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Stereo-EEG is a minimally invasive technique used to localize the origin of epileptic activity (the epileptogenic zone) in patients with 
drug-resistant epilepsy. However, current stereo-EEG trajectory planning methods are agnostic to the spatial recording sensitivity of 
implanted electrodes. In this study, we used image-based patient-specific computational models to design optimized stereo-EEG elec
trode configurations. Patient-specific optimized electrode configurations exhibited substantially higher recording sensitivity than clin
ically implanted configurations, and this may lead to a more accurate delineation of the epileptogenic zone. The optimized 
configurations also achieved equally good or better recording sensitivity with fewer electrodes compared with clinically implanted 
configurations, and this may reduce the risk for complications, including intracranial haemorrhage. This approach improves localiza
tion of the epileptogenic zone by transforming the clinical use of stereo-EEG from a discrete ad hoc sampling to an intelligent mapping 
of the regions of interest.
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Graphical Abstract

Introduction
More than 30% of the 65 million people with epilepsy 
worldwide do not benefit from pharmaceuticals.1-3

Surgical resection/ablation is the primary curative treat
ment for pharmaco-resistant epilepsy but requires robust 
localization of the epileptogenic zone (EZ)—the minimum 
amount of neural tissue that needs to be removed to achieve 
seizure freedom.1,3 Non-invasive EZ localization is often 
insufficient and invasive monitoring is often required.2

Stereo-EEG (sEEG) is an EZ localization approach by 
which up to 30 electrodes are implanted to record electrical 
activity from widespread areas of the brain, and sEEG has 
largely displaced other forms of invasive monitoring be
cause of reduced complication rates.4 Implanting only the 
essential number of sEEG electrodes is critical because 
each additional electrode increases the risk of haemor
rhage, while too few electrodes can lead to poor localiza
tion.3-5

In this study, we developed a novel approach to optimize the 
recording sensitivity (RS) of sEEG electrode configurations 
and thereby minimize the number of implanted electrodes 
while maintaining recording coverage and accurate localiza
tion. Automated planning algorithms for determining sEEG 
electrode implantation trajectories given a user-specified re
gion of interest (ROI)6-9 have shown promise to increase grey- 
matter sampling, decrease risk scores and reduce planning time 
compared with manual planning.10 However, these algorithms 
did not account for the spatial extent of tissue that can be re
corded (RS), which is critical to EZ localization.

We implemented patient-specific head models to simulate 
the spatial distribution of voltages generated by spatially ex
tended sources of epileptiform neural activity. We quantified 
the RS of arbitrary sEEG configurations and developed an 
optimization method to identify electrode trajectories that 
maximize the RS of user-defined ROIs while avoiding critical 
anatomy. This approach transforms sEEG planning from a 
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manual ad hoc process to an intelligent mapping to improve 
EZ localization and patient safety.

Materials and methods
Semi-automated patient-specific 
volume conductor head modelling
The Duke University Health System IRB approved the use of 
clinical neuroimaging in this study to do secondary research 
on data collected as part of research study Pro00101171, 
and the participants whose neuroimaging was used pro
vided written informed consent. From these data, we 
selected the 12 epilepsy patients over the age of 18 who 
had full sets of neuroimaging. We developed a semi- 
automated pipeline to implement patient-specific head 
models, combining patient-specific neuroimaging [T1 

MRI, diffusion-weighted MRI (DW-MRI) and PostOp 
CT], implantation planning coordinates and custom 
code (Fig. 1). Patient-specific head modelling was divided 
into four modules: (i) geometry creation, (ii) defining the 

tissue electrical properties, (iii) electrode generation and 
(iv) finite-element model (FEM) generation.

We created the model geometry using the T1 MRI. We ex
tracted the skin surface using FSL (BET) and defined the 
white–grey matter boundary using freesurfer’s (https:// 
surfer.nmr.mgh.harvard.edu/) recon-all function. The 
white–grey matter boundary mesh was manually smoothed 
by decimating and up-sampling the mesh in MeshLab 
(https://www.meshlab.net/).

We defined the tissue electrical properties by segmenting 
the T1 MRI into five different tissue types (skin, skull, CSF, 
white matter and grey matter) using FSL’s (https://fsl.fmrib. 
ox.ac.uk) analysis tools (FAST and BET). We then obtained 
diffusion tensors from the DW-MRI using FSL and coregis
tered the tensors in T1 space. Finally, we converted the diffu
sion tensors to conductivity tensors using the load 
preservation technique to define anisotropic conductivity 
tensors for each patient-specific model.11

We generated electrode geometries using the PostOp CT 
and a library of predefined electrode geometries created by 
PMT and ADTech. We used DEETO12 to localize the sEEG 
electrode contacts given the entry and target locations of 

Figure 1 Pipeline for optimization of sEEG electrode implantation. We used T1 MRI, PostOp CT and DW-MRI imaging to generate 12 
patient-specific FEM head models. We generated a set of valid electrode trajectories, computed RS and optimized configurations for specific ROIs.
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each electrode along with the PostOp CT. We then 
co-registered the electrode contact locations in T1 space and fit
ted a line to each electrode. If we were simulating the clinically 
implanted electrodes, we could then place a mesh electrode 
geometry on each trajectory. For arbitrary trajectory simula
tions, we chose not to include the electrode geometries in the 
FEM, because changing the geometry for each simulation 
would require us to remesh each simulation. Additionally, pre
vious work has shown that electrodes have minimal influence 
on recorded potentials at distances >5 mm.13,14

Finally, we combined all the processed components into a 
FEM in SCIRun v5.0 (SCI Institute, University of Utah, Salt 
Lake City, UT, USA) with 19–22 million elements. We used 
SCIRun to solve for the voltages throughout the head model 
generated by dipole sources pointed orthogonally outward 
from the cortical surface at ∼40 000 cortical locations. We 
grounded points at the base of the skin mesh to serve as a 
voltage reference in the FEM simulations. We compiled the 
simulated voltages for each source as columns into a lead- 
field matrix, which defined the input–output relationship be
tween neural sources and recorded voltages.

Extended source modelling
Simplified source models are required to simulate the voltage 
distribution generated by realistic epileptic sources. Dipoles 
are appropriate source representations of active neurons 
for sEEG, and extended dipole models are necessary to mod
el patches of active cortex when recording within 1.5 cm.15

We defined three extended dipole models, or patch models, 
centred at every element on the cortical triangular surface 
mesh. These were sets of adjacent dipoles on the cortical sur
face with surface areas of 6, 10 and 20 cm2, which corres
pond to areas projected on the inside of the skull of 2.46, 
3.85 and 7.09 cm2 (Supplementary Fig. 5). We also quanti
fied the spatial extents of each patch using the mean distances 
between the centre of the mass and the edges of each patch.

We calculated the voltages generated by each patch model 
by finding the columns of the lead-field matrix corresponding 
to each dipole within a patch, and we scaled each column by 
the area of the corresponding triangle of the cortical mesh. 
Then, we summed the columns and scaled them by an estimate 
of human neocortex dipole moment density (0.16–0.77 nA-m/ 
mm2) to obtain the voltage.16 By concatenating the calculated 
distributions of voltages for all extended dipole models as col
umns, we assembled the patch lead-field matrix for all pairs of 
three patch areas and three dipole moment density values. We 
used the minimum, mean and maximum values of 0.16, 0.465 
and 0.77 nA-m/mm2 to capture the range of dipole moment 
density values. We used the mean values of 10 cm2 patch 
area and 0.465 nA-m/mm2 dipole moment density in all ana
lyses to capture the best-estimated results.

Estimation of the recording radius
We estimated the radius around a contact within which dis
cernible neural signals could be recorded. We defined 

discernible voltage as the amplitude of a spike that would 
consistently be discriminated from background noise in 
sEEG signals. Current clinical practice relies on the identifi
cation of large interictal spikes typically >1 mV amplitude 
(Supplementary Fig. 1). We analysed interictal sEEG voltage 
data from 12 patients to determine the distribution of noise 
and spike amplitude. We determined the amplitude of the 
noise by considering the standard deviation of the recorded 
voltages when there was no spiking activity and multiplied 
it by 4 (Supplementary Fig. 1A). The noise distribution was 
roughly Gaussian, and therefore, four times the standard de
viation will account for 99.99% of the data. Based on the 
standard deviation of the noise, interictal spikes >200 µV 
in magnitude (±4 SDs) can be differentiated from noise 
(Supplementary Fig. 1B). Using 120 clinician-defined spikes 
across 10 patients, we calculated the maximum voltage 
across all the sEEG recordings using a common average ref
erencing scheme. The 25 percentile maximum voltage was 
548 µV, and the mean maximum voltage was 958 µV. 
Therefore, we used voltage thresholds of 200, 500 and 
1000 µV in all analyses.

To estimate the recording radius, we first selected 105 si
mulated contact locations from each hemisphere of each pa
tient using 3 random points on the cortex surface from each 
of 35 cortical subregions based on the Desikan–Killiany at
las.17 We selected the rows from the patch lead-field matrices 
corresponding to these locations and applied one of the three 
discernible voltage thresholds to determine the patches that 
were recordable by each contact location. We calculated 
the distance from the centre element of every patch to each 
contact location and used this to sort the patches into groups 
of radii from each contact with a 0.25 cm bin size. For each 
contact, there was at least one patch in every group of radii, 
and each patch was a member of only one group. We calcu
lated the per cent of patches within each group that were re
cordable by each contact (RS). We repeated this procedure 
for the same contact locations using all nine source types 
and all three discernible voltage thresholds and calculated 
the median RS across radii. We determined the recording ra
dius as the maximum distance at which ≥50% of sources 
(median) had ≥20% RS.

Quantification of configuration RS
We developed a visualization tool and metric to quantify the 
RS or the extent of tissue in a ROI that is recordable by a gi
ven electrode configuration. sEEG source localization re
quires multiple contacts to record discernible signals from 
a source, and therefore, we defined the recordable patches 
for an electrode configuration to be those that generated dis
cernible signals at a minimum of two contacts on any single 
electrode. To find the set of recordable patches, we selected 
all columns of the patch lead-field matrix corresponding to 
sources with central elements inside the ROI and applied a 
discernible recording threshold (200, 500 or 1000 µV). 
Then, for each electrode, we summed the rows correspond
ing to its 16 contacts, concatenated them and applied a 
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threshold of 2 to obtain a logical matrix representing the re
cordable patches for every electrode.

An element of the cortex was recordable by a configur
ation if the patch model centred at that element was record
able, and the recording strength of the patch was the number 
of electrodes for which that patch was recordable. We visua
lized the RS of an electrode configuration by plotting the re
cording strength of each element on the cortex on a 3D 
surface plot. We quantified RSi,thr(ROI) as the percentage 
of patches in a ROI that were recordable by a configuration:

RSi,thr(ROI) = Pi,thr(ROI)/Ptotal(ROI) (1) 

where Pi,thr(ROI) is the number of patch models in a ROI 
that is recordable by at least two contacts on any electrode 
of a configuration, i, at a certain threshold, thr, and 
Ptotal(ROI) is the total number of patch models with centre 
elements inside the ROI. Ptotal(ROI) is also equal to the total 
number of elements inside the ROI because we generated one 
patch around each element.

Optimization of electrode number 
and placement
We generated sets of valid electrode placements and built op
timized electrode configurations for 12 patients who were gi
ven clinician-defined ROIs.

Generation of a valid electrode set
To finely sample the search space of a valid implantation area 
and at the same time keep the lead-field matrix <250 GB, we 
computed a set of 95 000 valid electrode trajectories per pa
tient. Valid electrodes satisfied the safety criteria of insertion 
location, maximum insertion angle, maximum trajectory 
length and maximum distance to critical structures. We mod
elled electrodes with 16 contacts each, of 2 mm contact 
length and of 1.5 mm insulator length based on 
PMT-2102-16-091 electrodes.18 We simplified each contact 
to a single-point recording location at its centre, an approxi
mation that was previously validated.14 We defined valid en
try locations by selecting all points on the patient scalp 
surface that were within 5 mm of a best-fit standard template 
of the implantation scalp area.7,19 We randomly sampled 
800 insertion locations from this region and 366 insertion 
angles for each to evenly sample the implantation space 
with ∼300 000 electrode lines (defined by insertion location 
and angle), assuming that most would be excluded. We kept 
the implantation angle ≤10° from normal to the scalp.8 We 
discretized these lines into individual electrode trajectories 
by sampling insertion depth at multiples of 3.5 mm, keeping 
the total trajectory length <10 cm.20,21 Because the contact 
points were also 3.5 mm apart, most contact points for elec
trodes in the same line overlapped, allowing us to represent a 
greater number of electrodes with fewer recording locations.

We eliminated electrodes that intersected critical structures— 
sulci, the midline and secondary skull locations. Angiogram 

imaging of blood vessels was not available, and because sul
ci are often used to estimate the locations of large vascula
ture and as critical structures themselves,6,7,9 we calculated 
the occurrence of intersections between electrodes and sulci 
surfaces to avoid areas where large blood vessels are likely 
to be located. We generated the sulci surfaces for each hemi
sphere individually by considering the intersection of the cor
tex surface with a super-smoothed cortex surface (MeshLab, 
filter ‘hc_laplacian_smoothing’ 100 times). The resulting 
surfaces were the bases of sulci. To calculate the intersections, 
we used a bounding volume hierarchy method adapted from 
Sparks et al.,7 in which the minimum distance from the elec
trode to the surface was found using an efficient binary tree 
search.7 We eliminated all electrodes that passed within 
1.5 mm of the sulci surface6 or 4 mm of the skull (away 
from insertion location) or the midline. We then randomly 
eliminated lines until we were left with 95 000 valid elec
trode trajectories. Lastly, we calculated the occurrences of 
collisions (distance <4 mm)6 between every pair of electrodes 
by representing each electrode as a set of 128 points7 and 
performing matrix distance calculations.

Optimization problem and cost 
function
We designed a search algorithm to find the best configura
tions for three ROIs per patient [left temporal lobe (LTL), 
clinician-defined ROI and left hemisphere (LH)] given the 
sets of all valid electrode trajectories and occurrences of col
lisions between every pair. To quantify how well a certain 
configuration, i, can record from a ROI with threshold, 
thr, we used the following cost function, Ci,thr(ROI), to re
present the number of patches with centre elements in the 
ROI that are not recordable:

Ci,thr(ROI) = Ptotal(ROI) − Pi,thr(ROI) (2) 

where Pi,thr(ROI) and Ptotal(ROI) are as defined in Eq. (1).
We conceptualized the generation of an electrode config

uration as a tree traversal through an ‘N-ary’ tree, where 
each node represents a valid trajectory and each node has 
N-x children (i.e. the number of valid electrodes minus 
some number ‘x’ that intersect with electrodes in the current 
path). Each edge represents the addition of an electrode to a 
configuration, and each root-to-leaf path represents a full 
configuration where either there are no other valid electrode 
choices that would reduce the cost function or the full ROI is 
recordable. The optimal configuration is the path with the 
lowest cost at a certain number of electrodes (level of tree).

Next-best search algorithm
For any configuration of three or more electrodes, it is com
putationally intractable to find the true best configuration 
because the number of paths grows exponentially with the 
number of electrodes. Thus, we conducted a next-best itera
tive tree search to find solution configurations. A single 
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optimization trial required the selection of many parameters— 
source area, source strength, ROI and a threshold-priority 
order, which assigns the three thresholds (200, 500 and 
1000 µV) primary, secondary and tertiary importance. At 
each level of the search tree, we picked the electrode to de
crease the cost function maximally at the priority threshold. 
We broke ties between electrodes by using the cost functions 
at the second and then third priority thresholds and finally a 
random choice, if necessary. The next-best search algorithm 
is not guaranteed to produce the optimal electrode configur
ation because the mapping problem does not have an opti
mal substructure. However, given that finding the true best 
configuration is computationally intractable, this approach 
identifies a good option. We conducted the next-best search 
for each patient’s LTL, LH and clinician-defined ROI using 
all six permutations of cost functions (all permutations of 
200, 500 and 1000 µV for priority order) and all nine source 
types (all choices of three patch area and three dipole mo
ment density parameters). We continued adding electrodes 
until we added 31 electrodes or until no remaining electrodes 
could improve the cost function. Because our algorithm was 
iterative, the optimized configuration of any number of elec
trodes, X between 1 and 31, was the set of the first X electro
des in the configuration. We manually defined the LTL 
surfaces based on cortex geometry. We manually defined 
the ROI surfaces by selecting targeted areas of the cortex de
fined in clinician notes (Supplementary Table 1) and exclud
ing subregions that did not contain electrode trajectories. We 
analysed the optimized configurations, using the minimum 
cost function for each threshold of interest.

Quantification of clinically implanted 
configuration RS
We compared the recording sensitivities [Eq. (1)] of our opti
mized configurations to those of the clinically implanted sets. 
We defined the order of implanted electrodes for a certain case 
by sorting them in the best possible order to maximally de
crease the cost function (increase the RS) with each addition.

Eight patients had clinician-defined ROIs that included, 
but were not limited to, one of the temporal lobes (TLs). 
For these patients, we defined two versions of the implanted 
configuration, one including only those electrodes (4–10) 
inside the TL ROI and the other including all electrodes 
(12–15) in a broad ROI. The broad ROIs for three of these 
patients included secondary areas on the other hemisphere, 
and we excluded these areas and the corresponding electro
des from consideration. We included an electrode in the TL 
configuration if at least one contact was within 3 mm of 
the ROI surface and at least half of the contacts were within 
10 cm of the ROI. We compared the RS between the opti
mized configurations for the TL ROIs and the broad 
clinician-defined ROIs to recording sensitivities of the im
planted configurations. The remaining four patients had 
ROIs outside of or not focused on a TL. For these, we com
puted the RS of the full implanted configurations of 11–16 
electrodes for the clinician-defined ROI.

Transfer of patient-specific 
configurations to other patients
To determine the importance of patient-specific configur
ation generation, we transferred the optimized configura
tions for the LH and LTL ROIs for each patient to all 
other patients. We used FSL’s FLIRT function with six de
grees of freedom and a mutual information cost function 
to map configurations to other patients. Limiting the trans
formations to simple rotation and translation ensured con
sistent electrode geometries. We used 10 cm2 patch area, 
0.465 nA-m/mm2 dipole moment density and a 500 µV pri
ority cost function to generate optimized configurations. 
After transferring each configuration to all other patients, 
we found the set of all contact locations for the optimized 
and transferred configurations and recomputed the lead-field 
matrix at these locations. We calculated the per cent RS for 
the LTL and LH configurations in all patients and found 
the per cent error between the optimized and the transferred 
cases for each configuration. For each configuration, we 
compared RS values at the minimum number of electrodes 
that produced ≥75% RS of the ROI in the matched-patient 
case. We also tested the validity of all transferred configura
tions by calculating the minimum distance of electrodes from 
patient sulci surfaces. Any configuration with an electrode 
that passed within 2.5 mm of a sulci surface was considered 
invalid, but we included all electrodes for analysis to under
stand the best-case RS.

Statistical analysis
Statistical analyses were conducted on MATLAB using 
built-in functions. The data are presented as median with 
interquartile range (Fig. 2), standard box plots (Figs 3 and 
4C and D; Supplementary Fig. 2; median, interquartile 
range, maximum and minimum), mean ± SD (Fig. 4A 
and B) and standard histograms (Supplementary Fig. 5B 
and C) based on the characteristics of the data sets. A score 
of P < 0.05 was considered to be statistically significant. 
Shapiro–Wilk normality tests were conducted on each set 
of RS and electrode number data (Fig. 3). If the optimized 
and implanted data were both Gaussian for one threshold 
and one ROI, the difference between the two was compared 
using a two-tailed paired t test, and if not, using a Wilcoxon 
signed rank test (TL: n = 8; clinician-ROI: n = 12).

Results
Clinical strategies for sEEG electrode implantation maximize 
the number of electrodes placed in an ROI that avoid vascu
lature and critical structures. This approach assumes that re
cordable signals are inherently localized and are generated by 
neural activity <5 mm away from a contact.22 However, the 
true spatial extent of RS is unknown. Optimization of sEEG 
electrode trajectories to maximize RS requires a robust un
derstanding of how the complex source geometry and 
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electrical conductivities of the brain influence the spatial ex
tent of RS. Therefore, we first quantified the spatial extent 
of RS from simulated sEEG electrodes throughout the brain. 
Subsequently, we designed optimized sEEG electrode config
urations that had substantially higher RS than clinically im
planted configurations, and the optimized configurations 
required fewer implanted electrodes to achieve as good as 
or better RS than the clinically implanted configurations.

sEEG contacts record discernible 
signals from realistic epileptiform 
neural activity up to 1.5 cm away
To determine the distance that sEEG contacts can record dis
cernible signals from neural (epileptiform) sources, we devel
oped a semi-automated patient-specific head modelling 
pipeline to simulate the voltages generated by cortical dipole 
sources throughout the brain (Fig. 1). We simulated epilepti
form sources generating interictal spikes as patches of active 
cortex with 10 cm2 area23 and 0.465 nA-m/mm2 source 
strength at the peak of the spike.16 Sources with origins as 
far as 1.5 cm from the recording contacts generated readily 
detectable voltages (>500 µV at 20% sensitivity threshold; 
Fig. 2C), but patches of active cortex are spatially extended 

with an average radius of 1.39 cm for 10 cm2 patches 
(Supplementary Fig. 5). Therefore, intracranial electrode 
contacts generally record readily detectable signals from 
neural sources where a portion of the source is coincident 
with the recording electrode. However, there was large vari
ability across contacts in RS (percent of sources that are re
cordable) [Eq. (1)] as a function of distance from the 
contact, and in some cases, larger signals were seen at farther 
distances from the contact compared with closer distances 
(Fig. 2A–C). Therefore, there is a complex relationship be
tween contact location and RS that necessitates patient- 
specific extended source modelling to accurately determine 
the RS of each electrode contact.

There is uncertainty in the area and strength of the source 
used to represent epileptiform activity, and we quantified the 
recording sensitivity across a range of physiologically rele
vant source areas23 (6, 10 and 20 cm2) and strengths16

(0.16, 0.465 and 0.77 nA-m/mm2). We observed similar 
trends of RS as a function of distance across source areas 
and strengths but with substantial differences in scale where 
the strongest source (20 cm2 and 0.77 nA-m/mm2) generated 
signals >200 µV up to 3.5 cm away, while the weakest 
source (6 cm2 and 0.16 nA-m/mm2) never achieved >20% 
sensitivity for signals >200 µV (Fig. 2D).

Figure 2 RS of sEEG electrode contacts. (A) RS as a function of distance between the centre of the simulated epileptiform activity and the 
electrode contact for 10 representative contacts using a 500 µV signal detection threshold. (B) Area of RS (cortical patches) for 10 contacts (dots) 
corresponding to each trace seen in A using a 500 µV signal detection threshold. (C) Median and interquartile range of RS as a function of 
source-to-contact distance for 105 contacts in each of 12 patients (n = 1260). (D) Median RS as a function of source to contact distance for a range 
of source modelling parameters and signal detection thresholds for 105 contacts in each of 12 patients (n = 1260). The source modelling 
parameters are 10 cm2 and 0.465 nA-m/mm2 for A–C. The 20% RS threshold is highlighted as a horizontal line for C and D.
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Optimized sEEG configurations 
yielded higher RS than clinically 
implanted configurations
Because sEEG contacts can record appreciable signals from 
neural sources located a few centimetres away from the re
cording site, there is a probable overlap in the regions re
corded by multiple electrodes, and optimization can 
determine a set of sEEG trajectories with high RS. We opti
mized sEEG configurations to record from the LTL, LH 

and clinician-defined ROIs for 12 patients implanted with 
sEEG electrodes (Supplementary Table 1). The optimization 
algorithm iteratively identified electrode trajectories that 
minimized the number of regions (cortical patch sources) 
in the ROIs that were not yet recordable.

Optimized configurations exhibited far broader coverage of 
the ROI compared with clinically implanted configurations 
using the same number of electrodes (Fig. 3A and B). 
Optimized configurations had significantly higher recording 
sensitivities (2–47% higher) than implanted configurations in 

Figure 3 RS of optimized and clinically implanted electrode configurations. (A and B) Recording strength (number of electrodes that can 
record each source) across Patient 25 LTL with RS [Eq. (1)] for clinically implanted (A) and optimized (B) TL configurations with 10 electrodes at 500 µV 
threshold. Coloured cortex indicates recording strength in the ROI, grey area is outside the ROI, and contact points are shown as spheres. (C) RS as a 
function of number of implanted electrodes for Patient 25 LTL with the optimized (solid) and implanted (dashed) configurations at multiple voltage 
thresholds. Stars correspond to RS500 µV of the configurations in A and B. (D and E) RS at three thresholds for optimized (black) and clinically implanted 
(grey) electrode configurations using the same number of electrodes. All differences were significant (P < 0.02; two-tailed paired t-test for Gaussian 
samples and Wilcoxon signed rank tests for non-Gaussian samples). (D) TL-specific configurations (n = 8). (E) Configurations for full clinician-defined 
ROIs (n = 12). (F and G) Number of electrodes for clinically implanted (grey) and optimized (black) configurations with equivalent or improved RS at 
three voltage thresholds. All differences were significant (P < 0.02; two-tailed paired t-test for Gaussian samples and Wilcoxon signed rank tests for 
non-Gaussian samples). (F) TL-specific configurations (n = 8). (G) Configurations for full clinician-defined ROIs (n = 12). The box plots in all figures 
indicate the median, interquartile range, maximum and minimum values, with outside points indicating outliers. The individual tests used, P-values and test 
statistics are available in Supplementary Table 3.
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all patients for all voltage thresholds in both the LTL and the 
clinician-defined ROIs (P < 0.02; Fig. 3D and E). Further, opti
mized configurations required significantly fewer electrodes (0– 
11 fewer; P < 0.02) than implanted configurations to achieve 
the same or better RS (Fig. 3F and G). Finally, the RS of opti
mized configurations was higher than implanted configurations 
across all source areas, source strengths, signal detection thresh
olds and ROIs (Supplementary Fig. 2).

Patient-specific optimization is 
necessary
Optimized electrode configurations were more sensitive than 
those implanted clinically, and we sought to determine whether 
patient-specific optimization was necessary or whether there 
were consistent optimal configurations to map the LTL and 
LH across patients. Patient-specific electrode configurations 
yielded comparable recording sensitivities as a function of the 
number of implanted electrodes across all subjects (Fig. 4A 
and B, Supplementary Table 2). However, the sets of optimized 
electrode trajectories were not consistent across patients 
(Supplementary Fig. 3). To quantify the benefit of patient- 
specific optimization, we transferred each optimized con
figuration to all other patients and compared the recording 
sensitivities of the patient-specific and transferred configura
tions. The transferred configurations had on average 30.5% 
lower RS than the patient-specific configurations for LTL 
ROIs (Fig. 4C) and 20.1% lower RS for LH ROIs (Fig. 4D). 
Further, all of the transferred configurations had invalid 

electrodes that intersected sulci and performance would decline 
further if these were removed. Therefore, standard optimal con
figurations did not exist, and patient-specific optimization was 
required to maximize the RS of sEEG electrode configurations.

Discussion
Clinical implications
Optimized sEEG electrode configurations, based on patient- 
specific models, yielded substantial increases in RS, and this 
may lead to a more accurate delineation of the EZ, and, 
thereby, improved outcomes of surgical resection. Further, 
the optimized configurations had RS equivalent to or greater 
with fewer electrodes than the clinically implanted config
urations, and this may reduce the risk for complications, in
cluding intracranial haemorrhage.

We implemented and evaluated an optimization algorithm 
to determine implantation trajectories to map any clinician- 
defined ROI. Previous automated implantation trajectory 
planning algorithms were focused exclusively on finding 
‘safe’ trajectories that intersected an ROI and did not incorp
orate measures of RS.6-9 Our optimized electrode trajectories 
produced larger cortical coverage than manual trajectory 
planning and thus had a greater probability of recording rele
vant epileptiform activity.

The RS of optimized configurations transferred across pa
tients was inferior to the sensitivity of patient-specific 

Figure 4 Performance benefit of patient-specific optimization. (A and B) Average RS across number of electrodes for optimized LTL 
(A) and LH (B) configurations (n = 12). Shading shows standard deviation. (C and D) Reduction in RS for 11 transferred configurations compared 
with the patient-specific optimized configuration in each patient at a 500 µV threshold. The number of electrodes included in each configuration is 
the minimum number that yielded ≥75% RS in the optimized configuration. Configurations were optimized for LTL ROIs (C) and LH ROIs (D). 
The box plots describe median, maximum, minimum and interquartile range, with outside points indicating outliers.
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configurations. Differences in the RS of individual contacts 
and differences in cortical geometry between patients 
influenced RS more than the general location of the electro
des. Therefore, standard configurations that perform well 
across most patients may not exist, and optimization of 
sEEG trajectory planning requires patient-specific modelling.

Our methods to calculate the RS of any electrode configur
ation enable clinicians to visualize the coverage generated by 
their preoperative plan in comparison with the ROI. They can 
then add, remove and move electrodes to create configura
tions with high RS within the ROI. These methods transform 
the clinical use of sEEG from a discrete ad hoc sampling to an 
intelligent, data-informed mapping of the ROI.

Implications for source localization
The distances from an electrode contact that readily detect 
neural sources were similar to the spatial extents of neural 
sources (1.5 versus 1.39 cm for 10 cm2 and 500 µV threshold). 
Therefore, for large recorded signals, a portion of the neural 
source is likely to be <5 mm from the electrode contact. 
However, clinically, the size and centre of the source are 
used to design resection plans, and these source parameters 
cannot be intuitively determined because there is large vari
ability in the RS of sEEG electrode contacts as a function of dis
tance from the contact. Sources near the electrode contact may 
generate smaller signals compared with those further away, 
based on the orientation of the sources within the active tissue 
and the location of the contact. Therefore, delineating the cen
tre of an epileptic source requires the use of sEEG source local
ization algorithms.5,24-26 Even though the RS for large 
amplitude signals is limited, source analysis with these signals 
is useful and accurate for sEEG.5,26 Additionally, our RS met
ric identifies the cortical regions that can be recorded by a set of 
sEEG electrodes, and this information can be used to constrain 
localization of the EZ, which will simplify the source localiza
tion problem and thereby improve accuracy.

Neural sources >200 µV were distinguishable from noise, 
while most epileptiform signals are analysed only if they 
are >1000 µV. If only large signals are localized clinically, epi
leptic sources that generate smaller signals and are slightly far
ther from the electrodes may be missed. Recent spatiotemporal 
source localization algorithms using EEG reconstructed neural 
signals having a signal-to-noise ratio as low as 5 dB.27

Therefore, new source localization algorithms might be able 
to take advantage of lower-amplitude signals (200 µV) to local
ize neural sources that were previously not visible to the clin
ician. Further, detecting lower-amplitude signals allows 
greater RS and fewer electrodes to be used in optimized elec
trode configurations.

Modelling limitations
Quantification and optimization of RS using patient-specific 
models were computationally intensive. The full simulation 
and analysis for each patient took an average of 22 h on up 
to 400 CPUs on the Duke Computing Cluster, equivalent to 

∼278 days of gross compute time on a single CPU. Also, our 
comparisons may be limited by the manually defined ROIs. 
Our algorithm is agnostic to the preferences of ROI subregions 
that clinicians may have based on specific hypotheses of EZ lo
cation. To address this limitation, our algorithm could be used 
in a two-tiered search process to map small regions (e.g. hippo
campus) with high thresholds and then larger regions (e.g. TL) 
with lower thresholds. Alternately, our algorithm could be used 
in conjunction with manual trajectory selection. Given some 
number of clinician-defined electrode locations, we can cal
culate and exclude the initial recordable area from the user- 
defined ROI. Then, our methods can find optimal electrode 
locations to record from the remaining area.

Our work demonstrates clear performance benefits of op
timization of electrode configurations, and future implemen
tations could also include more accurate methods to avoid 
critical anatomy (vasculature, ventricles). Our methods to 
generate sulcal surfaces selected large areas in the TLs and 
likely overestimated the area around large blood vessels 
and thereby limited the search space for valid electrodes in 
the TLs. While sulcal surfaces have been used for vasculature 
avoidance,7 vasculature surfaces can be extracted using CT 
angiography. Direct avoidance of vasculature could improve 
the safety profiles of trajectories and increase the search 
space of valid electrode implantation areas. Additionally, 
while all optimized configurations satisfied conservative 
risk metrics, future optimization methods could not only 
maximize RS but also minimize the risk of configurations.7,8

Another limitation is the accuracy of our epileptic source 
models. While dipoles are appropriate source models for 
sEEG, there are errors in voltages generated by dipole models 
compared with realistic neurons within 1 mm of sources,15

where higher-order components of the current multipole 
dominate the peak of voltage spikes.28 Because our patch di
pole models extend millimetres from the central dipole, we 
may be underestimating the amplitude of signals within 
5 mm of patch centres (Fig. 2). Furthermore, there is uncer
tainty in the dipole moment density and patch area para
meters, and our approximations are based on interictal 
spike signals only and may not represent well other epilepti
form signals (i.e. high frequency oscillations and ictal 
spikes). Because most contacts could not record any signals 
>500 µV at any distance for 6 cm2 sources (Fig. 2D) and 
500 µV signals are commonly recorded in sEEG 
(Supplementary Fig. 1), epileptic sources may be larger 
and/or stronger than 6 cm2 and 0.16 nA-m/mm2, respective
ly. Our estimates of recording radius and RS are dependent 
on these parameters, and further refinements of these esti
mates would be beneficial. However, regardless of the specific 
source parameters used, we quantified RS and identified elec
trode configurations for any ROI with higher RS than clinic
ally implanted configurations. Finally, proper optimization 
of electrode trajectories is dependent on knowing the source 
parameters of the true neural source, which are currently un
known, and errors can arise from optimizing electrode trajec
tories with one set of source parameters that are different from 
the true neural source (Supplementary Fig. 4).
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