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T-cell exhaustion is one of the main reasons of tumor immune escape. Using single-cell
transcriptome data of CD8+ T cells in multiple cancers, we identified different cell types, in
which Pre_exhaust and exhausted T cells participated in negative regulation of immune
system process. By analyzing the coexpression network patterns and differentially
expressed genes of Pre_exhaust, exhausted, and effector T cells, we identified 35
genes related to T-cell exhaustion, whose high GSVA scores were associated with
significantly poor prognosis in various cancers. In the differentially expressed genes,
RGS1 showed the greatest fold change in Pre_exhaust and exhausted cells of three
cancers compared with effector T cells, and high expression of RGS1was also associated
with poor prognosis in various cancers. Additionally, RGS1 protein was upregulated
significantly in tumor tissues in the immunohistochemistry verification. Furthermore, RGS1
displayed positive correlation with the 35 genes, especially highly correlated with PDCD1,
CTLA4, HAVCR2, and TNFRSF9 in CD8+ T cells and cancer tissues, indicating the
important roles of RGS1 in CD8+ T-cell exhaustion. Considering the GTP-hydrolysis
activity of RGS1 and significantly high mRNA and protein expression in cancer tissues, we
speculated that RGS1 potentially mediate the T-cell retention to lead to the persistent
antigen stimulation, resulting in T-cell exhaustion. In conclusion, our findings suggest that
RGS1 is a new marker and promoting factor for CD8+ T-cell exhaustion and provide
theoretical basis for research and immunotherapy of exhausted cells.
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INTRODUCTION

T-cell exhaustion (Tex), a hyporesponsive state of T cells with increased inhibitory receptors,
decreased effector cytokines, and impaired cytotoxicity, was originally described in CD8+ T cells
during chronic lymphocytic choriomeningitis virus (LCMV) of mice (1). In recent years, the
phenomenon of Tex has also been found in cancers (2, 3), which is one of the main reasons of tumor
immune escape (4). It has been reported that exhausted T cells in cancers share many similarities
with that in chronic infection (5) and play a significant role in tumorigenesis (6). Studies show that
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exhausted T cells can be used as one of the main targets of
immunosuppression therapy to save T cell from exhaustion and
reactivate the cytotoxicity of T cells, providing a new opportunity
for clinical immunotherapy (7). Nevertheless, due to the
complexity and heterogeneity of cancers, the concrete
mechanisms and molecules of T-cell exhaustion in cancers
have not been fully elucidated.

Currently, single-cell RNA sequencing (scRNA-seq) has clearly
revealed some new mechanisms and phenomena of cancer with
the advantages of high accuracy and reproducibility (8–10). Using
single-cell transcriptome profiling, we can identify new types of
immune cells which cannot be revealed at the original tissue level
and can construct a developmental trajectory for immune cells
which can reveal the heterogeneity (11). These new findings are
useful to better understand the immune system and its mechanism
of action on tumors. Notably, this technology makes it possible to
explore complicated tumor microenvironment including tumor-
infiltrating lymphocytes (TILs) in melanoma, head and neck
cancer, breast cancer, and glioblastoma cancer (12–15). Thus,
using advantage of scRNA-seq to analyze T cells and obtain the
hallmarks of exhausted T cells can bring a new therapeutic strategy
on clinical cancer treatment.

Due to the vital role of CD8+ T cells in eliciting antitumor
responses (16), we integrated single-cell transcriptome data from
colorectal cancer (CRC), hepatocellular cancer (HCC), and
nonsmall cell lung cancer (NSCLC) to analyze CD8+ T cells in
various cancers in the present study. Focusing on CD8+ T-cell
exhaustion-associated clusters, we identified RGS1 as a new
marker and promoting factor for T-cell exhaustion in multiple
cancers with poor prognosis and showed highly positive
correlation with the well-known genes associated with T-cell
exhaustion. RGS1 protein highly expressed in tumor tissues was
also verified in the immunohistochemistry (IHC) experiment.
Our findings could facilitate in understanding the mechanism
during the formation and development of T-cell exhaustion and
provide theoretical basis for research and immunotherapy of
exhausted cells.
MATERIALS AND METHODS

Data Acquisition
The single-cell gene expression matrices including raw count and
TPM data were obtained from the GEO database: GSE108989
(CRC), GSE99254(HCC), and GSE98638(NSCLC), and we
isolated CD8+ T cells from peripheral blood (P), adjacent
normal (N), and tumor tissues (T).

Quality Control and Data Processing
The raw count expression matrices were processed by R package
Seurat v3.2.0 (http://satijalab.org/seurat/). To filter out the low-
quality cells, we excluded cells with <600 and >10,000 detected
genes (17). Counts were log normalized and scaled by linear
regression against the number of reads with function
NormalizeData and ScaleData. The highly variable genes
(HVGs) were generated with FindVariableFeatures. Principal
Frontiers in Immunology | www.frontiersin.org 2
component analysis (PCA) was performed on the top 2,000
HVGs using function RunPCA. The appropriate PCs were
selected for graph-based clustering with functions FindNeighbors
and FindClusters. For visualization of clustering analysis, we
performed uniform manifold approximation and projection for
dimension reduction (UMAP) using RunUMAP function in
Seurat. To eliminate the obvious effect from different patients,
we performed standard normalization and variable feature
selection after acquiring the data. Next, the function
FindIntegrationAnchors was performed to find a set of anchors,
which is used to integrate the data by the function IntegrateData.
Also, the function AddModuleScore was used to calculate scores of
gene list in different cell types.

Cell Type Annotation
Differentially expressed genes (DEGs) of each cluster were
identified based on Wilcoxon rank-sum test using function
FindAllMarkers compared with the rest of the clusters. In
brief, for each cluster, only genes that met these criteria were
considered cluster-specific DEGs (1): log2FC >0.25;
(2) expressed >25% in either of the two groups of cells;
(3) adjusted p-value <0.05. The top DEGs were selected to
annotate each cluster based on the canonical markers from
previous studies; also, the CellMarker databases (18) and R
package SingleR v1.4.0 (19) were performed to further improve
the accuracy of the annotation.

Trajectory Analysis
To explore the potential functional changes of CD8+ T cell of
different clusters for each cancer, we performed development
trajectory analysis by R package Monocle v2.18.0 (20) with the
cluster-specific genes of each cluster. Dimensional reduction and
cell ordering were performed using reduceDimension and
orderCells functions with default parameter.

Gene Ontology Enrichment Analysis
of DEGs
Biological significance was explored by Gene Ontology (GO)
term enrichment analysis by R package clusterProfiler v3.18.0
(21) including biological process, cellular component, and
molecular function. Adjusted p-value <0.05 was considered
statistically significant. Visualization is realized by R package
ggplot2 v3.3.3 and ggalluvial v0.12.3 (22).

Weighted Gene Coexpression
Network Analysis
In order to identify the highly linked genes in specific clusters,
weighted gene coexpression network analysis (WGCNA) was
performed with functions in the R package WGCNA (23). To
attenuate the effects of noise and outliers, we constructed
pseudocells (24) which were calculated as averages of 10 cells
randomly chosen within each cluster. The function
pickSoftThreshold was used to calculate the soft power
parameter and blockwiseModules to construct coexpression
network. Finally, corPvalueStudent was used to mine modules
related to specific cell types.
December 2021 | Volume 12 | Article 767070
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Survival Analysis
According to the median of gene expression values, cells were
divided into high and low groups, then the survival curve was
shown using the Kapla–Meier curve with a log-rank test by
GEPIA2 (http://gepia2.cancer-pku.cn/) to illustrate the
relationship between differential genes and overall patient
survival. The terms with p-value <0.05 were identified as
significant. Additionally, multiple hypothesis testing (FDR) was
performed to the significant p-value using the function p.adjust.

Gene Set Variation Analysis
For generated gene set, we performed gene set variation analysis
(GSVA) to the data in the present study and validation dataset
using R package GSVA (25) with the default parameter, to
evaluate the effect of distinguishing Tex cells.

The Basic Expression of mRNA and
Protein in Normal and Cancer Tissues
The RNA-seq data were downloaded from the TCGA database
(https://portal.gdc.cancer.gov/) and then calculated into TPM
value. According to the annotation, samples were grouped into
normal and four stages of cancer groups. The differential
expression of mRNA in the different groups was performed by
Wilcoxon test with p-value <0.05.

The protein expression level in normal and cancer tissues was
analyzed using the Human Protein Atlas (HPA) database
(https://www.proteinatlas.org). Immunohistochemistry pictures
were downloaded from the Tissue Atlas and Pathology Atlas.

Immunohistochemistry
Immunohistochemistry was carried out on human liver cancer
tissue microarray (Shanghai Outdo Biotech Co., Ltd., Shanghai,
China). The tissue sections were first dried at 63°C for 1 h,
dewaxed, and rehydrated before epitope retrieval by heating at
100°C in 10 mM sodium citrate (pH 6.0) for 5 min in EDTA
solution for 20 min. The sections were cooled down to room
temperature for 30 min. The tissue sections were treated with 3%
hydrogen peroxide for 20 min to eliminate the endogenous
peroxidase and alkaline phosphatase activity in the tissue. After
cooling down to room temperature, the sections were treated by
blocking agents for 10 min. The sections were incubated with
individual primary antibody (RGS1, Invitrogen, Waltham, MA,
USA; Product #PA5-86730) diluted 1:1,000,800 overnight at 4°C,
followed by secondary antibodies at room temperature for 30 min.
3,3′-Diaminobenzidine (DAB) was then applied as a substrate to
reveal the antigen. Hematoxylin was used for counterstaining. The
stained images were counted by ImageJ software (26), and the
optical density (OD) value was used for quantification.
RESULTS

Single CD8+ T-Cell Transcriptome
Landscape
We obtained single-cell transcriptome data of human T cells
from the GEO database, including 12 patients from CRC (27), six
Frontiers in Immunology | www.frontiersin.org 3
patients fromHCC (28), and 14 patients from NSCLC (29). After
strict quality control and filtration, we collected 4,010, 1,752, and
4,439 CD8+ T cells from peripheral blood (P), adjacent normal
(N), and tumor tissues (T) (Supplementary Figures S1A, B;
Supplementary Table S1).

We divided the cells of each cancer into different cell types
annotated with cluster-specific gene expression (Figure 1A;
Supplementary Table S2). Specifically, in CRC, cells were
identified as naïve T cells (Tn, cluster 4, marked with selectin
L (SELL), lymphoid enhancer binding factor 1 (LEF1), C–C
motif chemokine receptor 7 (CCR7), transcription factor 7
(TCF7), effector T cells (Teff, cluster 2 and cluster 5, marked
with C-X3-C motif chemokine receptor 1 (CX3CR1), killer cell
lectin-like receptor F1 (KLRF1)), fibroblast growth factor-
binding protein 2 (FGFBP2), Fc fragment of IgG receptor IIIa
(FCGR3A), exhausted T cells (Tex, cluster 3 and cluster 6,
marked with hepatitis A virus cellular receptor 2 (HAVCR2),
programmed cell death 1 (PDCD1), lymphocyte activating 3
(LAG3), TOX, CXCL13, tissue-resident memory T cells (Trm,
cluster 1, marked with CD69, integrin subunit alpha E (ITGAE)),
mucosal-associated invariant T cells (MAIT, cluster 7, marked
with solute carrier family 4 member 10 (SLC4A10)), RAR-related
orphan receptor C (RORC) (Figures 1B, C). Cluster 0 was
located between cluster 2 and cluster 3, which was represented
as Teff and Tex cells, besides, the genes marked Teff and Tex cells
showed relative high expression levels in this cluster, therefore,
we identified it as Pre_exhaust T cells. Similarly, cells in HCC
were identified as Tn (cluster 4), Teff (cluster 0), Pre_exhaust
(cluster 1), Tex (cluster 3 and cluster5), MAIT (cluster 2), and
cells in NSCLC that were identified as Tn (cluster 4), Teff (cluster
0 and cluster 6), Pre_exhaust (cluster 1 and cluster 7), Tex
(cluster 3), Trm (cluster 2), and MAIT (cluster 5). Different cell
types showed preference in different tissues. In general, Tn and
Teff cells were mainly enriched in peripheral blood, Pre_exhaust
and Tex cells were mainly enriched in tumor tissues, and Trm
cells existed more in adjacent normal tissues of CRC and HCC,
and in tumor tissues of NSCLC, which may be related to tissue
specificity. Also, the number of MAIT cells was relative less than
the others. Additionally, we performed exhausted cell scoring by
the function AddModuleScore in R package Seurat using the
exhaustion gene list including HAVCR2, T-cell immunoreceptor
with Ig and ITIM domains (TIGIT), LAG3, PDCD1, CXCL13,
layilin (LAYN), TOX, cytotoxic T-lymphocyte associated protein
4 (CTLA4), and B and T lymphocyte associated (BTLA) and
visualized in Supplementary Figure S1C, showing the accuracy
of Tex cell classification (Supplementary Figure S1C).

To further explore the function of each cluster, we performed
GO enrichment analysis using the cluster-specific genes
(Figure 1D). In all three cancers, Tn cells were enriched in T-
cell activation, T-cell differentiation, and ribosome biogenesis;
Teff cells were enriched in cellular defense response, positive
regulation of cytokine production, and T-cell-mediated
cytotoxicity; Tex cells were enriched in negative regulation of
immune system process, T-cell apoptotic process, and response
to hypoxia; Trm cells were enriched in antigen receptor-
mediated signaling pathway and leukocyte chemotaxis; MAIT
December 2021 | Volume 12 | Article 767070
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cells were enriched in interferon-gamma production; and
Pre_exhaust cells were enriched in terms associated with Teff
and Tex cells, including cellular defense response and negative
regulation of immune system process, showing the transitional
characteristics during T-cell exhaustion.
Establishment of Coexpression Network
Tex cells, as shown above, played a negative role in immune
system process, and it was suggested that Pre_exhaust cells were a
transitional stage from Teff to Tex cells. To find out the highly
linked genes associated with T-cell exhaustion, we used the R
packageWGCNA to construct the weighted coexpression network
in Teff, Pre_exhaust, and Tex cells (Figure 2A). The blue module
(R-value 0.96, p-value 2e−145), turquoise module (R-value 0.96, p-
value 7e−67), and blue module (R-value 0.96, p-value 2e−172)
represented Tex cells in CRC, HCC, and NSCLC, respectively.
Combining with the differentially expressed genes (DEGs)
Frontiers in Immunology | www.frontiersin.org 4
upregulated in the Tex vs. Teff cell comparison in three cancers
(Supplementary Table S3), 35 genes were found in three Tex cell-
related modules and overexpressed in Tex cells (Figure 2B;
Table 1), which were defined as “Candidate” gene set, including
exhaustion marker PDCD1, CTLA4, HAVCR2, TOX, and TIGIT.
It is noteworthy that the housekeeping gene glyceraldehyde-3-
phosphate dehydrogenase (GAPDH), which can catalyze an
important energy-yielding step in glycolysis metabolism, was
also upregulated and enriched in the highly linked DEGs, thus
we speculated that the glycolysis progress was disordered in
Tex cells.

As shown in Figure 2C, poor overall survival was correlated
with higher Candidate gene set expression in multiple cancers
including liver hepatocellular carcinoma (LIHC), lung
adenocarcinoma (LUAD), bladder urothelial carcinoma
(BLCA), breast invasive carcinoma (BRCA), cervical squamous
cell carcinoma and endocervical adenocarcinoma (CESC), head
and neck squamous cell carcinoma (HNSC), kidney
A

B

D

C

FIGURE 1 | Clustering of CD8+ T cells in three cancers. (A) UMAP of single cells to visualize cell-type clusters (left), Pseudo-time trajectory graph (middle), and the
proportion of different cell types in different sources (right). (B) Heatmap showing marker genes for CD8+ cell types. (C) The top 10 DEGs in each cell type in three
cancers. (D) The GO enrichment analysis of different cell types of CD8+ T cells in three cancers.
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chromophobe (KICH), skin cutaneous melanoma (SKCM),
thymoma (THYM). In addition, the GSVA scores of Candidate
gene set in Tex cells were much higher than those of the other
clusters in CRC, HCC, and NSCLC, so were in the other
independent validation datasets (Figure 2D). GSE116390
dataset (30) was composed of four types of tumor-infiltrating
CD8+ T cells, which were exhausted, memory-like, naïve, and
effector memory-like (EM-like) subsets, from B16 melanoma
tumor-bearing mice, and GSE123813 dataset (31) contained six
Frontiers in Immunology | www.frontiersin.org 5
types of tumor-infiltrating CD8+ T cells, which were from 11
patients with advanced basal cell carcinoma, showing higher
score in the exhausted related clusters.

As indicated above, the Candidate gene set was enriched in
exhausted CD8+ T cells with poor prognosis and was able to
distinguish Tex cells from the other CD8+ T cells in different
cancers, indicating that the GSVA score of these 35 genes might
be an effective prognostic marker or a marker to identify
Tex cells.
A B

D

C

FIGURE 2 | Candidate gene set associated with CD8+ Tex cells. (A) The gene coexpression network modules of CD8+ T cells with correlation coefficient and p-
value. (B) The number of genes with differential expression (left) and coexpression (right). (C) The Kaplan-Meier overall survival curves of TCGA patients grouped by
the middle expression value of Candidate gene set. The red and blue lines denote higher and lower expression group, respectively. (D) Distinguishing Tex cells from
the other CD8+ T cells effectively in different cancers by GSVA score of Candidate gene set.
December 2021 | Volume 12 | Article 767070
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Differentially Expressed Genes Associated
With T-Cell ExhaustionV
The exhaustion of T cells was gradually formed, so we performed
differential expression analysis of Pre_exhaust and Tex cells
compared with Teff cells, in order to further explore the critical
genes associated with the formation and development of T-cell
exhaustion. In the Pre_exhaust vs. Teff cell comparison, 119 DEGs
existed in all three cancers, 57 of whom were upregulated and the
others were downregulated. Correspondingly, there were 162 up-
regulated and 88 down-regulated DEGs in the Tex vs. Teff cells
comparison. Furthermore, there were 40 DEGs overexpressed in
both Pre_exhaust and Tex cells compared with Teff cells
(Figure 3A), which may contribute to the origin of T-cell
exhaustion, including the canonical exhaustion marker PDCD1
which encodes an inhibitory receptor (32), CD69 with the
capability to mediate the cell retention (33), Cbl Proto-
Oncogene B(CBLB) whose deletion can inhibit CD8+ T-cell
exhaustion (34), hypoxia-inducible factor-1 (HIF1A) which can
stably be expressed in hypoxia condition, consistent with the
biological process of Tex cells (Figure 1D).

Obviously, regulator of G protein signaling 1 (RGS1) showed
the greatest fold change in Tex cells across three cancers and also
across different patients, showing the greatest fold change in
Pre_exhaust cell in HCC and NSCLC (Figure 3A ;
Supplementary Figure S2), illustrating its potential roles during
T-cell exhaustion. RGS1 was expressed highly in whole Tex cells
compared with Teff cells (Figure 3B), eliminating that the high fold
change of RGS1 in Pre_exhaust and Tex cells was not caused by
partial cells with abnormally high expression value but high
expression in whole cells. In order to evaluate the role of RGS1
in tumorigenesis, we analyzed the expression levels of RGS1
between tumor and normal tissues in the TCGA database
(Figure 3C). RGS1 expression was significantly upregulated in
multiple cancers including BRCA, cholangiocarcinoma (CHOL),
esophageal carcinoma (ESCA), glioblastoma multiforme (GBM),
HNSC, kidney renal clear cell carcinoma (KIRC), kidney renal
papillary cell carcinoma (KIRP), LUAD, rectal carcinoma (READ),
Frontiers in Immunology | www.frontiersin.org 6
and stomach adenocarcinoma (STAD) when compared with the
normal samples. We also added and compared the expression
levels of RGS1 across different cancer stages and found that RGS1
expression was associated with stage in some cancer types, such as
RGS1 expression was higher in stages II, III, and IV vs. stage I in
STAD. This result revealed that RGS1 was likely a key
tumorigenesis regulator in multiple cancers and may be
associated with prognosis. Conspicuously, the prognosis analysis
was analyzed in 33 TCGA cancer types (Supplementary Table S4).
RGS1 expression was significantly correlated to poor prognosis in
seven cancers, including LIHC, adrenocortical carcinoma (ACC),
pancreatic adenocarcinoma (PAAD), sarcoma (SARC), SKCM,
STAD, and THYM (Figure 3D), suggesting that RGS1 was a
potential prognostic factor in the survival of the above cancers.
Apart from that, the protein level of RGS1 in HPA database
showed the immunohistochemical (IHC) staining of RGS1 was
negative staining in normal tissues and positive in liver cancer
tissues, demonstrating that RGS1 was significantly expressed in
cancer tissues than in normal liver tissues (Figure 3E).
Additionally, we performed IHC verification to quantify the
protein expression of RGS1 using the local clinical samples of
liver cancer and normal tissues (Figures 3F, G), similarly, RGS1
protein displayed stronger staining in hepatocarcinoma, in line
with the statistical result (p = 7.1e−5). The clinicopathological
information of the patient samples and protein expression value are
provided in Supplementary Table S5. These results showed that
RGS1 was highly expressed in Tex cells in cancers, upregulated in
tumor tissues in mRNA and protein level, and with poor prognosis
in multiple cancers, which indicated its potential key role in T-cell
exhaustion or cancer progress, and RGS1 might be an effective
prognostic marker or a marker to identify Tex cells.

Correlation Between RGS1 and
Candidate Gene Set
To discover the relationship between RGS1 and Candidate gene
set as their potential roles in exhausted T cells, we calculated the
correlation coefficient in single cell and tissue level (Figure 4). In
TABLE 1 | The logarithm of fold change of Candidate gene set in three cancers.

CRC HCC NSCLC CRC HCC NSCLC

PDCD1 1.41 1.94 1.29 PHLDA1 1.52 1.31 1.05
CTLA4 1.02 0.63 0.74 MCM3 0.36 0.39 0.51
TNFRSF9 1.53 1.53 1.58 PCNA 0.59 0.49 0.52
HAVCR2 2.15 1.75 2.05 GAPDH 1.06 1.00 1.10
TOX 0.71 0.92 0.74 OASL 0.65 0.55 0.65
TIGIT 0.59 0.79 1.24 IFI44L 0.83 0.37 0.74
WARS 0.41 0.99 0.34 TBC1D4 0.66 0.82 0.74
RSAD2 0.62 0.31 0.43 SLC43A3 0.33 0.27 0.45
MCM7 0.69 0.41 0.62 PAM 0.27 0.68 0.30
MX1 0.71 0.81 1.06 CCL3 1.62 1.31 1.62
NDFIP2 1.33 0.46 1.21 ACP5 1.17 0.75 1.36
ENOSF1 0.55 0.49 0.55 OAS3 0.58 0.57 0.63
CCDC141 0.89 0.36 1.03 CD38 0.73 0.79 0.51
STMN1 1.30 1.04 0.95 TNFSF10 0.64 0.36 0.71
TTN 0.81 0.45 1.08 GBP2 0.38 0.49 0.35
FASLG 0.88 0.87 0.82 KIF20B 0.37 0.35 0.44
MCM5 0.71 0.75 0.68 CTSB 0.43 0.31 0.35
NAB1 0.76 0.54 0.56
December 2021
 | Volume 12 | Article
 767070

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Bai et al. RGS1 Promotes T-Cell Exhaustion
three-cancer single-cell datasets, it was obvious that RGS1 showed
positive correlation with 35 genes (up to 0.3~0.8), indicating that
consistency of coexpression patterns between these genes. In the
bulk RNA sequencing datasets, the correlation coefficients were
Frontiers in Immunology | www.frontiersin.org 7
almost positive, especially high with PDCD1, CTLA4, TNF
receptor superfamily member 9 (TNFRSF9), HAVCR2, TOX,
and TIGIT, which further confirmed the potential key roles of
RGS1 in Tex cells. The negative correlations were mainly with the
A

B

D E

F
G

C

FIGURE 3 | DEGs in Pre_exhasuted and Tex cells compared with Teff cells. (A) The common upregulated genes in Pre_exhasuted and Tex cells compared with Teff
cells. (B) The mRNA expression value of RGS1 in single-cell dataset and TCGA database (C). (D) The Kaplan-Meier overall survival curves of TCGA patients grouped
by the middle expression value of RGS1. The red and blue lines denote higher and lower expression group, respectively. (E) Representative IHC images of RGS1
protein in tumor and normal tissues of liver derived from the HPA database and verification experiment (F, scale bar 100 µm, magnification ×20). (G) The protein
expression value of RGS1 in hepatocarcinoma and adjacent noncancerous tissues in the IHC verification experiment. **p <= 0.01, ***p <= 0.001, ****p <= 0.0001.
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genes involved in cell cycle and DNA replication, including
minichromosome maintenance complex component 7 (MCM7),
enolase superfamily member 1 (ENOSF1), minichromosome
maintenance complex component 5 (MCM5), minichromosome
maintenance complex component 3 (MCM3), proliferating cell
nuclear antigen (PCNA), which pointed out the different results
observed between single cell and bulk RNA sequencing analysis,
suggesting we could obtain deeper understanding about T-cell
exhaustion by single-cell sequencing. One interpretation of the
above inconsistent result is that the bulk transcriptome change
(which mixes many immune and nonimmune cells together)
likely reflects an overall expression in these cells and does not
discriminate specific T-cell states, which further highlights the
advantages in defining and studying T-cell exhaustion state by
using single-cell sequencing data.
DISCUSSION

T-cell exhaustion is characterized by loss of effector functions,
continuously high expression of numerous inhibitory receptors,
epigenetic and transcription profile changes, and dysregulated
metabolism. Exhaustion CD8+ T cells are associated with
suppressive immune microenvironment and poor overall
survival in various cancer types, such as, in invasive bladder
cancer (35) and clear-cell renal cell carcinoma (36). In addition,
increased exhausted CD8+ T-cell subpopulations predict PD-1
blockade resistance response in melanoma (37). Accumulating
evidences support exhausted T cells are possible to be rescued in
cancer immunotherapy. Anti-PD1 antibodies, including
atezolizumab and nivolumab, can renew the activity of
exhausted CD8 T cells through preventing PD-1-mediated
attenuation of proximal TCR cascades (38, 39) and can affect
metabolic reprogramming to reinvigorate T cells (40). However,
one study found an association between increased accumulation
of one CD8+ T-cell exhaustion phenotype and clinical benefit,
suggesting exhausted T cells may comprise heterogenous cell
population with distinct responsiveness to intervention and the
standard definition of exhaustion cells is unclear in the context of
Frontiers in Immunology | www.frontiersin.org 8
treatment (41). Thus, understanding molecular mechanism of T-
cell exhaustion and comprehensively exploring potential
markers associated with T-cell exhaustion is essential to
precisely define T-cell exhaustion and establish rational
immunotherapeutic interventions.

In this study, combining with single-cell RNA sequencing,
which can facilitate to detect the transcriptome on the level of
single cell (42), we can shed light on the complication of tumor-
infiltrating T cells. In order to explore the key genes associated
with T-cell exhaustion in multiple cancers, we performed
transcriptomic analysis of single CD8+ T cells isolated from
three cancers, including CRC, HCC, and NSCLC and identified
different cell types, thereunto, Pre_exhaust and Tex cells
overexpressed exhaustion markers and enriched in the negative
regulation of immune progress. In the comparison with Teff
cells, RGS1 showed almost the greatest fold change in
Pre_exhaust and Tex cells of three cancers with poor prognosis
and displayed highly positive correlation with the well-known
genes associated with T-cell exhaustion.

In the WGCNA analysis, we identified a Candidate gene set
consisting of 35 DEGs, including exhaustion markers such as
PDCD1, CTLA4, HAVCR2, TOX, and TIGIT. Apart from that,
genes involved in cell cycle and DNA replication also included,
MCM7, MCM5, MCM3, PCNA, stathmin 1 (STMN1), titin
(TTN), and TBC1 domain family member 4 (TBC1D4),
suggesting that exhausted cells still retained the ability of
proliferation, which was also observed in chronically infected
models (43). Functionally, the Candidate gene set was able to
distinguish Tex cells from the other subtypes of CD8+ T cells in
different cancers, and higher GSVA scores of Candidate gene set
showed poor prognosis in multiple cancers.

In addition, several DEGs appeared in Pre_exhaust and Tex
cells, suggesting the role in the formation and development of T-
cell exhaustion, in which RGS1 showed almost the greatest fold
change. RGS1 encodes a member of the regulator of G-protein
signaling family, which can act as a GTPase-activating protein
(GAP), increasing the rate of conversion of the GTP to GDP,
driving G-protein into its inactive GDP-bound form, hence
attenuating or turning off G-protein-coupled receptor signaling
FIGURE 4 | The correlation coefficient between RGS1 and Candidate gene set of Tex cells in CD8+ T cells (left) and TCGA database(right).
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(44). RGS1 is highly expressed in immune cells including T cells
(45), B cells (46), natural killer (NK) cells (47), dendritic cells
(48), and monocytes (49), suggesting a role for RGS1 in immune
cell regulation. RGS1 inhibits the chemokine-induced
lymphocyte migration (50) because chemokine-dependent
activation of G-protein-coupled receptors can cause the
activation of heterotrimeric G-protein subunits resulting in
enhanced cell migration and adhesion (51), which has been
found in Treg cells (45). In the present study, RGS1 was highly
expressed in tumor tissues and correlated with shorter overall
survival, which also appeared in several previous studies,
including multiple myeloma (52), melanoma (53, 54),
nonsmall cell lung cancer (55), gastric cancer (56), diffuse large
B-cell lymphoma (57), and so on. However, the role of RGS1 in
CD8+T cells especially in Tex cells has not been reported. In
addition, RGS1 protein, located at the cytoplasm and membrane,
is enriched in tumor tissues compared with normal tissues
according to the IHC staining in the HPA database and
verification experiment, further verifying its pathogenicity.
Considering the ability to block cell migration of RGS1, we
speculate that RGS1 can mediate the cell retention to lead to
the persistent antigen stimulation of T cells, which resulted in T
cell exhaustion with the overexpression of inhibitory genes such
as PDCD1 and HAVCR2 (58). Additionally, RGS1 was identified
as a HIF-dependent hypoxia target that dampens cell migration
and signal transduction (59), indicating its role in exhausted T
cells might be caused by hypoxia condition (Figure 1B).

RGS1, the most upregulated gene in Pre_exhaust and Tex cells
and a potential marker for T-cell exhaustion, was excluded from
the Candidate gene set. This phenomenon happened in other T
cell-exhaustion-related genes as well, such as CD69 and CBLB.
CD69, upregulated in Pre_exhaust and Tex cells, is an early
activation marker of T cells (60). It can mediate the cell retention
via the interaction with sphingosine-1-phosphate receptor 1
(S1PR1) which acts as a central mediator of lymphocyte output
(61), leading to the persistent antigen stimulation of T cells,
which resulted in T-cell exhaustion by overexpression of PDCD1
andHAVCR2 (62). CBLB, also upregulated in Pre_exhausted and
Tex cells, whereby its deletion can inhibit CD8+ T cell
exhaustion and promote chimeric antigen receptor T-cell
function (34). Considering the positive correlation between
RGS1 with Candidate gene set in single cells and tissues and its
high expression in Tex cells, it is important and necessary to
further study RGS1 mechanism in T-cell exhaustion.

In summary, our findings suggest that the GSVA score of the
35 Candidate gene set could be an effective prognostic marker or
a marker to identify Tex cells. RGS1, as the most upregulated
gene in Pre_exhaust and Tex cells, might play key roles in T-cell
exhaustion or cancer progress. As a HIF-dependent hypoxia
target, RGS1 might be upregulated by hypoxia, and further
mediate the cell retention by inhibiting chemokine-induced
lymphocyte migration. The current study could provide
theoretical basis for research and immunotherapy of exhausted
cells, while further studies are essential to fully elucidate the
concrete mechanism of RGS1 during CD8+ T-cell exhaustion.
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