCS mitigated the toxicity of
the treated water. Moreover, several TCS adsorption methods have been reported [253]. A
recent study proposed an alternative treatment using low-cost adsorbents, soybean hulls,
and açaí seeds that were functionalized with iron oxide (Fe3O4) nanoparticles [254].

9. Repositioning of TCS

The drug repositioning process significantly saves the development time of new
drugs. It only costs researchers approximately 3–12 years to develop an old drug for new
treatments compared to the time required to develop a new drug that is approximately
12–17 years [255]. Repositioning has been suggested for numerous purposes, in diseases
such as cancers [256,257] and the recent COVID pandemic [19]. TCS, as well as other
FASN inhibitors, has shown to inhibit cancer cell growth by inducing cell death. TCS
was found to be a superior alternative to C75, the synthetic derivative of antifungal agent
cerulenin, and orlistat in triggering cell death in PCa cells via the inhibition of FASN. In
addition, it induced G0/G1 cell cycle arrest and dose-dependent reduction in the total
lipid content of PCa cells [258]. As a result, the TCS-mediated suppression of the metabolic
oncogene FASN was suggested as a repositioned drug for the treatment of advanced
PCa [259]. Even though these studies are interesting and could pave the way for other
ones, we would like to highlight that the TCS role in cancer is very controversial and
deserves particular attention. Indeed, in the previous paragraph we discussed research
data from other studies confirming that TCS promotes several types of cancer and is
involved, as well, in metastatization and resistance onset mechanisms. Our idea is that
more studies are necessary in order to clarify the exact impact of TCS under an oncological
point of view. Recently, topical TCS and some derivatives have been also proposed for
the treatment of cutaneous leishmaniasis, an important neglected tropical infection that
is caused by the protozoan Leishmania and affecting 12 million people in 98 countries.
TCS has shown preclinical efficacy in a murine Leishmania amazonensis model, suggesting
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that the parasite plasma membrane may be a possible target of the drug, leading to an
irreversible lethal antiparasitic effect [260]. Otero et al. (2017) [261] reported some triclosan-
caffeic acid hybrids with antiprotozoal activity, which act by blocking the iron utilization
by the parasite and the loss of mitochondrial transmembrane potential. As in the case
of hypnospores of Perkinsus spp, TCS exhibited a high activity through the change in
lipid content distributions and an increased oxidative stress [262]. Finally, the synthesis
and leishmanicidal, and trypanocidal activities of a small library of triclosan–hydrazone
hybrids has been reported. These compounds were evaluated against L. panamensis and
Trypanosoma cruzi and showed an interesting potential as leads for the further development
of drugs [263]. All together, these studies demonstrated a high potential for the use of TCS
in treating intracellular parasites that are still difficult to eradicate.

10. Summary

TCS is a synthetic, chlorinated phenolic antimicrobial agent that is commonly used in
commercial and healthcare products. As a broad-spectrum antibacterial agent, TCS has
been ubiquitously added to different personal hygiene products, such as antimicrobial
soaps, deodorants, mouthwashes, toothpastes, disinfectants, and cosmetics, typically at
concentrations of 0.1–0.3% and also to other products such as bedding, fabrics, clothes, toys,
trash bags, household cleaning products, kitchen utensils, and seafoods. Besides, there is
strong evidence for TCS’s disrupting effects on the endocrine system, especially on repro-
ductive hormones. TCS belongs to EDCs, which adversely affects the endocrine system
leading to compromised functions of hormones. Epidemiological studies report a link be-
tween TCS exposure and several adverse health outcomes including alterations in thyroid
function and an increased risk for hypersensitivity diseases suggesting an immunomodula-
tory role for the synthetic chemical. Even though TCS possesses wide biological properties
that have been exploited in several applications, there are many important considerations
that need attention and represent severe issues that should be taken into account and dimin-
ish its indiscriminate and widespread use. Amongst them, the ascertained rise of bacterial
resistance, the high impact on gut microbiota, immune and endocrine system, different
organs, with related negative effects on human health, and, ultimately, its environmental
accumulation as a polluting substance represent critical aspects. On the contrary, under a
scientific research point of view, it is desirable to study TCS as repositioning drug, consider-
ing some interesting preliminary studies regarding its potential anticancer and antiparasitic
properties. This review provides the main information and highlights advantages and
disadvantages regarding the different TCS applications, inviting to a more rationale and
limited use and unveil the TCS potential as repositioning drug.
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Abbreviations

AChE Acetylcholinesterase
AhR Aryl Hydrocarbon Receptor
AMH Anti-Müllerian hormone
BALF Bronchoalveolar Lavage Fluid
BMI Body Mass Index
CEC Contaminants of Emerging Concern
CNS Central Nervous System
2,8-DCDD 2,8-dichlorodibenzo-p-dioxin
2,4-DCP 2,4-Dichlorophenol
EDCs Endocrine Disrupting Chemicals
EDTA Ethylenediaminetetraacetic Acid
ENR Enoyl-acyl carrier Protein Reductase
EU European Union
FASN Fatty Acid Synthase Inhibitor
FDA Food and Drug Administration
FSH Follicle-stimulating hormone
FT3 Triiodothyronine
FT4 Thyroxine
GOT Glutamic Oxaloacetic Transaminase
GPT Glutamic Pyruvic Transaminase
HCC Hepatocellular Carcinoma
HOME Health Outcomes and Measures of the Environment
HUVEC Human Umbilical Vein Endothelial Cell
IC50 Half Minimal Inhibitory Concentration
IgE Immunoglobulin E
IL-6 Interleukin-6
LU Luteinizing hormone
LPS Lipopolysaccharide
MIC Minimum Inhibitory Concentration
MTCS Methyltriclosan
NHANES National Health and Nutrition Examination Surveys
OTC Over-the-counter
PCOS Polycystic Ovary Syndrome
PPCPs Pharmaceutical and Personal Care Products
PVM/MA Polyvinylmethyl Ether Maleic Acid
REACH Registration, Evaluation, Authorisation and Restriction of Chemicals
ROS Reactive Oxygen Species
SHIME Simulator of the Human Intestinal Microbial Ecosystem
SSIs Surgical Site Infections
TCC Triclocarban
TCS Triclosan
TNF-α Tumor Necrosis Factor alpha
TP Total Protein
TSH Thyroid-stimulating hormone
UDP Uridine diphosphate
UGTs UDP-glucuronosyltransferases
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