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Midlatitude Asia (MLA), strongly influenced by westerlies-controlled
climate, is a key source of global atmospheric dust, and plays a
significant role in Earth’s climate system . However, it remains un-
clear how the westerlies, MLA aridity, and dust flux from this region
evolved over time. Here, we report a unique high-resolution eolian
dust record covering the past 3.6 Ma, retrieved from the thickest
loess borehole sequence (671 m) recovered to date, at the southern
margin of the Taklimakan desert in the MLA interior. The results
show that eolian dust accumulation, which is closely related to arid-
ity and the westerlies, indicates existence of a dry climate, desert
area, and stable land surface, promoting continuous loess deposi-
tion since at least ~3.6 Ma. This region experienced long-term step-
wise drying at ~2.7, 1.1, and 0.5 Ma, coeval with a dominant
periodicity shift from 41-ka cyclicity to 100-ka cydlicity between
1.1 Ma and 0.5 Ma. These features match well with global ice vol-
ume variability both in the time and frequency domains (including
the Mid-Pleistocene Transition), highlighting global cooling-forced
aridity and westerlies climate changes on these timescales. Numer-
ical modeling demonstrates that global cooling can dry MLA and
intensify the westerlies, which facilitates dust emission and trans-
port, providing an interpretive framework. Increased dust may have
promoted positive feedbacks (e.g., decreasing atmospheric CO, con-
centrations and modulating radiation budgets), contributing to fur-
ther cooling. Unraveling the long-term evolution of MLA aridity and
westerlies climate is an indispensable component of the unfolding
mystery of global climate change.

dust emission | Taklimakan loess sequence | Asian inland aridification |
global cooling | Plio-Quaternary

he vast arid regions in midlatitude Asia (MLA) are among the
most prominent landscapes on Earth’s surface, spanning over
nine countries and hosting about 0.6 billion people, most suffering
from poverty exacerbated by increasing environmental stress due
to aridification. Aridity in MLA has long been thought to have
strong impacts on Pacific Ocean primary productivity, global
geochemical cycling, and climate change by influencing the global
radiation budget (1-4) and atmospheric CO, variability (5-7)
(Fig. 14). Uplift of the Tibetan Plateau and global cooling have
been thought to control the aridification of the MLA interior, and
global climates as well, through changes in the westerlies (9-11).
However, lack of detailed aridity records hinders our under-
standing of which mechanisms drive MLA aridification and
changes of the westerly jet, and hence the linkages between dust
emission from the MLA interior and Pacific Ocean biogeochem-
ical processes and global cooling.
The Tarim basin (560,000 km?) in northwest China (Fig. 1B),
containing the world’s largest active dune field, the Taklimakan
desert, provides nearly two-thirds of the total dust generated in
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the MLA interior (1), with approximately half of the <20 pm fine
particles being transported by the upper-level westerly jet out of
the region to the Pacific Ocean and beyond (1), even joining the
global circulation (2, 4, 8) (Fig. 14). Most of the coarse fraction is
transported by the lower-level westerly winds generally southward
and deposited proximally, chiefly along the central southern
Taklimakan desert and on the northern slope of the West Kunlun
Shan (Mountains), accumulating as thick loess deposits carpeting
various geomorphic surfaces (mountain slopes, foothill fans, river
terraces, and basin rims) (12-14) (Fig. 1B). Both modern mete-
orological data and numerical modeling demonstrate clearly that
both the lower and upper winds over the Tarim basin are con-
trolled chiefly by the westerlies under modern and peak glacial
conditions (Fig. 14 and SI Appendix, Fig. S1). This loess, like that
in the Chinese Loess Plateau, bears a wealth of direct information
about the MLA aridification and westerlies change.

The thickest and most continuous loess is found widely dis-
tributed across almost all geomorphic surfaces between the al-
titudes of 2,500 and 4,500 m (12) around the Hetian—Yutian
area to the south of the basin, with its core showing the highest
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We recovered the world’s thickest continuous loess record from
the southern margin of the Taklimakan desert, a global-scale
dust source area. The continuous high-resolution grain size and
flux records of dust emission, reflecting histories of aridity and
westerlies climate, indicate an extant dry climate, desert area,
and stable land surface supporting continuous loess deposition
at least since ~3.6 Ma, and that global cooling, rather than Tibet
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emission, marine biogeochemical activity, atmospheric CO,, and
global cooling, which might provide insights into dynamics of
Earth’s climate system and improve predictions for the future.
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(A) The long-distance transport of a dust storm in NH MLA on April 6-9, 2001, via the westerly jet as indicated by the strongest wind speeds in the
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500-hPa map of the potential height and vector winds. Red numbers are dates. Black solid lines stand for the potential height, and arrows stand for wind
direction (modified from ref. 8). (B) Physical geography and schematic atmospheric circulation pattern of Asia with the locations of the loess drilling site. Note
that MLA is the largest arid interior region in a temperate continent (pale area) and that East Asia is characterized by a monsoonal humid region (green area).

The solid black line outlines the 3,000-m-altitude region.

stable platforms with loess surface elevations of ~3,300 m to
3,200 m, ~2,000 m above the basin floor (SI Appendix, Fig. S2).
The current circulation, dust storm track/deposition, and dust—loess
geochemical and geological comparative analyses show that the
lower westerly winds flow over the lower divides of the Pamir and
through the Turpan Wind Pass, between the Tian Shan and the
Bogda Mountains (15), generating and carrying dust from the
desert to the southern rim of the basin and the northern slope of
the West Kunlun Shan, forming a continuous loess deposit (12,
16, 17) (Fig. 1B). Thus, this loess deposit archives the continuous
histories of change in the westerly climate, the drying of the Asian
interior, and dust emission in the Tarim basin. Analysis of these
sections will shed light on whether these deposits are driven by the
uplift of the Tibetan Plateau and contribute to and impact global
climatic change.

Results and Discussion

Few studies have been carried out on the loess deposits from the
lower terraces in the southern Tarim basin, due to the scarcity of
good outcrops, the remote location, and the sparse attention that
has been paid to the dust emission history of the major contributor
of the MLA dust budget. In 2006, we carried out a drilling program
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on the highest fan surface, with the loess platform surface elevation
at 3,300 m, at the central southern margin of the Tarim basin
(36°11'58.4"N, 81°20'15.4"E). The drilling extended down to 207 m
depth. The paleomagnetism of the core determined its basal age to
be ~1 Ma (18). We recently drilled a second core at the same site
using a more powerful drilling rig. This latter campaign completely
penetrated the loess sequence and reached the fan surface of the
Xiyu (Conglomerate) Formation at the depth of 671 m (SI Ap-
pendix, Fig. S2), with a recovery of 96.1%. This drilling provides
evidence that central Asia has a thick loess sequence, which is 2 to
3 times thicker than the loess on the Chinese Loess Plateau and is
the thickest known in the world.

This loess deposit shows similar lithologic characteristics to
those we see on the Loess Plateau (SI Appendix, Figs. S2-S4).
The lithology of the loess core shows a much coarser grain size
and much weaker paleosols than those on the central Loess
Plateau (19), as the location is much closer to the desert source
area, and climate is much drier. The loess is light-yellowish, sandy
silt, massive, homogeneous, and loose. In comparison, the paleo-
sols show slightly darker color, less sandy silt (harder), and some
biological root channels and pores as well as small white carbonate
spots (SI Appendix, Fig. S3). High-resolution paleomagnetism
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determined that the loess sequence was formed from ~3.6 Ma to the
present (Methods) (Fig. 2 A-C and SI Appendix, Figs. S5 and S6).

To sustain a large area of continuous deposition of thick loess
sediments requires a persistent desert source region providing a
stable and considerable dust supply, the presence of a prevailing
wind system to transport dust, and a stable land surface for loess
accumulation (12, 15). Thus, the appearance of the widely dis-
tributed continuous West Kunlun Shan loess at ~3.6 Ma indicates
a rapid desiccation of the Tarim basin at this time and an extant
desert area (dunes and vast arid desert fans, exposed river flood
valleys with overbank deposits, wind-eroded yardangs, exposed
lake floor terrain, etc.) in the Tarim basin, although patches and
discontinuous loess-like silt deposits were found earlier in some
time intervals, that is, ~5.3 Ma in the fan sandstone and con-
glomerate below our loess sequence (16). The increase of Asian
dust flux in the Late Pliocene represented by the West Kunlun
Shan and Tarim loess record seems to be consistent with the eo-
lian records of the North Pacific Ocean (25).

The coarse size fraction (>30 pm) of the loess deposits has been
widely used as a proxy of wind strength, while the dust flux is a
direct index of the dust emission or aridity in the source area in the
Chinese loess studies (19, 26, 27). These proxies have been proven
conceptually and in practice and are also sensitive to the strength
of the westerly jet and aridity of the Asian interior (12, 28). Field
and satellite observations and measurements of grain sizes of
modern dust storms in the Taklimakan desert further demonstrate
that the grain sizes of the coarse size fraction increase linearly with
westerly wind strength as recorded in deposits in the southern
basin (27), while the finer size fractions (<20 pum) are mostly
transported out of the region by the upper-level westerly jet to
more remote regions, such as the Pacific Ocean and even
Greenland (2-4, 8). Higher coarse size fraction >30 pm and its
flux indicate stronger westerlies and increased aridity (28), and
thus stronger dust emissions. Geologic records and numerical
modeling demonstrate that expansion of Northern Hemisphere
(NH) ice sheets will intensify the strength of the westerly jet and
push it southward (29, 30). These changes in the westerly jet can

impact the MLA and Chinese Loess Plateau (26, 31) by enhancing
the persistent stationary wave of the westerlies along the northern
rim of the Tibetan Plateau and drying the region (9, 10) leading to
intensified dust storm activity (26, 31). Thus, the proxy indices of
dust grain size and flux can also partially reflect the variations in
high-latitude NH ice volume. Accordingly, we analyzed the grain
size at 10-cm intervals (~0.5 ka in resolution) and dust flux at
various intervals, mostly 0.3 m to 1 m, following standard methods
(Fig. 2 D and E and see Methods).

Based on the magnetostratigraphic age constraints, we carried
out spectral analyses of the grain size and dust flux records to
determine the dominant periodicities. On this basis, we astro-
nomically tuned the records to orbital eccentricity and obliquity
(Methods) (Fig. 2 G-I and SI Appendix, Figs. S7 and S8).

The astronomically tuned time series of high-resolution coarse
size fraction (>30 pm) and the related flux records of the loess
core reveal a long-term increasing trend with obvious stepwise
increases at ~2.7, 1.1, and 0.5 Ma, suggesting enhancements of
the westerlies and drying climates at those times. The latest (1
Ma) drying trend was also revealed by the grain size record of the
first core (18, 23). Spectral analyses of the records indicate that a
dominant 41-ka cycle prevailed in the interval of 3.6 Ma to 1.1 Ma
and changed through the interval of 1.1 Ma to 0.5 Ma to a
dominant 100-ka cycle for the interval of 0.5 Ma to 0 Ma. Another
obvious feature of the spectrum is a large contribution from an
~400-ka cyclicity (Fig. 2 G-I).

The coarse size fraction and dust flux records of the loess core
are well correlated with benthic marine oxygen isotopes since the
Mid-Pliocene (22) (Fig. 2 D-F and SI Appendix, Fig. S9). The
aridity and westerly climate changes in the MLA they record
generally agree well with the global cooling trend, events in the
temporal domain, and periodicity shift in the frequency domain
(Fig. 2 D-T). Major coarser grain size and higher dust flux peaks
are mostly correlated with glacial stages in the marine oxygen
isotope record, while finer grain size and lower dust flux values are
correlated with interglacial stages (Fig. 2 D-F and SI Appendix,
Fig. S9). In the context of Plio-Quaternary long-term cooling,
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Fig. 2. Correlation of the magnetostratigraphy of the loess core in the southern margin of the Tarim basin (A and B) with the (C) GPTS (20, 21), and
comparisons of the astronomically tuned time series of the coarse size fraction of >30 pm and its flux in the loess core (D and E) with the stack of the global
marine oxygen isotopes (22) in time domain (F) and in frequency domain, filtered for the 100-ka and 41-ka periodicities (G and H) and >30 pm grain size
spectral analysis (/). The heavy dashed red lines in D-F indicate the average values. The dashed blue and solid black lines in G and H indicate the marine oxygen
isotope and >30 pm grain size, respectively. B, Blake event; CR1, Calabrian Ridge 1 event; CR2, Calabrian Ridge 2 event; G1, major grain size peak; F1, major
dust flux peak. AF demagnetization and >30 pm coarse size fraction data of uppermost 200 m are taken from the first core (18, 23, 24).
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there existed the first onset of large-scale glaciations in the high
latitudes of the NH at ~2.7 Ma, the occurrence of the so-called
Middle Pleistocene Transition (MPT) at ~1.1 Ma, decreased
temperatures of glacial periods after 0.5 Ma, and a distinct shift
of the orbital periodicity influence from obliquity-dominated to
eccentricity-dominated cycles at ~0.5 Ma (22, 32). However,
the increased amplitudes of the dust grain size and flux at the MPT
and 0.5 Ma are comparatively larger than that of the global average
marine oxygen isotope values and their indicated temperature drops
(Fig. 2).

Therefore, we believe that the general close matches of the
Plio-Quaternary dust emissions driven by the intensification of
the westerly and drying climates in the MLA interior with global
cooling (Fig. 2) demonstrate that the ice volume and global
cooling exert a major role in modulating the aridity and westerly
climate in MLA that control the MLA dust emissions. We fur-
ther hypothesize that the increases of high-latitude ice volume in
the NH at the MPT and 0.5 Ma, as indicated by the increased ice
volume recorded at Deep Sea Drilling Project 607 in the North
Atlantic Ocean (32) and the growth of the extensive Laurentide
and Scandinavian ice sheets (33) compared to that of global
average marine oxygen isotope record (22) (SI Appendix, Fig.
S9), are responsible for the increased amplitudes of aridity at the
MPT and 0.5 Ma. Such increases in grain size and flux are also
seen in the Chinese Loess Plateau (34) and northern Pacific
Ocean (25) (SI Appendix, Fig. S10). This implies that the expan-
sion of NH ice sheets can greatly enhance the strength of the
westerlies climate, the jet, and aridity in MLA. Such signals might be
further transferred to the Chinese Loess Plateau and North Pacific
Ocean through dust conveyed by upper levels of the westerlies (25,
34-37).

Interestingly, our dust records indicate a strong 400-ka cyclicity
that is not present in global marine oxygen isotope records, but is
present in globally distributed carbon isotope records (35-38) (S1
Appendix, Fig. S11). The good match of the dust records with
those of the North Pacific Ocean may support the hypothesis
that the dust and iron addition to the northern Pacific Ocean
promotes marine primary productivity and atmospheric CO, and
temperature drops (5-7), forming a positive feedback enhancing
further global cooling since the Mid-Pliocene. The marine ben-
thic 8'°C data partially record the atmospheric CO, concentra-
tion and have been suggested as an agproximate measure of
pCO, (39). Decreased ocean benthic 5'°C records over oceans,
indicating decreased global CO, (34-39), correspond generally
with increased long-term dust emission in our record. Further-
more, the prominent 400-ka cycle in our dust records matches
well with the benthic 8'°C records in the South China Sea
(35-37) and subtropical North Atlantic Ocean (38) (S Appendix,
Fig. S11). Both might indeed hint that the MLA dust emission
has considerable impact on marine productivity and global
CO, drop.

To examine in detail the connections between global cooling
factors and the changes of the westerly climate and inland aridity
for dust emissions over MLA, we applied the Community At-
mosphere Model 3 (CAM3) to conduct a series of numerical
simulations for the three typical periods of the Mid-Pliocene
(~3.0 Ma to 3.3 Ma), the preindustrial (PI), and the Last Gla-
cial Maximum (LGM) (Methods) (Fig. 3). In the Mid-Pliocene,
which had the warmest ocean, the highest CO,, and the smallest
ice cover of the three periods, the simulated annual temperature
over the NH is the highest, with a value of 16.7 °C. This value is
warmer than those of the PI and LGM by 3.4 °C and 5.5 °C, re-
spectively (Fig. 3 A-G). Over the Taklimakan desert region, the
variation in the local temperature is similar to the NH mean. In
particular, the temperature difference between the Mid-Pliocene
and PI is amplified (6.9 °C), indicating that the temperature might
be more sensitive to global cooling over the Asian interior. The
significant NH cooling from the Mid-Pliocene to the PI and LGM
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amplified the meridional thermal gradient and thus induced the
intensification of the high-level westerly jet. The increased west-
erly jet, as well as the local surface cooling, both contributed to
greater surface wind speeds; especially during the LGM, both the
high-level and surface wind speeds are substantially increased due
to the high-latitude ice sheets. The annual precipitation rate de-
creases by 0.10 mm/d from Mid-Pliocene to LGM, which indicates
that aridification is enhanced to some extent, although the simu-
lated precipitation is overestimated over this area due to the poor
resolution of the Pamir—Tianshan mountains related to relatively
coarse model resolution (40). Spatially, compared to the Mid-
Pliocene, the climate becomes drier over most regions of north-
west China and Mongolia during PI (Fig. 3H). The Asian monsoon
is also weakened in PI, leading to lower precipitation over nearly
the whole of India and eastern China. The high-level westerly wind
is slightly strengthened over the Taklimakan desert and becomes
significant downwind over northern China and Japan. During the
LGM, the precipitation rate is significantly suppressed over the
whole of Asia, including both the arid and monsoon regions
(Fig. 3I). Compared to that of the PI, the westerly wind is obviously
intensified by the increased global ice sheets, especially over the
Taklimakan and central Asia region. Overall, the modeling results
indicate that the enhancements of dust emission and deposition in
MLA have close connections with the climatic cooling from the
Mid-Pliocene to the LGM (Fig. 3 F and G), which are mainly fa-
cilitated by the strengthened surface wind velocities and high-level
westerly wind and inland aridity.

Our loess proxy records and numerical modeling demonstrate
that the aridity and westerly climate and thus the dust emissions in
MLA have strong connections with global cooling since the Mid-
Pliocene. This suggests that global cooling could be the primary
forcing needed to dry inland Asia and to enhance the westerlies to
form the great Taklimakan desert since the Mid-Pliocene. As well,
our results suggest that dust-induced intensified surface albedo,
dust reflection, cirrus cloud formation (2), and atmospheric CO,
drawdown due to the enhanced primary productivity of microor-
ganisms in the Pacific Ocean [increased availability of dust nutri-
ents (5-7)] might induce positive feedback mechanisms, driving
further global cooling.

Methods

Paleomagnetic Analysis. Paleomagnetic block samples were taken at 50-cm
intervals in the upper 80 m of the core and at 25-cm intervals in the lower
591 m of the core. In total, 2,500 block samples were obtained. Each of the
block samples was cut into three 2 cm x 2 cm x 2 ¢cm cubic subsamples for
measurements, forming three sets of specimens. One set of the specimens
was subjected to stepwise alternating-field (AF) demagnetization with nine
steps of 5, 10, 20, 30, 40, 50, 60, 70, and 80 mT. For cross-checking, the
second set of specimens was demagnetized in a Magnetic Measurements
Thermal Demagnetizer (MMTD80). Then, all remanent measurements were
carried out on a 2G Enterprises Model 760-R cryogenic magnetometer in-
stalled in a field-free space (<300 nT) at the Institute of Geology and Geo-
physics, Chinese Academy of Sciences. No significant difference was found in
the characteristic remanent magnetizations (ChRMs) derived from AF de-
magnetization and thermodemagnetization for most of the samples (S/
Appendix, Figs. S5 and S6). A total of 2,331 (93%) samples gave reliable
ChRMs to determine the magnetostratigraphy.

Magnetostratigraphic Correlation. The reliable ChRMs from two sets of samples
after removal of the secondary remanent magnetization components through
stepwise alternative field demagnetization and thermodemagnetization of
secondary remanence are averaged for calculating their inclinations, using a
maximum likelihood solution for inclination-only data (41) (S/ Appendix, Figs.
S5 and S6). The depth function of the average inclination determines the 20
normal (N1 to N20) and 19 reversed polarity zones (R1 to R19), which can be
readily correlated with the Global Polarity Time Scale (GPTS) (20, 21)
(Fig. 2 A-C). The upper 170 m of the loess core is dominated by normally
polarized zones (N1 to N4) and is punctuated by three very short reversals (R1
to R3); the middle part (170 m to 483 m) has mostly reversed polarity zones (R4
to R11) intercalated with some short normal zones (N5 to N11); and the lower

Fang et al.


https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922710117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922710117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922710117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922710117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922710117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922710117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922710117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922710117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922710117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922710117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922710117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1922710117

A Bz g
9290 . ‘5284 — . C E 4
® 2 : B 36 Vs
= = | 5}
& 288 8280 832
& " s S E2p |
£ 286 F 276 — s
= 3 : e e I 24 — .
z - 3 : =
284 ‘ T I | & 272 I | ‘ Tt 2 I
mid-Pliocene Pl LGM mid-Pliocene Pl LGM Lz mid-Pliocene PI LGM
D E g 5
_ g x
s =) = o
w20 — =136 — 14 £12
E . £ J . § | , S .
= / = 2 %
819 5._;1.32 >(1‘2 §11
A K Y 2 / i
18 / - 1.28 N =10 / < 10
= / £ ‘ % T ;S o
P /
17 . L1124 N 8 - g 9 .
& 4 a T . % <‘ R =4 .
S S 5 0 @
16—+ I & 12 I 1 g &1 \ l | § ¥ T \
mid-Pliocene Pl LGM mid-Pliocene Pl LGM a mid-Pliocene PI LGM 8 mid-Pliocene PI LGM

H |

0°N

42 7 A AAAAAAG 77 >> 25
v v L e r P FEEE YL TR >
v v L L dEEE

T
100°E

!
60°E

)
120°E

40°E 60°E 100°E

Fig. 3. Comparisons of the mean surface temperatures (degrees Celsius; A) for the NH, regional temperature (degrees Celsius; B), surface wind velocity
(meters per second; C), >500-hPa westerly wind speed (meters per second; D), precipitation rate (millimeters per day; E), fine-grained dust emission and
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second) over Asia between Pl and the Mid-Pliocene (H) and between the LGM and PI (/). The purple lines approximately show the profile of the

Tibetan Plateau.

part (483 m to 671 m) is again dominated by the normal polarity zones (N12 to
N20), with eight short or very short reversals (R12 to R19). The bulk organic '4C
dating of the top Holocene soil and the optical stimulated luminescence
dating of the loess below the Holocene soil yielded ages of ~4.2 + 0.2 ka and
14.5 + 0.6 ka, respectively, demonstrating that the loess sequence is not
truncated by erosion (Fig. 2B). Thus, we correlate the characteristic polarity
zones of the upper, middle, and lower loess cores, with the Brunhes Normal
Chron (B), Matuyama Reversed Chron (M), and Gauss Normal Chron (G) and
with the B/M boundary at 170 m and the M/G boundary at 483 m (Fig. 2 A-C).
Three very short reversals (R1 to R3) are most likely analogs of the Blake,
Calabrian Ridge 1, and Calabrian Ridge 2 events at the ages of 110 ka to 120
ka, 315 ka to 325 ka, and 515 ka to 525 ka (18, 21), respectively. Three short
normal zones, N5, N8, and N9, can be well correlated with the Jaramillo,
Olduvai, and Reunion events (subchrons), respectively, in the Matuyama Re-
versed Chron. The short reversed zones R13 to R15 and R17 can be correlated
with the Kaena and Mammoth events (subchrons), respectively, in the Gauss
Normal Chron. Two short reversed zones—R18 to R19—and many low incli-
nations values in the bottom of the loess core might be regarded as signals of
the approaching boundary of the Gauss Normal Chron and Gilbert Reversed
Chron at 3.6 Ma (20) (Fig. 2 A-C). Extrapolation of the sedimentation rates
calculated from the interpreted zones above the Mammoth event yields a
similar age for the bottom of the loess core.

Grain Size and Mass Accumulation Rate. Grain size analyses were measured at
10-cm intervals using an American Microtrac S3500 laser particle sizer at the
Institute of Tibetan Plateau Research, Chinese Academy of Sciences. First, we
removed the organic matter from the samples by boiling the sample in a 10%
H,0, solution for 10 min. We then removed the carbonates from these
samples by putting them into a 10% HCl solution for 10 min. Finally, we put
the samples into a 3.6% (NaPOs) solution and dispersed them in an ultra-
sonic bath for 10 min.

Fang et al.

Following the formula of An et al. (28), the dust flux of the grain size
fraction > 30 um (grams per square centimeter per thousand years) for the
eolian deposits is estimated as

dust ﬂUX>30pm = feolian x SR x DBD,

where feolian is the fraction > 30 pm of the eolian dust in the deposit, SR
(centimeters per thousand years) is the dust accumulation rate, and DBD
(grams per cubic centimeter) is the dry bulk density.

Orbital Tuning and Power Spectrum Analysis. Following the standard orbital
tuning method (32, 42, 43), we first obtain an original age sequence for our
grain size and dust flux records via a linear interpolation between the pa-
leomagnetic age points (S/ Appendix, Fig. S7A). Spectral analyses of the records
based on this time sequence indicate dominant cycles of 41, 100, and 400 ka.
The filtered results of the 100-ka and 41-ka bands show distinct similarities
with the eccentricity and obliquity cycles in the marine oxygen isotope record
(22) and the orbital eccentricity and obliquity cycles (44) (SI Appendix, Fig.
S7 B-H). Thus, we established an additional six tie points for the age control
based on the visual comparison between our coarse size fraction record and
the marine oxygen isotope record (22) aided by rough comparison of their
filtered 100-ka and 41-ka cycles with variations of the eccentricity and oblig-
uity cycles (44) (S Appendix, Fig. S7). The final age model of our grain size and
dust flux records was obtained by repeatedly tuning our filtered record
(centered at 41 ka) based on an initial age model constrained by the paleo-
magnetic constraints and six tie points to orbital obliquity (44), until the phases
and amplitude between our filtered records and those of the orbital records
reached maximum fits. We use a phase lag of 8 ka to obliquity (44), following
the conventions of previous studies (42, 43, 45) in which the filtered 41-ka
component of foraminiferal oxygen isotope data or loess records were con-
sidered to lag the NH 65° summer insolation maxima by 7.8 ka at the obliquity
band. Orbital tuning was performed using the Match 2.0 program (46). A

PNAS | October 6, 2020 | vol. 117 | no.40 | 24733

EARTH, ATMOSPHERIC,

AND PLANETARY SCIENCES


https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922710117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922710117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922710117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922710117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922710117/-/DCSupplemental

Gaussian band-pass filter was applied to our record to extract the oscillations with
100-ka and 41-ka periodicities. Data (sampling) resolution is 0.5 ka per point. The
detailed method is referred to in our previous publication (43). The final tuning
results were presented in S/ Appendix, Fig. S8. A comparison between the filtered
41-ka components of the coarse size fraction of >30 um and the flux records of
the loess core with the lagged obliquity since 3.6 Ma indicates a good match
between the filtered 41-ka component with the lagged phases and amplitude,
especially that of the dust flux record (SI Appendix, Fig. S8), indicating successful
tuning of our grain size and dust flux records to the orbital variation.

Numerical Experiments. To examine the effects of the global cooling factors
on the inland aridity and westerly jet over Asia, a set of experiments using
CAM3 was conducted to represent the global climates of the Mid-Pliocene,
the PI, and the LGM. In CAM3, a dust module is enabled (47) to simulate the
cycle of eolian dust over Asia. For the Mid-Pliocene (~3.3 Ma to 3 Ma), the
global topography, the ice sheets, and the monthly sea surface temperature
(SST) were taken from the Pliocene Research, Interpretation, and Synoptic
Mapping 3D dataset (48). The CO, concentration was set to 405 parts per
million by volume (ppmv). For the LGM, the ICE-5G data (49) were employed
for the cover and topography of the global ice sheets. The monthly SST data
were obtained from the Community Climate System Model 3 (CCSM3) LGM
experiment by University Cooperation for Atmospheric Research (UCAR),
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which is available at the Earth System Grid. The CO, concentration was set to
185 ppmv. For the PI, all boundary conditions were kept as those of the
present, except the CO, concentration was set to a value of 280 ppmv and
the SST was from the CCSM3 Pl experiment at UCAR. The orbital parameters
for the LGM and Pl were calculated by Berger (50). The definition of the dust
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cipitation was used to obtain the distributions of the dust sources. These
experiments were integrated over 30 y at a horizontal resolution of 2.8° x
2.8°, and the variables for the Asian climate and dust cycle for the last 20 y
were averaged to analyze their response to global cooling.
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