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Abstract

Modularity is a widespread property in biological systems. It implies that interactions occur

mainly within groups of system elements. A modular arrangement facilitates adjustment of

one module without perturbing the rest of the system. Therefore, modularity of developmen-

tal mechanisms is a major factor for evolvability, the potential to produce beneficial variation

from random genetic change. Understanding how modularity evolves in gene regulatory

networks, that create the distinct gene activity patterns that characterize different parts

of an organism, is key to developmental and evolutionary biology. One hypothesis for the

evolution of modules suggests that interactions between some sets of genes become mal-

adaptive when selection favours additional gene activity patterns. The removal of such inter-

actions by selection would result in the formation of modules. A second hypothesis suggests

that modularity evolves in response to sparseness, the scarcity of interactions within a sys-

tem. Here I simulate the evolution of gene regulatory networks and analyse diverse experi-

mentally sustained networks to study the relationship between sparseness and modularity.

My results suggest that sparseness alone is neither sufficient nor necessary to explain

modularity in gene regulatory networks. However, sparseness amplifies the effects of forms

of selection that, like selection for additional gene activity patterns, already produce an

increase in modularity. That evolution of new gene activity patterns is frequent across evolu-

tion also supports that it is a major factor in the evolution of modularity. That sparseness is

widespread across gene regulatory networks indicates that it may have facilitated the evolu-

tion of modules in a wide variety of cases.

Author summary

Modular systems have performance and design advantages over non-modular systems.

Thus, modularity is very important for the development of a wide range of new technolog-

ical or clinical applications. Moreover, modularity is paramount to evolutionary biology

since it allows adjusting one organismal function without disturbing other previously

evolved functions. But how does modularity itself evolve? Here I analyse the structure of

regulatory networks and follow simulations of network evolution to study two hypotheses

for the origin of modules in gene regulatory networks. The first hypothesis considers that
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sparseness, a low number of interactions among the network genes, could be responsible

for the evolution of modular networks. The second, that modules evolve when selection

favours the production of additional gene activity patterns. I found that sparseness alone

is neither sufficient nor necessary to explain modularity in gene regulatory networks.

However, it enhances the effects of selection for multiple gene activity patterns. While

selection for multiple patterns may be decisive in the evolution of modularity, that sparse-

ness is widespread across gene regulatory networks suggests that its contributions should

not be neglected.

Introduction

Many biological systems are modular. That is, their interactions occur predominantly within

groups of elements and rarely between groups [1–3]. Modularity seems to be associated to

important attributes of distinct biological systems. For example, theoretical and experimental

efforts have associated a modular organization to structural robustness in RNA [4] and pro-

teins [5] and to the resilience of metapopulations [6]. The relevance of modularity extends

beyond the scope of fundamental research in biology. The reason is that modularity confers

design and functional benefits to distinct classes of systems. Therefore, for disciplines as

diverse as evolutionary robotics [7, 8], artificial intelligence [9, 10], neuroscience [11, 12] and

synthetic biology [13, 14], it is relevant to study the effects of a modular organization and how

to construct modular systems. Advances in this direction may lead to new useful therapeutical

and technological applications. Here, however, I focus on the role that modularity has in devel-

opment and evolution.

Several researchers have underscored modularity in developmental mechanisms as an

important property that facilitates evolution [1, 15–22]. The main underlying reason is that, in

modular systems, perturbations of an element are often contained within its module and have

few, little or no effects on the rest of the system [23]. It is thus possible to optimize a module

without disturbing the functions of other modules. By allowing independent modification of

different traits or functions, modularity increases the range of phenotypes that random genetic

change can access. For example, the existence of distinct separate gene sets, i.e. modules, for

beak width and length may have been an important factor in the evolution of a wide range of

beak shapes in the Darwin finches’ adaptive radiation [24, 25]. That the production of distinct

aspects of the colour pattern in different parts of butterfly wing blades depends on small and

unique sets of genes has also indicated that modularity plays an important role in the evolution

of a wide diversity of wing patterns in Heliconius butterflies [26].

Gene regulatory networks play fundamental roles in guiding developmental processes [27,

28]. They consist of sets of genes that cross-regulate their expression through regulatory inter-

actions. Such interactions depend mainly on the production of transcription factors that bind

cis-regulatory regions in other genes [28]. Upstream factors, be them genes external to the net-

work, molecular signals coming from neighboring cells, environmental cues, or maternal fac-

tors, define a network’s initial state, in which some genes may be active and other genes may

be inactive. Then, the genetically encoded interactions guide a dynamic process in which some

genes change their activity state. Network dynamics eventually settles in a developmental end

state, a gene expression pattern that indicates the network’s commitment to a particular task

[29]. I will refer to such a terminal expression pattern as the network’s gene activity phenotype
(GAP). The same gene network may yield different GAPs when subject to different signals that

produce distinct initial states of gene activity. Thus, gene networks produce the different GAPs
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that distinguish tissues, organs and cell types. Evolution of new GAPs, through modification of

gene regulatory networks, has produced many evolutionary innovations across the tree of life

[30–32].

Given the relationship between modularity and evolvability, it is paramount to evolutionary

biology to understand the origins of modularity. Because modularity refers only to how mech-

anisms are structured, and not directly to the phenotypic output of such mechanisms, modu-

larity does not increase fitness by itself. Therefore, to understand how modules evolve we need

to study how a modular arrangement relates to other properties [2]. Different groups have pro-

posed distinct mechanisms to explain the evolutionary origins of modularity [2, 33–35].

Modularity may arise whenever interactions between distinct sets of genes obstruct adapta-

tion [36]. In that case, selection would disfavour organisms with such deleterious interactions

thus decreasing the number of interactions between sets. There are several hypotheses for what

makes interactions between different sets of genes consistently deleterious. G.P. Wagner and

collaborators suggested that interactions between genes associated to two different characters

may be detrimental when one of such characters is subject to stabilizing selection and the

other to directional selection. In this case, interactions between these groups of genes would

obstruct the action of either form of selection [1, 17, 37]. In a different scenario, network mod-

ularity evolves when selection fluctuates recurrently between two selection regimes. In one

regime, selection favours the performance of one complex task that combines two subfunc-

tions. In the second regime, selection favours a different task that combines the same subfunc-

tions in a different manner [38]. Hence, phenotypic optima vary in a modular manner. In this

scenario, excessive interactions between elements involved in distinct subfunctions are delete-

rious. The reason is that networks that have different sets of elements assigned to different sub-

functions and that combine subfunctions through few interactions, require less mutations to

alternate from producing one optimum to producing the other. Thus, such modular networks

have an evolutionary advantage. Congruently with this hypothesis, bacteria living in environ-

ments where fluctuations are more frequent tend to have metabolic networks with higher

modularity scores [39].

Evolution of new gene activity phenotypes concerns another scenario where interactions

between distinct sets of genes are selected against [40]. Specifically, modularity may increase if

selection favours networks that produce an additional GAP, besides the network’s ancestral

GAP. This scenario requires two sets of genes: one in which each gene has the same activity

state in the ancestral and new GAPs (set A), and one in which each gene is inactive in one

of the GAPs but active in the other (set B). Here, interactions between genes in the two sets

obstruct adaptation: A gene in set A regulated mainly by genes in set B would likely present

different activity states in the two GAPs. Alternatively, a gene in set B with a strong influence

from set A would tend to show the same activity state in the new and ancestral GAPs. In other

words, a gene that is more heavily influenced by genes in the other set than by genes in the

same set would not comply with selection. In support of this scenario comes the observation

that evolution of new gene activity phenotypes is frequent in an evolutionary scale. Such new

GAPs are associated, for example, to the evolution of new cell types or to the specialization

of serial homologues [30]. It is noteworthy that sister cell types [41–43] or specialized serial

homologues [30, 44] tend to share the activity state of some genes but differ in that of others,

thus conforming to this scenario’s requirements. Moreover, modularity is not lost once new

GAPs evolve [40]. This contrasts with the ‘modular fluctuations’ scenario, in which modularity

drops when fluctuations between selection regimes stop [38].

An alternative influential hypothesis for the origins of modules does not consider that inter-

actions between specific sets of genes may be detrimental. Rather, it considers that any interac-

tion is slightly deleterious and that network sparseness underlies modularity [45]. Clune and
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collaborators studied the evolution of feed-forward boolean networks as a model for the evolu-

tion of biological networks. They found that when connections come at a fitness cost and

connectivity decreases, modular networks evolve. Importantly, many biological regulatory net-

works are sparse [46]. Moreover, later contributions suggested that sparseness is also associ-

ated to a hierarchic organization [47] and, in artificial neural networks, to an enhanced ability

to learn new tasks [9].

How modularity is assessed is specially germane to discussions regarding the sparseness

hypothesis for the origin of modules. Given a network structure, assume that there is an a pri-
ori proposal for a network partition P that assigns nodes to non-overlapping sets that serve

as presumptive modules. The score QP reflects how interactions are concentrated within the

modules that P assumes [3] (see Methods). However, when studying a network structure, one

often has no preconception regarding the number or composition of modules. A common

strategy is then to use an algorithm to search for the network’s best partition into modules [3,

48, 49]. That is, these algorithms attempt to find a partition that maximizes the modularity

score. I will call Qopt to the optimized modularity score that results from such a search. Because

of local fluctuations in connection density, even networks that allocate their interactions in a

random fashion, without any bias, may have random islands of nodes with connection densi-

ties greater than in the rest of the network [50–53]. It is noteworthy that random islands of a

high connection density appear more easily in sparse networks [50, 51, 54]. For example, Gui-

merà et al found that Qopt decreases with the number of connections in random Erdös-Rényi

networks [50]. Thus, sparse random networks seem more modular than denser networks.

These observations prompt the question of what is exactly the role of sparseness in the evolu-

tion of modularity in developmental gene regulatory networks. Is it only that sparse random

networks have wider fluctuations in connection density or are there other effects? The ques-

tion is specially relevant, considering the importance of modularity for development and evo-

lution and the ubiquity of sparseness in biological networks.

To dissect the role of sparseness in the evolution of modularity, it may be useful to separate

the effects that sparseness alone has on modularity from effects caused by other factors. One

may do so by comparing a network’s raw modularity scores, Qopt or QP, with those of networks

devoid of constraints other than preserving the number of connections and degree distribu-

tion. To attain such a comparison, I will use normalized scores QN
P and QN, that equal 0 when

a network’s raw modularity score equals that expected for random networks with the same

number of interactions (see Methods). A positive normalized score means that a network is

more modular than networks with the same number of interactions.

As a means of illustration, Fig 1 shows a comparison for two sets of random networks that

differ in the number of interactions. Fig 1 first approaches modularity in these networks with-

out any preconception of how they are partitioned into modules. Thus, modularity is assessed

in Fig 1A using an algorithm that identifies partitions that optimize modularity [55]. This

panel shows that, as indicated by the raw optimized modularity score Qopt, sparse networks

seem to be more modular than networks with more interactions. Fig 1 also presents an analysis

of the same sets of networks, but using the normalized modularity score QN, that compares the

raw score Qopt to the expected value of the same score in networks with the same connectivity

attributes. Fig 1B shows that the distribution of QN is practically the same for random networks

with contrasting connectivities.

Fig 1C shows a comparison of the same sets of networks, but now in terms of QP, the raw

modularity score associated to a specific partition P that, for this example, I chose arbitrarily.

The distribution of QP is centered at 0 for both sparse and dense networks. However, Fig 1C

also shows that sparse and dense networks differ in how easily a random network’s QP score

tends to deviate from 0. Notwithstanding, Fig 1D shows that, if we evaluate the modularity
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associated to partition P using the normalized score QN
P , random networks with contrasting

connectivities present very similar means and spread. In sum, normalized modularity scores

may be a better indicator of the deviation in modularity with respect to random expectation,

regardless the number of connections. They allow to discard the effect that sparseness alone

has on modularity.

One may distinguish three non-exclusive possible manners in which sparseness could con-

tribute to modularity in developmental gene regulatory networks: i) Sparseness may suffice to

explain modularity in such networks. If this were the case, gene regulatory networks would be

as modular as random networks with the same number of interactions. ii) Sparseness may be

necessary for the evolution and consolidation of modules. In this case, evolution of modularity

would be impossible in dense networks. iii) Sparseness may enhance the effects of other mech-

anisms. To assess the role of sparseness in the evolution of modularity, I designed computer

simulations of the evolution and dynamics of gene networks and analyses of the structure of

biological regulatory networks. I report that sparseness is neither sufficient nor necessary to

explain modularity in gene regulatory networks. Notwithstanding, I also found that sparseness

has a positive effect on the evolution of modularity when it is combined with additional mech-

anisms. In sum, this study suggests that, despite its positive contribution, sparseness is not a

critical factor for the evolution of modularity. Moreover, the analyses that I put forward are

Fig 1. Distribution of modularity in random networks with different number of interactions. Each panel shows the distribution of a modularity

score for sparse (20 interactions) and dense (50 interactions) networks with ten nodes. Each sample contains 3,000 random networks. (A) Distribution

of the raw modularity score Qopt. Mean ± SD Qopt equals 0.278 ± 0.057 for sparse and 0.135 ± 0.029 for dense networks. Kolmogorov-Smirnov test:

D = 0.922; p< 2.2 × 10−16. (B) Distribution of the normalized modularity score QN. Mean ± SD QN equals 0.008 ± 0.981 for sparse and 0.052 ± 0.991 for

dense networks. Kolmogorov-Smirnov test: D = 0.064; p = 0.257. (C) Distribution of the raw modularity score QP for a specific partition P. Mean ± SD

QP equals −0.002 ± 0.101 for sparse and 3.7 × 10−4 ± 0.05 for dense networks. Kolmogorov-Smirnov test: D = 0.22; p = 6.18 × 10−11. (D) Distribution of

the normalized modularity score QN
P for a specific partition P. Mean ± SD QN

P equals −0.023 ± 1.02 for sparse and 0.007 ± 0.999 for dense networks.

Kolmogorov-Smirnov test: D = 0.062; p = 0.29.

https://doi.org/10.1371/journal.pcbi.1006172.g001
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consistent with the proposal that modularity evolves easily under selection for new additional

gene activity phenotypes, where interactions between distinct sets of genes are deleterious.

That gene regulatory networks are indeed sparse facilitates the evolution of a modular

arrangement.

Methods

Model of developmental process: Network dynamics

The work that I present here considers both the development and evolution of gene regulatory

networks. In terms of gene networks, development entails the production of stable GAPs

through regulatory interactions among a network’s genes.

To model a gene regulatory network’s developmental dynamics, I consider a set of N nodes

that represent cross-regulating genes. A vector st describes the system state at a given time t by

listing the activity state of each gene at that moment. At time t, a gene i may be active (sti ¼ 1)

or inactive (sti ¼ 0).

In nature, an organism’s genome defines interactions between regulatory genes, mainly

through specification of cis-regulatory regions that transcription factors bind [28]. In the

model, who regulates whom is defined in a matrix G that represents an organism’s genotype

(Fig 2A). A positive entry in matrix G, gij> 0, indicates that gene j favours the expression of

gene i. In contrast, a negative entry gij< 0 means that gene j inhibits the activity of gene i. The

change in gene activity depends on:

stþ1
i ¼ si

XN

j¼1

gijs
t
j � yi

" #

ð1Þ

where σi is a step function given by

siðxÞ ¼

1; if x > 0

sti ; if x ¼ 0

0; if x < 0

8
>>><

>>>:

ð2Þ

Thus, a gene i becomes active if the sum of the influence of i’s active regulators surpasses a

threshold θi specific for gene i. I consider that the value of θi depends on gene i’s regulators.

Specifically, yi ¼

PN

j¼1
gij

2
. This value of θi guarantees the existence of combinations of activity

states of i’s regulators that can switch gene i on or off. Moreover, with this definition of θi and

σi, the model is equivalent to a model of gene network dynamics first used by Wagner to study

evolutionary properties of gene regulatory networks [56, 57]. Variations of this model have

allowed researchers to address successfully several diverse important questions on the evolu-

tion of regulatory networks [58]. Importantly, previous research [59] has shown that this

model has properties that allow the generalization of results that one may find for one GAP to

other easily recognizable GAPs (see details in section 1.1 of S1 Text).

In nature, a network’s dynamic trajectory describes the changes in gene activity that a cell

experiences until gene activity settles. The network has then reached a developmental end

state, that is, a GAP. Network dynamics starts from an initial state, defined by factors external

to the network. In the model, the system starts its dynamics from an initial system state s0 and

network genes update their activity state iteratively according to Eq 1. Eventually, because the

system is discrete, it attains a state that it has visited previously. In the absence of perturbations,
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the system then follows the same dynamic trajectory and thus becomes locked in a sequence of

k distinct system states that represents a GAP (Fig 2B). The network has then reached a devel-

opmental end-state [60]. If k = 1, the GAP is stationary. In it, a gene activity pattern self-main-

tains (Fig 2B). If k> 1, the GAP is a limit cycle in which a particular system state reappears

every k iterations. The same network genotype may attain distinct GAPs when it starts its

dynamics from different initial conditions (Fig 2B). In nature, such different initial conditions

may arise in distinct parts of an organism subject to different molecular signals.

Evaluation of a network’s fitness

To assess an individual’s phenotype and evaluate its fitness (Fig 2C), I consider the network’s

ability to produce, from different initial conditions, T distinct reference GAPs that serve as

evolutionary goals. I will refer to them as target GAPs. I consider that each individual is com-

posed of 100 cells and assigns K = 100/T of them to each of the T functions that the distinct

target GAPs optimally perform. A cell required to produce target GAP X starts its dynamics

from an initial condition that I obtain by flipping with probability κ each entry in the target

Fig 2. Gene network dynamics, mutation and evaluation of fitness. (A) A gene network can be described as a graph or as a matrix in which positive

entries (green squares) represent activatory interactions (arrows) and negative entries (red squares) represent inhibitory interactions (blunt-end lines).

(B) Each row with six squares represent a system state. White and black squares represent active and inactive genes, respectively. An initial pattern of

gene activity (at t = 0) is updated according to the interactions described in panel (A) until dynamics lead to a GAP, a sequence of system states that is

repeated indefinitely. The gene network in (A) is able to yield two different GAPs when it starts its dynamics from different initial system states. (C)

Summary of the procedure to evaluate a network’s fitness in evolutionary simulations. Fitness is higher in networks that produce GAPs, from different

initial conditions, similar to target GAPs that selection favours. (D) Mutations in the model change interactions between genes. They thus modify the

matrix that specifies whether a gene i regulates a second gene j. The activatory interaction that mutation wrecks is dashed in the top network and its

corresponding entry is marked with an X.

https://doi.org/10.1371/journal.pcbi.1006172.g002
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GAP X . κ thus reflects how often the sequences of changes in gene activity are perturbed by

changes in the initial system state. In nature, such perturbations may arise from developmental

noise, for example in the form of stochastic fluctuations in the number of protein molecules,

or from random disturbances in a cell’s environment. A cell’s dynamic trajectory stops once

the network attains a GAP Y, according to the procedure described in the preceding section. A

cell’s contribution to fitness depends on how different Y is from the target GAP X in the fol-

lowing manner:

w ¼ ð1 � SÞDðX ;YÞ ð3Þ

where S is the selection coefficient, that calibrates how deleterious are deviations from a target

GAP. DðX ;YÞmeasures how different are Y and X (see section 1.2 in S1 Text).

I define the contribution of a target GAP X to organismal fitness as the arithmetic mean of

the fitness contribution of the K cells required to produce X . Organismal fitness is the product

of the fitness contribution of each target GAP.

Evolution of network populations

A population is first created as copies of a founder network. To create such a founder net-

work, I built random networks with γN2 interactions until one network appears that pro-

duces, in the absence of perturbations of the initial system state, the target GAP that

selection favours when evolution starts. Then, I subject network populations to rounds (i.e.

generations) of selection and mutation to simulate an evolutionary process. To produce the

next generation, I first evaluate the fitness of each network by assessing how similar are the

GAPs that it yields to target GAPs, as explained in the previous section. Then, I pick ran-

domly (with replacement) M networks with roulette wheel selection, in which the probability

to pick a network is proportional to its fitness. Each gene in a network is then subject to

mutation with probability μ.

Mutation changes an entry in the matrix G that lists gene interactions. It thus changes the

number of regulators that a gene has (Fig 2D). Gene duplication and other kinds of muta-

tions are not considered in this contribution. As described in detail in S1 Text (section 1.3),

the propensity to gain interactions, γ, modulates how likely it is that a new mutation leads to

a new interaction and not to the loss of an existing interaction. The probabilities that a gene i
loses or acquires an interaction also depend on the number of regulators that i already has.

Acquiring or losing an interaction is more likely when the number of i’s regulators is low or

high, respectively. In this setup, mutation tends to pull the number of a gene’s regulators

towards Nγ. Thus, tuning γ allows to define the expected number of interactions per network

γN2.

The analyses that I present here concern those populations in which maximum fitness

surpassed a threshold of 0.9. For each of such populations, I chose randomly one network

among those with the highest fitness in that population. Notwithstanding, the results are

qualitatively the same when including all populations, regardless whether they adapted suc-

cessfully or not (S1 Fig), and when I consider average population values in successfully

adapted populations (S2 Fig). Unless stated otherwise, the parameters that I use in the simu-

lations presented here are: N = 10, κ = 0.05, γ = 0.3, S = 0.4, μ = 0.01 and M = 200. With this

choice of parameter values, the optimal phenotype evolved in most cases, without incurring

in excessive computational cost. Indeed, even in scenarios where adaptation is slower, evolu-

tion of modularity had effectively come to a halt by the end of the simulations (see section

2.1 in S1 Text). Many of the evolutionary scenarios that I address include two distinct stages.

The procedures described above are followed in both stages, albeit perhaps with different
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target GAPs, or with a different value for a specific parameter that affects evolution. The first

stage merely sets an ancestral population. Comparing populations before and after evolution

under different conditions allows addressing if those conditions increase modularity relative

to the ancestral state.

Evaluation of modularity

Given a directed network and a specific partition P of the network’s nodes into non-overlap-

ping sets, the network’s modularity, i.e. the degree with which interactions are concentrated

within the partition sets, is described with:

QP ¼
X

m

lm
L
�

din
md

out
m

L2

� �

ð4Þ

where m refers to one of the sets of nodes that compose partition P, L is the total number of

regulatory interactions in the network, lm is the number of interactions within module m, din
m is

the sum of incoming interactions of all nodes in module m and dout
m is the same but for outgo-

ing interactions [55]. Because random networks that differ in the number of connections or in

other networks properties vary in how easily they deviate from random expectation, I compare

a network’s QP with that of networks with the same number of nodes, interactions and degree

distribution but devoid of any other constraints. Hence, I measure the QP score for the same

partition P in a set of 103 networks that allocate their interactions randomly but that preserve

the same degree distribution and the same number of nodes and edges as the original network.

To create randomized networks I follow the ‘switching’ algorithm [61]. Thus, I assess a nor-

malized version of the QP score that measures modularity after discarding the modularity due

to sparseness alone:

QN
P ¼

QP �
bQP

SDQ;P

ð5Þ

where bQP and SDQ,P refer to the mean and standard deviation of QP for networks in the ran-

domized set.

In the lack of an hypothesis for the composition of modules in the network, an usual strat-

egy is to search for a partition that maximizes QP [3, 48, 49]. Here, I will call Qopt to the modu-

larity score that results from such an optimization procedure. In this paper, I use the spectral

method proposed by Newman, known for its advantages in performance and computational

cost [49]. Specifically, I use Leicht and Newman’s version of the method that allows its applica-

tion to directed networks [55].

Because even random networks can have a high Qopt value, it is convenient to compare a

network’s Qopt with the random expectation for networks with the same properties. For each

network under study, I built a set of 103 randomized networks with the same number of

nodes, edges and degree distribution. I then apply Leicht and Newman’s spectral method to

each network in the set. Next, I use a z-score as a normalized modularity score:

QN ¼
Qopt � bQ

SDQ

ð6Þ

where bQ and SDQ refer to the mean and standard deviation of Qopt for networks in the random

set. In order to enable comparisons with previous work, section 2.2 in S1 Text provides the

main results in this article, but from the perspective of the raw optimized score Qopt.
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Results

Sparseness alone does not explain modularity in gene regulatory networks

Previous research supports that network modularity evolves when networks become sparser

[9, 45, 47, 62]. However, one must take into account how modularity is regularly assessed. In

the absence of an hypothesis for which nodes are integrated into modules, a network’s mod-

ularity is usually evaluated by finding one network partition that maximizes the modularity

score [48, 49, 63]. I refer to such an optimized score as Qopt. Because the search algorithms

look for the best partition, even random networks can have a high Qopt score [50–53]. Sets of

nodes with a connectivity (locally) higher than in the whole network appear more easily in

sparse than in densely connected random networks. As explained previously, normalized

modularity scores allow fairer comparisons of a network’s modularity in terms of how

it deviates with respect to random networks with the same number of connections. There-

fore, hereafter I will report a network’s modularity using normalized scores. I will use

score QN
P whenever I consider a mechanism that predicts the composition of modules. In

this case, QN
P tells whether interactions concentrate specifically according to the proposed

partition P. If different sets with high internal connectivity were to arise, they should not val-

idate the mechanism under evaluation for its capacity to create and consolidate modules.

When an hypothesis for the composition of modules is lacking, I will use the score QN that

compares an optimized score in a focal network to similarly optimized scores in randomized

networks.

One open possibility is that modularity in developmental regulatory networks is not higher

than expected by chance for networks of the same size and connectivity. If that were the case,

what we perceive as modules would be the result of local fluctuations in connection density

that theory predicts in sparse random networks [50, 51, 54]. Then, the normalized modularity

score of developmental networks would follow a distribution similar to that in Fig 1B, with

(nearly) equal probability of being positive as that of being negative. To assess this possibility, I

revisited 12 recent studies of developmental regulatory networks. Out of the many possible

sources of information, I took the network structures from modelling studies sustained on

experimental evidence. The reason is that the confidence is high that a model that successfully

reproduces a developmental process takes into account all critical factors and interactions

involved in the process. Each of these networks can attain any of several stable gene activity

phenotypes (GAPs), as they participate in developmental decisions in plants and animals

(Table 1). The sample contains studies in plants [64–66], insects [67], nematodes [68], echino-

derms [69] and mammals [70–75]. The networks vary greatly in size (ranging from 5 to 94

nodes) and number of interactions (13-209). Connection density does not span a wide interval

(1.59 to 3.24 interactions per node), coinciding with the observation that regulatory networks

are usually sparse [46]. I found that all twelve networks have a positive normalized modularity

score QN (Table 1). In other words, the modularity of each network is higher than the average

for random networks of the same size, number of interactions and degree distribution. More-

over, in most cases QN is not close to 0, which is the null expectation. Had QN in these develop-

mental networks come from a symmetric distribution centered on 0, the probability that all

twelve scores were positive would be 0.512� 2.4 × 10−4. These observations support that net-

works in development tend to be more modular than expected for random networks with the

same connectivity. Hence, sparseness alone is unlikely to explain modularity in gene regula-

tory networks. Moreover, that developmental networks that produce multiple GAPs have a

positive normalized modularity score is consistent with the proposal that evolution of new

additional gene activity phenotypes may be an important factor for the evolution of modularity

[40].
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Selection for additional GAPs and the evolution of modularity

I next used a model of gene network dynamics (Fig 2) to study how modularity may evolve.

The model allows to follow the changes in gene activity according to the regulatory interac-

tions that the network specifies. Eventually network dynamics reaches a GAP, a pattern of

gene activity in which the system settles. Importantly, a network may produce different GAPs,

for example, when it starts its dynamics from different initial system states that may occur in

different parts of an organism (Fig 2B). Because gene interactions guide developmental

dynamics, the network structure defines the GAPs that a network is able to produce. There-

fore, changes in gene interactions may produce changes in the GAPs that a network attains. I

subjected network populations to cycles of mutation and selection. On the one hand, a muta-

tion changes an interaction at random (Fig 2D). On the other hand, selection favours those

networks that were able to produce gene activity phenotypes similar to predefined target GAPs

that are assumed to perform a biological function optimally. Thus, the networks that had

greater chances of leaving offspring for the next generation were those that produced the target

GAPs even under perturbations of the network dynamics (see Fig 2C and Methods).

Simulations of the evolution of gene regulatory networks have already suggested that

networks that evolve to produce both a new and an ancestral GAPs from different initial

conditions tend to be more modular than ancestral networks [40]. As explained in the intro-

duction, the reason would be that interactions between distinct sets of genes obstruct the

production of either the old or the new GAP. Specifically, previous research had shown that

evolution of new GAPs increases QN [40]. Hence, I first assessed whether the modularity

score QN
P associated to a partition P also increases in this scenario. To address this question, I

considered an ancestral target GAP I, a new additional beneficial target GAP II and two sets

of genes A and B of equal size. Each gene in set A has the same activity state in target GAPs

I and II. In contrast, each gene in set B has a different activity state in target GAPs I and II

Table 1. Modularity in developmental multistable regulatory networks.

System Nodes Interactions Q bQ SDQ QN

Arabidopsis floral organ determination [64] 15 43 0.318 0.223 0.033 2.895

Sea urchin endomesoderm developmenta [69] 79 209 0.531 0.358 0.015 11.257

Terminal differentiation of B cells [75] 22 39 0.381 0.366 0.038 0.389

Macrophage activationb [74] 94 170 0.59 0.482 0.017 6.445

Primary sex determination in eutheriansc [72] 18 40 0.372 0.292 0.035 2.253

Specification of mouse ventral neural tubed [70] 17 33 0.403 0.339 0.039 1.639

Pancreas development [73] 5 13 0.26 0.154 0.065 1.629

Drosophila mesoderm specificationc [67] 48 78 0.498 0.462 0.024 1.533

Lymphoid and myeloid cell specificatione [71] 21 68 0.244 0.218 0.024 1.097

Vascular bundle differentiation [65] 22 35 0.491 0.431 0.04 1.476

Arabidopsis root stem cell niche [66] 11 34 0.384 0.205 0.039 4.586

Differentiation in the C. elegans vulva [68] 14 38 0.37 0.262 0.043 2.535

a: The network’s “view from the genome” was downloaded on October 27, 2017 (http://grns.biotapestry.org/SpEndomes/). Maternal, ubiquituous, unknown unregulated

and isolated factors were omitted.
b: Protein and mRNA nodes corresponding to the same gene were fused into a single node. Housekeeping factors were omitted.
c: A reduced version of the network produces, qualitatively, the same results.
d: The network’s “view from the genome” was downloaded on October 30, 2017 (http://grns.biotapestry.org/VNT/).
e: Activated and unactivated versions of two receptors were fused into a single node.

https://doi.org/10.1371/journal.pcbi.1006172.t001
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(Fig 3A). Thus, the specific partition that I consider, P, allocates genes in set A to one module

and genes in set B to a second module, as previous research predicts [40]. Then, I followed

the evolution of 500 populations, each with M = 200 individuals (i.e. networks), for 2,000

generations of selection for target GAP I. This first stage of evolution sets ancestral popula-

tions before the evolution of a new gene activity pattern. In a second stage of evolution, last-

ing 8,000 generations, selection favours those individuals that yield GAP I in half of their

cells and that produce, from different initial conditions, GAP II in the remaining cells. At the

end of each selection regime, I measured QN
P in a network with the highest fitness in each

population. 475 populations successfully adapted to both selection regimes. The mean QN
P

value for networks after selection for I is -0.14 (SD = 1.009). After selection for both target

GAPs, mean QN
P equals 2.569 (SD = 0.846). The difference is highly significant according to a

Wilcoxon signed-rank test (Fig 3B; W = 112, 990; p< 2.2 × 10−16). The consolidation of two

distinct modules, each comprising genes in either set A or B, is also evident by looking at

how interactions are distributed at the end of each selection regime. Fig 3C shows that when

Fig 3. Modularity evolves after selection for an additional gene activity phenotype. (A) Target GAPs I and II. White and black squares represent

active and inactive genes, respectively. Genes 1-5 are grouped in set A and genes 6-10 are grouped in set B. Note that genes in set A have the same

activity state in both target GAPs. In contrast, genes in set B have a different activity state in both target GAPs. Networks evolve in a first stage under

selection to produce target GAP I. In a second stage, selection favours networks that produce target GAPs I and II from distinct initial system states, that

may occur, for example, in cells in different parts of an organism. (B) QN
P increases after selection for an additional gene activity phenotype. Each dot

represents an independently evolving population. The horizontal axis indicates the QN
P score for a network with the highest fitness before starting

selection for the two GAPs. The vertical axis denotes the same score but for a network after selection for both GAPs. The solid diagonal is the identity

line. (C) After selection for GAP I alone, interactions between any pair of genes occur with similar frequency. Grayscale indicates the fraction of

independently evolved networks that have a certain source-target regulatory interaction. (D) After selection for both target GAPs I and II interactions

occur mainly either between genes in set A or between genes in set B.

https://doi.org/10.1371/journal.pcbi.1006172.g003
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selection favours target GAP I alone interactions between any pair of genes appear with simi-

lar frequency. In contrast, after selection for both target GAPs I and II, interactions are con-

centrated within sets A or B (Fig 3D). These observations are consistent with the hypothesis

that selection for additional GAPs increases modularity.

The effects of sparseness on the evolution of modularity

Sparseness may still play a role in the evolution of modularity, even if it is not sufficient to

increase modularity to the extent observed in gene regulatory networks. Thus, I addressed

whether sparseness has a role in increasing modularity beyond the level expected in random

networks. To pursue the answer, I evolved 3,000 populations of networks, 500 with each of

six different values for the propensity to gain interactions γ. As explained in Methods, the

expected number of interactions in evolving networks increases linearly with increasing γ.

Network populations evolved in the same scenario as populations in Fig 3: 2, 000 generations

under selection for target GAP I and then 8, 000 generations under selection for target GAPs I
and II (Fig 3A). These simulations show that a greater number of interactions makes adapta-

tion more difficult in this evolutionary scenario, as the number of populations that successfully

adapted decreased with γ. The number of populations in which networks surpassed a fitness

threshold of 0.9 at the end of the two selection regimes was 485, 475, 459, 441, 391 and 293

when γ equaled 0.2, 0.3, 0.4, 0.5, 0.6 and 0.7, respectively. I assessed the modularity score QN
P ,

referring to a partition P into sets A and B, in networks with the highest fitness in populations

that adapted successfully. The increase in modularity is less pronounced when interactions

accumulate more easily (Fig 4). Notwithstanding, there is a substantial increment in modular-

ity even in networks with a propensity to acquire interactions as unrealistically high as 0.7. In

this case, mean QN
P equals 0.065 (SD = 1.013) after selection for target GAP I and it equals

Fig 4. Selection for two GAPs produces a greater increase in modularity in sparser networks. The selection regimes

are the same as in Fig 3. In a first stage, selection favoured networks that produced target GAP I. In a second stage,

networks with highest fitness were those that produced GAPs I and II in cells with different initial system states (Fig

3A). The QN
P score refers to a partition P that assigns the first five genes to one set and the rest of the genes to another.

The number of expected interactions is modulated through γ, the relative propensity to acquire interactions.

https://doi.org/10.1371/journal.pcbi.1006172.g004
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1.292 (SD = 0.964) after selection for I and II. This increase in modularity is also statistically

significant (W = 38, 418; p< 2.2 × 10−16).

Even though sparseness is not sufficient, it may well be necessary to increase modularity

above levels expected in random networks. If this were the case, the increase in modularity

would only occur in networks with few connections, even in regimes where propensity to gain

interactions is high. This possibility may seem supported by the observation that adaptation to

produce two target GAPs and the increase in modularity are more likely when the probability

to gain interactions is low. However, this is not the case. The expected number of interactions

for networks evolving in the absence of selection is 20, 30, 40, 50, 60 or 70 when γ equals 0.2,

0.3, 0.4, 0.5, 0.6 or 0.7, respectively. Similarly, the average ± SD numbers of interactions in net-

works successfully adapted to produce target GAPs I and II are, respectively, 21.38 ± 3.62,

30.1 ± 4.34, 39.69 ± 4.67, 50.25 ± 4.97, 60.78 ± 4.79 and 70.63 ± 4.54. One may think that the

number of interactions is so close to the number of expected interactions only because muta-

tion drives too strongly the number of interactions towards values close to γN2 (see Methods

and section 1.3 in S1 Text). Nevertheless, even when mutation is not biased towards a specific

number of regulators per gene, the number of interactions does not decrease beyond random

expectation after selection for an additional GAP (S3 Fig). All these results indicate that net-

works do not tend to lose connections when evolving modularity under selection to produce

two different target GAPs. Consequently, modularity can evolve in non-sparse networks.

Moreover, although computational cost prohibits exploration of the evolution of very large

networks, simulation of the evolution of slightly larger networks in the same evolutionary sce-

nario are also consistent with these observations (S4 Fig).

It is noteworthy that the greater increase in modularity in networks with a lower propensity

to acquire interactions is also observed after selection for I and II when the model of network

dynamics is modified substantially. Specifically, this effect is observed when the gene activity

threshold θi (Eq 1) is set to zero for all genes (S5 Fig) and when the entries in genotype matri-

ces G are continuous (S6 Fig). These results suggest that the effect of sparseness on the evolu-

tion of modularity after selection of an additional target GAP does not depend on the model’s

details.

For reasons explained in section 1.1 in S1 Text, what is true for networks that evolve to pro-

duce target GAPs I and II will also be valid if another pair of stationary GAPs had taken the

place of I and II in the simulation. The only restriction is that the two GAPs should differ in

the same number of activity states as I and II. Notwithstanding, I tested whether a low value of

γ is associated to a greater increase in modularity when the pairs of target GAPs that selection

favours present more and less differences in gene activity than I and II. S7 and S8 Figs show

that this effect is also observed in simulations in which the two target GAPs differ in the activ-

ity of three and seven genes, respectively. Therefore, these observations are not particular to

networks evolving GAPs I and II, but extend to networks evolving a wide variety of pairs of tar-

get GAPs.

The simulations that I have already presented suggest that sparseness contributes to the

evolution of modularity, despite being neither necessary nor sufficient. An additional analysis

supports this interpretation. I evolved 500 network populations under selection to produce tar-

get GAPs I and II for 2 × 104 generations. In the course of the first 104 generations, the propen-

sity to gain interactions was relatively high (γ = 0.4). In the last 104 generations γ equaled 0.2.

Although QN
P was already high after the first 104 generations of evolution (mean: 2.17; SD:

0.874), it rises substantially after evolution with a low γ (mean: 2.885; SD: 0.75). This increment

is also statistically highly significant (W = 83, 538; p< 2.2 × 10−16).

It is noteworthy that the positive effects that sparseness has on modularity do not occur

under any selection regime. I studied the evolution of networks under selection for a single
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target GAP, specifically GAP I. As in the previous analyses, I considered two epochs, each last-

ing 104 generations. The propensity to gain interactions, γ, equaled 0.4 and 0.2 in the first and

second epoch, respectively. Because of the lack of an hypothesis for a partition in this selection

regime, I assessed the score QN instead of QN
P . At the end of each of the two epochs modularity

was lower than that of random networks with the same connectivity. Mean QN equaled -0.44

(SD = 0.98) when γ had a high value. After evolution under a low γ, mean QN equaled -0.63

(SD = 0.88). Indeed, a Wilcoxon signed-rank test does not support that modularity increased

after decreasing the value of γ (W = 51, 492;p = 0.999).

These results together support that sparseness may enhance the positive effects that selec-

tion has on taking modularity further above values expected in random networks. Remarkably,

these positive effects do not appear in any selection regime. They do appear when interactions

between distinct sets of genes obstruct adaptation. Otherwise, sparseness does not seem to

contribute to the appearance and consolidation of modules beyond random expectation.

Enhancing effects on the evolution of modularity are not unique to

sparseness

Are there any other factors that, like sparseness, modulate the increase in modularity that

other mechanisms produce? I considered that non-genetic perturbations in a network’s initial

system state may also play this role. That is, it may be that greater probabilities of altering the

dynamic trajectory that leads to a GAP may contribute to increased modularity. The reason

would be that the detrimental effects of some interactions between modules may appear only

under some combinations of gene activity states but not in others. Thus, trying more and dif-

ferent trajectories may facilitate revealing these conditionally deleterious interactions. In

nature, such perturbations in dynamic trajectories may come from developmental noise or

from environmental disturbances. In the model, I simulate them by perturbing initial states in

network dynamics with probability κ (see Methods).

I evolved network populations under different probabilities κ of perturbing initial system

states. As in previous simulations, the first 2 × 103 generations selection favoured networks

that produced target GAP I, while the remaining 8 × 103 generations selection benefitted net-

works yielding target GAPs I and II. Similarly as with sparseness, Fig 5 shows that as perturba-

tion rate takes higher values, the increase in QN
P is greater after selection for two GAPs.

Another similarity with sparseness is that a value as extreme as κ = 0, that implies complete

absence of non-genetic perturbations of the initial condition, is not able to stop the evolution

of modularity after selection for GAPs I and II. One may think that these similarities would

easily be explained if evolution under frequent perturbations produces an increase in sparse-

ness and, consequently, on QN
P . This would require that the number of interactions were lower

in populations evolving in the face of more perturbations. However, the expected number of

interactions (30) is clearly in the bulk of the distribution of interactions in networks evolved

under each of the three distinct values of κ that I tested. The mean ± SD number of interac-

tions when κ equals 0, 0.025 and 0.05 is 28.65 ± 4.94, 30.58 ± 4.64 and 30.1 ± 4.34, respectively.

These observations support that the effect that perturbation rate has on the evolution of modu-

larity is not contingent on connectivity.

I also performed additional simulations in which selection favoured target GAPs I and II
throughout evolution for 2 × 104 generations. In these simulations, the value of κ changed from

0.01 to 0.05 after 104 generations of evolution. Thus, networks were subject to more frequent

perturbations of initial system states in the second stage of evolution. After evolution with the

higher perturbation rate, the QN
P score increased significantly (W = 97, 200; p< 2.2 × 10−16).

Namely it increased from a mean value of 2.01 (SD = 0.92) to 2.64 (SD = 0.78). Together, the
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results that I present in this section support that a high perturbation rate, like sparseness, ampli-

fies the effects on modularity that other mechanisms produce.

Discussion

In this article I have addressed the role that sparseness plays in the evolution and consolidation

of modules in gene regulatory networks that participate in development. The first possibility

that I considered was that sparseness alone could explain modularity in such networks. This

hypothesis requires gene regulatory networks to be as modular as random networks with the

same number of interactions. My results suggest that this is not the case in developmental gene

regulatory networks. A sample of 12 experimentally sustained regulatory networks involved in

a wide variety of developmental processes suggests that such networks are more modular than

expected for random networks with the same connectivity distribution. Whether this is a com-

mon property of other networks in biology remains an open question. A hint in this direction

is that metabolic networks, represented as non-directed graphs, are also more modular than

equally sparse random networks [76]. Here, however, my focus is on developmental regulatory

networks. The results that I put forward suggest that factors other than sparseness must be

invoked to explain modularity in developmental regulatory networks. One such factor may be

selection for multiple gene activity phenotypes, as proposed previously [40].

Next I assessed whether sparseness collaborates with other factors to take modularity

beyond the level expected in random networks. Because developmental regulatory networks

have the ability to produce more than one GAP and also a modularity higher than that in ran-

dom networks (Table 1), I decided to check how sparseness combines with selection to yield

new GAPs. The analyses suggest that this selection regime increases modularity even when

Fig 5. The rate κ of perturbation of initial system states contributes to the increase in modularity due to selection

for two GAPs. The increase in modularity after selection for two target GAPs is greater when evolution occurs under

higher rates of non-genetic perturbation. The selection regimes are the same as in Fig 3. In a first stage, selection

favoured networks that produced target GAP I. In a second stage, networks with highest fitness were those that

produced GAPs I and II from different initial system states (Fig 3A). QN
P refers to a partition P that assigns the first five

genes to one set and the rest of the genes to another.

https://doi.org/10.1371/journal.pcbi.1006172.g005
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networks are very densely connected. Thus, sparseness is not absolutely required to make net-

works more modular than as predicted for random networks. Still, I found that sparseness

amplifies the increase in modularity that selection for new activity phenotypes produces. Note

that this effect does not depend on the random islands of high density that sparseness creates

[50, 51]. After all, such analyses considered modularity with respect to the expectation in ran-

dom networks with the same connectivity and referring to a specific partition P that selection

favoured. Moreover, I found that my observations still hold after changes in the specifications

of the model, in the identity of the target GAPs that selection favours and in parameter values

(S1–S8 Figs).

That adaptation to produce new additional GAPs occurs less easily in dense networks sug-

gest one reason why sparseness facilitates selection’s role in allocating interactions preferen-

tially within modules. The mere abundance of inter-module connections may obstruct

selection’s efforts to remove them. In addition, selection may also have lower incentives to

remove interactions between modules in dense networks. The reason is that dense networks

will also have more interactions within modules that counteract the pernicious effects of con-

nections between modules.

The analyses that I present here support that, while sparseness facilitates the evolution of

modularity, modularity can still evolve in non-sparse networks. One scenario that does suffice

to obtain modules is that in which phenotypic optima vary in a modular manner, the so-called

‘modularly-varying goals’ scenario [38]. The ubiquity of environmental fluctuations raise the

possibility that this scenario explains modularity in many organismal traits. For example, met-

abolic traits in bacteria that live in less stable environments tend to be more modular than

those of bacteria in stable environments [39]. However, this may not be a general case. The

metabolic networks in diverse fly or mammal species do not follow the same pattern [77].

Moreover, this scenario demands specifically ‘modular’ fluctuations, since fluctuations

between random phenotypic optima do not promote modularity [38]. Another limitation is

that the increase in modularity that this scenario produces is not stable. Once fluctuations

stop, modularity drops abruptly [38].

Selection for new additional GAPs is a different option that also suffices to obtain modules

in gene regulatory networks. In an evolutionary scale, the acquisition of new activity pheno-

types has been a regular means to produce innovations across lineages [30, 41, 42]. Such new

GAPs arise, for instance, when new cell types or body structures evolve. Indeed, sister cell

types [41–43] and serially homologous structures [30, 44] share the activity of some genes, that

allow us to recognize their relationship, but differ in the activity of other genes that underlie

their distinct identities and functions. Therefore, nature frequently encounters the conditions

that this scenario requires for the evolution of modularity in gene regulatory networks.

When selection combines genes that perform one function with other gene activity states,

a new GAP emerges. This requires severing interactions that obstruct this new arrangement

in gene activity. Thus, it is expected that modules reflect the selection process, as predicted

previously [17]. Specifically, modules should group genes with activity states that are highly

correlated in developmental end-states. This correlation will be positive or negative depend-

ing on whether selection rewards or punishes, respectively, their joint expression. For exam-

ple, the algorithm by Leicht and Newman [55] identifies three modules in the Arabidopsis

floral organ determination network [64]. The first module comprises meristem identity

genes that determine whether a meristem is vegetative or gives rise to a flower. Such genes

are active in one kind of meristem but not in the other. The second module concerns genes

involved in deciding, within the flower, whether reproductive (carpels, stamens) or perianth

(sepals, petals) organs are produced. Lastly, the third module concerns the decision between

B-gene activity (petals, stamens) and no B-gene activity (sepals, carpels). Note that, in this
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framework, one module does not necessarily correspond to one function [78–80]. Two or

more functions may be associated to the same module if genes assigned to distinct functions

have correlated activity states in different parts of an organism or if the functions share a

genetic basis.

That selection for multiple functions produces modular mechanisms may be valid even out-

side of the framework of gene regulatory networks and gene activity phenotypes. Modularity

also appears in other kinds of systems where interactions between distinct sets of elements

interfere and obstruct the performance of multiple beneficial functions. For example, modu-

larity increases when selection favours networks that recognize two different patterns [45],

RNA molecules that produce distinct structural units [4], gene networks that evolve to produce

segments and differentiate them [81], and robots that grow and move [7] or that acquire steer-

ing and propulsion abilities [8].

Current data suggests that sparseness is widespread in gene regulatory networks. Its ubiquity

does not seem to require an elaborate explanation. It stems naturally from the fact that it is eas-

ier for random genetic change to eliminate existing interactions than to create new ones [82].

The analyses that I put forward in this contribution suggest the existence of two distinct effects

of sparseness in the evolution of modularity. Regarding the first effect, sparseness creates ran-

dom islands where connection density is greater than in the rest of the network [50, 51]. The

second is contingent on other factors, like some form of selection that makes interactions

between specific sets of genes deleterious. I contend that the latter effect is more important in

the evolution of gene regulatory networks for two main reasons. First, gene regulatory net-

works seem to be more modular than random networks with the same number of connections.

Second, by amplifying the effects of selection, sparseness may facilitate adaptive evolution.

In this perspective, selection for new gene activity phenotypes may take outstanding impor-

tance. Besides producing stable increases in modularity [40], the ability to produce different

GAPs seems associated with modularity in biological regulatory networks (Table 1). Moreover,

the appearance of new gene activity phenotypes has been a frequent factor in the evolution of

many organisms [31]. It may well have been a relevant factor in the evolution of modular gene

regulatory networks.
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S1 Fig. Analyses considering all the populations, regardless successful adaptation. The

data for this figure considers a network with the highest fitness in each population, irrespective

of whether this fitness surpassed a threshold of 0.9. The results are qualitatively the same as

those presented in the main text. (A) Modularity evolves after selection for an additional activ-

ity pattern. The evolutionary scenario is the same as that presented in Fig 3 in the main text

(GAPs in Fig 3A). Mean ± SD QN
P is lower in ancestral populations under selection for GAP I

(−0.164 ± 1.009) than in populations evolved under selection for GAPs I and II (2.458 ±
0.988). Wilcoxon signed-rank test: W = 124, 950; p< 2 × 10−16. (B) Selection for two GAPs

produces a greater increase in modularity in sparser networks. The evolutionary scenario is

the same as that presented in Fig 4 in the main text (GAPs in Fig 3A). (C) The rate of perturba-

tion of initial system states contributes to the increase in modularity due to selection for two

GAPs. The evolutionary scenario is the same as that presented in Fig 5 in the main text (GAPs

in Fig 3A).
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S2 Fig. Analyses considering mean population values for populations where adaptation

was successful. The data for this figure considers population averages in those populations

where maximum fitness surpassed a threshold of 0.9. The results are qualitatively the same

as those presented in the main text. (A) Modularity evolves after selection for an additional

activity pattern. The evolutionary scenario is the same as that presented in Fig 3 in the main

text (GAPs in Fig 3A). Mean ± SD QN
P is lower in ancestral populations under selection

for GAP I (−0.098 ± 0.895) than in populations evolved under selection for GAPs I and II
(2.524 ± 0.773). Wilcoxon signed-rank test: W = 113, 030; p< 2 × 10−16. (B) Selection for two

GAPs produces a greater increase in modularity in sparser networks. The evolutionary sce-

nario is the same as that presented in Fig 4 in the main text (GAPs in Fig 3A). (C) The rate of

perturbation of initial system states contributes to the increase in modularity due to selection

for two GAPs. The evolutionary scenario is the same as that presented in Fig 5 in the main text

(GAPs in Fig 3A).

(PDF)

S3 Fig. Evolution of modularity and number of interactions with a different mutation

setup. For the results in this figure, mutation was implemented in a different manner than in

the rest of the paper. Here, a gene undergoing mutation acquired or lost an interaction with

equal probabilities, regardless the number of regulators it has. The figure shows that, even

when mutation is not biased to a particular number of regulators per gene, the number of

interactions does not decrease beyond random expectation when modularity evolves after

selection for an additional GAP. Results in panels A and B consider 125 populations that

evolved 8,000 generations in the absence of selection. Panels C and D refer to 125 populations

that evolved in a similar scenario as populations described in Fig 3 in the main text. That

is, they evolved first under selection for a single GAP (GAP I in Fig 3A) and then under selec-

tion for two GAPs (I and II in Fig 3A). (A) Distribution of the number of regulators per gene

after 8,000 generations of neutral evolution. The figure is coherent with a uniform distribution

for the number of regulators per gene with this mutation set up. (B) Distribution of the num-

ber of interactions per network. The mean number of interactions per network is 49.592

(SD = 10.21). This expected value is thus close to the theoretical expectation of 50 interactions

per network. (C) QN
P increases significantly after selection for an additional activity pattern.

Specifically, it increases from −0.077 ± 0.98 to 1.875 ± 0.865 (W = 7, 778; p< 2.2 × 10−16).

(D) The number of interactions after selection for either one or two GAPs is not lower than

in the absence of selection (compare to panel B). The mean ± SD number of interactions is

56.42 ± 8.88 after selection for GAP I and 59.67 ± 8.5 after selection for GAPs I and II.
(PDF)

S4 Fig. Sparseness contributes to modularity after selection for an additional GAP in larger

networks. For the simulations in this figure the parameters that I used were the following:

N = 16, μ = 0.02, κ = 0.03, S = 0.8, K = 50/T. (A) Target GAPs X and Y. Genes 1-8 are grouped

in set A0 and genes 9-16 are grouped in set B0. Note that genes in set A0 have the same activity

state in both target GAPs and genes in set B0 have a different activity state in both target GAPs.

(B) Sparseness contributes to modularity after selection for an additional GAP. The figure

compares results for 50 populations evolved under a propensity to gain interactions γ = 3/16

(48 expected interactions) and 50 populations evolved under a propensity to gain interactions

γ = 5/16 (80 expected interactions). Network populations evolved first under selection to yield

target GAP X for 1,500 generations. In a second stage that lasted 7,500 generations, selection

favoured networks that produce GAPs X and Y from different initial system states.
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S5 Fig. Sparseness contributes to modularity after selection for an additional GAP under a

different model of network dynamics. For the simulations in this figure the value of θi is set

to 0 for all genes. Therefore, network dynamics is given by stþ1
i ¼ si

PN
j¼1

gijstj
h i

, where the

function σi(x) equals 1 when x> 0, it equals sti when x = 0 and it equals 0 when x< 0. The

figure compares results for 125 populations evolved under a propensity to gain interactions

γ = 0.2 (20 expected interactions) and 125 populations evolved under a propensity to gain

interactions γ = 0.4 (40 expected interactions). The evolutionary scenario is the same as that

presented in Figs 3 and 4 in the main text (GAPs in Fig 3A), in which populations evolved first

under selection for a single GAP (GAP I) for 2,000 generations and then under selection for

two GAPs (GAPs I and II) for 8,000 generations. The figure shows that, also with this model,

selection for two GAPs produces a greater increase in modularity in sparser networks.

(PDF)

S6 Fig. Sparseness contributes to modularity after selection for an additional GAP when

the entries of genotype matrices are described by continuous variables. For the simula-

tions in this figure, the probability that a regulation of gene i is lost equals mð1 � gÞ
Ri
N . The

probability that an interaction is acquired is mg
N� Ri
N . In this case, the new weight of the inter-

action is taken from an N(0,1) distribution. The probability that the weight of an interaction

is modified by mutation is mg
Ri
N . When an existing interaction is modified, the new weight is

taken from an N(0,1) distribution, but its sign is forced to be the same that it had before

mutation. The figure compares results for 125 populations evolved under a propensity to

gain interactions γ = 0.2 (20 expected interactions) and 125 populations evolved under a pro-

pensity to gain interactions γ = 0.4 (40 expected interactions). The evolutionary scenario is

the same as that presented in Figs 3 and 4 in the main text (GAPs in Fig 3A), in which popu-

lations evolved first under selection for a single GAP (GAP I) for 2,000 generations and then

under selection for two GAPs (GAPs I and II) for 8,000 generations. The figure shows that,

also with this model, selection for two GAPs produces a greater increase in modularity in

sparser networks.

(PDF)

S7 Fig. Sparseness contributes to modularity after selection for two GAPs that differ in the

activity of three genes. (A) Target GAPs I and IV. Genes 1-7 are grouped in set C and genes 8-

10 are grouped in set D. Note that genes in set C have the same activity state in both target

GAPs. In contrast, the three genes in set D have a different activity state in both target GAPs.

Networks evolve in a first stage under selection to produce target GAP I. In a second stage,

selection favours networks that produce target GAPs I and IV from distinct initial system

states. (B) After selection for both target GAPs I and IV, interactions occur mainly either

between genes in set C or between genes in set D. (C) Selection for two GAPs produces a

greater increase in modularity in sparser networks.

(PDF)

S8 Fig. Sparseness contributes to modularity after selection for two GAPs that differ in the

activity of seven genes. (A) Target GAPs I and V. Genes 1-3 are grouped in set E and genes 4-

10 are grouped in set F . Note that genes in set E have the same activity state in both target

GAPs. In contrast, the seven genes in set F have a different activity state in both target GAPs.

Networks evolve in a first stage under selection to produce target GAP I. In a second stage,

selection favours networks that produce target GAPs I and V from distinct initial system states.

(B) After selection for both target GAPs I and V, interactions occur mainly either between

genes in set E or between genes in set F . (C) Selection for two GAPs produces a greater
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increase in modularity in sparser networks.
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52. Fortunato S, Barthélemy M. Resolution limit in community detection. Proc Natl Acad Sci USA. 2007;

104(1):36–41. https://doi.org/10.1073/pnas.0605965104 PMID: 17190818

53. Reichardt J, Bornholdt S. Partitioning and modularity of graphs with arbitrary degree distribution. Phys

Rev E. 2007; 76(1):015102(R). https://doi.org/10.1103/PhysRevE.76.015102

54. Fortunato S, Hric D. Community detection in networks: A user guide. Phys Rep. 2016; 659:1–44.

https://doi.org/10.1016/j.physrep.2016.09.002

55. Leicht EA, Newman MEJ. Community Structure in Directed Networks. Phys Rev Lett. 2008; 100

(11):118703. https://doi.org/10.1103/PhysRevLett.100.118703 PMID: 18517839

56. Wagner A. Evolution of gene networks by gene duplications: A mathematical model and its implications

on genome organization. Proc Natl Acad Sci USA. 1994; 91(10):4387–4391. https://doi.org/10.1073/

pnas.91.10.4387 PMID: 8183919

57. Wagner A. Does Evolutionary Plasticity Evolve? Evolution. 1996; 50:1008–1023. https://doi.org/10.

1111/j.1558-5646.1996.tb02342.x PMID: 28565284

58. Fierst JL, Phillips PC. Modeling the evolution of complex genetic systems: The gene network family

tree. J Exp Zool B Mol Dev Evol. 2015; 324B:1–12. https://doi.org/10.1002/jez.b.22597

59. Ciliberti S, Martin OC, Wagner A. Robustness can evolve gradually in complex regulatory gene net-

works with varying topology. PLoS Comput Biol. 2007; 3(2):e15. https://doi.org/10.1371/journal.pcbi.

0030015 PMID: 17274682

60. Huang S. The molecular and mathematical basis of Waddington’s epigenetic landscape: A framework

for post-Darwinian biology? Bioessays. 2011; 34(2):149–157. https://doi.org/10.1002/bies.201100031

PMID: 22102361

61. Milo R, Shen-Orr SS, Itzkovitz S, Kashtan N, Chklovskii D, Alon U. Network motifs: simple building

blocks of complex networks. Science. 2002; 298(5594):824–827. https://doi.org/10.1126/science.298.

5594.824 PMID: 12399590

62. Friedlander T, Mayo AE, Tlusty T, Alon U. Mutation rules and the evolution of sparseness and modular-

ity in biological systems. PLoS ONE. 2013; 8(8):e70444. https://doi.org/10.1371/journal.pone.0070444

PMID: 23936433

Evolution of modularity in gene networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006172 May 18, 2018 23 / 24

https://doi.org/10.1073/pnas.0503610102
http://www.ncbi.nlm.nih.gov/pubmed/16174729
https://doi.org/10.1186/1471-2148-7-169
http://www.ncbi.nlm.nih.gov/pubmed/17888177
https://doi.org/10.1371/journal.pcbi.1000719
http://www.ncbi.nlm.nih.gov/pubmed/20360969
https://doi.org/10.1038/nrg2416
http://www.ncbi.nlm.nih.gov/pubmed/18927580
https://doi.org/10.1038/nrg.2016.127
http://www.ncbi.nlm.nih.gov/pubmed/27818507
https://doi.org/10.7554/eLife.19607
http://www.ncbi.nlm.nih.gov/pubmed/27906129
https://doi.org/10.1038/35054172
http://www.ncbi.nlm.nih.gov/pubmed/11206529
https://doi.org/10.1098/rspb.2012.2863
http://www.ncbi.nlm.nih.gov/pubmed/23363632
https://doi.org/10.1038/msb.2008.52
http://www.ncbi.nlm.nih.gov/pubmed/18682703
https://doi.org/10.1371/journal.pcbi.1004829
http://www.ncbi.nlm.nih.gov/pubmed/27280881
https://doi.org/10.1038/nature03288
http://www.ncbi.nlm.nih.gov/pubmed/15729348
https://doi.org/10.1073/pnas.0601602103
http://www.ncbi.nlm.nih.gov/pubmed/16723398
https://doi.org/10.1103/PhysRevE.70.025101
https://doi.org/10.1016/j.physd.2006.09.009
https://doi.org/10.1016/j.physd.2006.09.009
https://doi.org/10.1073/pnas.0605965104
http://www.ncbi.nlm.nih.gov/pubmed/17190818
https://doi.org/10.1103/PhysRevE.76.015102
https://doi.org/10.1016/j.physrep.2016.09.002
https://doi.org/10.1103/PhysRevLett.100.118703
http://www.ncbi.nlm.nih.gov/pubmed/18517839
https://doi.org/10.1073/pnas.91.10.4387
https://doi.org/10.1073/pnas.91.10.4387
http://www.ncbi.nlm.nih.gov/pubmed/8183919
https://doi.org/10.1111/j.1558-5646.1996.tb02342.x
https://doi.org/10.1111/j.1558-5646.1996.tb02342.x
http://www.ncbi.nlm.nih.gov/pubmed/28565284
https://doi.org/10.1002/jez.b.22597
https://doi.org/10.1371/journal.pcbi.0030015
https://doi.org/10.1371/journal.pcbi.0030015
http://www.ncbi.nlm.nih.gov/pubmed/17274682
https://doi.org/10.1002/bies.201100031
http://www.ncbi.nlm.nih.gov/pubmed/22102361
https://doi.org/10.1126/science.298.5594.824
https://doi.org/10.1126/science.298.5594.824
http://www.ncbi.nlm.nih.gov/pubmed/12399590
https://doi.org/10.1371/journal.pone.0070444
http://www.ncbi.nlm.nih.gov/pubmed/23936433
https://doi.org/10.1371/journal.pcbi.1006172


63. Newman MEJ. Finding community structure in networks using the eigenvectors of matrices. Phys Rev

E. 2006; 74(3):036104. https://doi.org/10.1103/PhysRevE.74.036104

64. Villarreal C, Padilla-Longoria P, Alvarez-Buylla ER. General theory of genotype to phenotype mapping:

Derivation of epigenetic landscapes from n-node complex gene regulatory networks. Phys Rev Lett.

2012; 109(11):1–5. https://doi.org/10.1103/PhysRevLett.109.118102

65. Benı́tez M, Hejátko J. Dynamics of cell-fate determination and patterning in the vascular bundles of Ara-

bidopsis thaliana. PLoS ONE. 2013; 8(5):e63108. https://doi.org/10.1371/journal.pone.0063108 PMID:

23723973

66. Azpeitia E, Weinstein N, Benı́tez M, Mendoza L, Alvarez-Buylla ER. Finding missing Interactions of the

Arabidopsis thaliana root stem cell niche gene regulatory network. Front Plant Sci. 2013; 4:110. https://

doi.org/10.3389/fpls.2013.00110 PMID: 23658556

67. Mbodj A, Gustafson EH, Ciglar L, Junion G, Gonzalez A, Girardot C, et al. Qualitative dynamical model-

ling can formally explain mesoderm specification and predict novel developmental phenotypes. PLoS

Comput Biol. 2016; 12(9):e1005073. https://doi.org/10.1371/journal.pcbi.1005073 PMID: 27599298

68. Weinstein N, Ortiz-Gutiérrez E, Muñoz S, Rosenblueth DA, Álvarez-Buylla ER, Mendoza L. A model of
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