
Excited States from State-Specific Orbital-Optimized Pair Coupled
Cluster
Fábris Kossoski,* Antoine Marie, Anthony Scemama, Michel Caffarel, and Pierre-Franco̧is Loos*

Cite This: J. Chem. Theory Comput. 2021, 17, 4756−4768 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: The pair coupled cluster doubles (pCCD) method (where the excitation
manifold is restricted to electron pairs) has a series of interesting features. Among others, it
provides ground-state energies very close to what is obtained with doubly occupied
configuration interaction (DOCI), but with a polynomial cost (compared with the exponential
cost of the latter). Here, we address whether this similarity holds for excited states by exploring
the symmetric dissociation of the linear H4 molecule. When ground-state Hartree−Fock (HF)
orbitals are employed, pCCD and DOCI excited-state energies do not match, a feature that is
assigned to the poor HF reference. In contrast, by optimizing the orbitals at the pCCD level (oo-
pCCD) specifically for each excited state, the discrepancies between pCCD and DOCI decrease
by 1 or 2 orders of magnitude. Therefore, the pCCD and DOCI methodologies still provide
comparable energies for excited states, but only if suitable, state-specific orbitals are adopted. We
also assessed whether a pCCD approach could be used to directly target doubly excited states,
without having to resort to the equation-of-motion (EOM) formalism. In our Δoo-pCCD
model, excitation energies are extracted from the energy difference between separate oo-pCCD
calculations for the ground state and the targeted excited state. For a set comprising the doubly excited states of CH+, BH, nitroxyl,
nitrosomethane, and formaldehyde, we found that Δoo-pCCD provides quite accurate excitation energies, with root-mean-square
deviations (with respect to full configuration interaction results) lower than those of CC3 and comparable to those of EOM-
CCSDT, two methods with a much higher computational cost.

1. COUPLED CLUSTER FOR GROUND STATES
The coupled cluster (CC) family of methods1−5 is one of the
most successful wave function approaches for the description
of chemical systems.6−11 In particular, low-order truncated CC
methods, such as CC with singles, doubles, and perturbative
triples CCSD(T),8,12 properly describe weak correlation, while
inclusion of higher-order excitations is required for strongly
correlated systems.
In CC theory, the exponential excitation operator
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(where N is the number of electrons) acts on a (normalized)
single Slater determinant |Φ⟩ (such as Hartree−Fock (HF)) to
convert it into the exact wave function

|Ψ⟩ = |Φ⟩̂eT (3)

The nth excitation operator T̂n is defined, in the second-
quantized form, as
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where ci and ca
† are the usual annihilation and creation

operators which annihilate an electron in the occupied
spinorbital i and create an electron in the vacant spinorbital
a, respectively. From here on, i, j, ... are occupied spinorbitals;
a, b, ... denote virtual (unoccupied) spinorbitals; and p, q, r,
and s indicate arbitrary (orthonormal) spinorbitals.
The Schrödinger equation then reads

̂ |Φ⟩ = |Φ⟩̂ ̂He EeT T (5)

which can be rewritten as

̅ |Φ⟩ = |Φ⟩H E (6)

by defining the effective (non-Hermitian) similarity-trans-
formed Hamiltonian
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̅ = ̂− ̂ ̂H e HeT T (7)

Although H̅ is non-Hermitian, the similarity transformation
(7) ensures that H̅ has an energy spectrum that is identical to
the original Hermitian operator Ĥ. Besides, the exponential
structure of the wave operator ensures rigorous size extensivity
and is responsible for the comparative high accuracy of the
theory at a relatively low computational cost. The cluster
amplitudes tij...

ab... defined in eq 4 are the quantities to determine.
Truncating T̂ to double excitations, that is, T̂ = T̂1 + T̂2, with
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defines CC with singles and doubles (CCSD), and one gets the
single and double amplitudes, ti

a and tij
ab, via the amplitude

equations
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The (nonvariational) CCSD energy is evaluated by projection
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in contrast to its variational analogue
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(where the Rayleigh−Ritz variational principle has been used
to determine the energy and the amplitudes) which is a true
upper bound to the (exact) full configuration interaction (FCI)
energy EFCI.

13,14 Unfortunately, VCC is computationally
intractable. Indeed, even for truncated CC methods such as
CCSD, VCC has factorial complexity since the power series
expansion of the VCC energy (11) does not naturally truncate,
that is, does not terminate before the N-electron limit.

2. CC FOR EXCITED STATES
Excited states can be attained via the equation-of-motion
(EOM) formalism15−19 which consists in diagonalizing the H̅
matrix in the space of excited determinants. If restricted to
singly and doubly excited configurations, one obtains the
EOM-CCSD method. Loosely speaking, EOM-CCSD can be
seen as a configuration interaction (CI) with singles and
doubles (CISD) using H̅ instead of Ĥ. However, because H̅ is
not Hermitian, its matrix representation is therefore non-
symmetric, unlike the corresponding CI Hamiltonian matrix.
EOM-CCSD accurately describes single excitations20,21 but
struggles to model excited states with strong double-excitation
character due to the lack of triples and higher excitations.22,23

This issue can be cured by adding higher excitations but at a
significant computational cost.24−29

In this paper, inspired by several groups,30−32 we will focus
on an alternative to EOM-CC and target excited states within
the “ground-state” CC formalism described in Section 1 by
searching for higher-energy solutions of the conventional CC
amplitude equations (see eqs 9a and 9b). Indeed, as illustrated

below, the amplitude equations form a set of polynomial
equations in the cluster amplitudes, and they are, by definition,
highly nonlinear. Therefore, the standard ground-state CC
solution resulting from the usual self-consistent iterative
procedure is not the only solution to this set of equations.
Unfortunately, these higher roots of the CC equations (that we
label nonstandard in the following) are hardly attainable in
practice, and one must be very cautious when targeting these
solutions.
There exist three main factors that, we believe, significantly

influence the solution that is reached. First, the set of orbitals
used to build the reference Slater determinant |Φ⟩ is rather
important. Ground-state HF orbitals are usually employed, but
alternative choices are possible, and excited-state HF orbitals
[obtained via the maximum overlap method (MOM)33−36 or
more fancy algorithms37−39 to avoid variational collapse] are
getting more and more common.32,37,40,41 Second, the starting
amplitudes that are usually derived from perturbation theory
(CCSD guess amplitudes are usually taken as MP2
amplitudes) may influence the outcome of the iterative
process. Third, the type of iterative algorithms (usually based
on the Newton−Raphson method and supplemented by
Pulay’s DIIS method42−44) must also be carefully chosen so
as to target, for example, saddle points instead of minima.
Throughout the text, we refer to Newton−Raphson when the
full Jacobian (for zeros) or Hessian (for extrema) matrix is
employed and to quasi-Newton when they are provided only
approximately.
The seminal works of Živkovic,́ and Monkhorst were the

first to shed some light on the existence conditions of the
higher roots of the CC equations.45,46 Adamowicz and Bartlett
studied the attainability of some excited states of the LiH
molecule using the dominant determinants of CI expansions as
a reference state for a CCSD calculation.47 Later, Jankowski et
al. investigated the coupled cluster double (CCD) solutions of
1A1 symmetry in the H4 molecule,48−50 evidencing that some
nonstandard CC solutions are unphysical. Moreover, they
showed that the number of attainable solutions depends on the
choice of the reference determinants.50

A crucial step in the study of nonstandard CC solutions was
the introduction of the homotopy method by Kowalski and
Jankowski,51,52 which allows to find all the solutions of a set of
polynomial equations.53 The gist of this method is to create an
analytic continuation between a set of equations for which the
solutions are known at λ = 0 and the set of equations to be
solved at λ = 1. The key difficulty of the homotopy method is
to be able to follow distinctly the solutions from λ = 0 to λ = 1.
In practice, this “path tracking” is very difficult and
computationally expensive. In a subsequent series of papers,
Jankowski and Kowalski explored in more detail the structure
of the CC solutions using the same homotopy method54−57

(see also refs 58−60). In the meantime, Piecuch and Kowalski
published an extensive review along the same lines,30 and we
refer the interested reader to this instructive review for
additional information.
A few years later, the homotopy method was used to study

the Pariser−Parr−Pople model of benzene and [10]-
annulene.61,62 More recently, Mayhall and Raghavachari
pointed out that the problem of the CC solution structure
still needs to be addressed for real systems, and they
investigated the appearance of multiple CCSD solutions for
the NiH molecule.31 Finally, Lee et al. targeted doubly excited
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states and double core hole states of small molecules using
orbital-optimized non-Aufbau determinants.32

3. PAIR CCD FOR GROUND STATES
Our primary goal here is to investigate precisely the type and
nature of excited states that one can reach (and their actual
number) in the simple case of pair CCD (pCCD), which
provides a reasonable description of strong correlation for a
wide variety of systems.63−72 pCCD, which was first named the
antisymmetric product of 1-reference orbital geminals,73−80

restricts CCD to the seniority zero subspace, the subspace of
all closed-shell determinants.81 In the present context of
closed-shell systems, the seniority number is defined as the
number of unpaired electrons in a determinant.82 While
expanding the wave function in terms of the excitation rank has
been proved to be slowly convergent for strongly correlated
systems, the seniority zero subspace appears to be efficient at
describing such systems.81 Because the pCCD energy is not
invariant with respect to orbital rotations, the orbitals must be
optimized to enhance the amount of correlation energy
recovered.65,74,81

pCCD has quite interesting features because it provides, at a
mean-field computational cost (disregarding the cost of the
two-electron integral transformation), very similar ground-state
energies as doubly occupied CI (DOCI), a method with formal
exponential scaling.81,83−88 This surprising observation has
been shown to hold for both canonical HF orbitals and
energetically optimized orbitals (like pCCD, DOCI is not
invariant to the orbitals with respect to which seniority is
defined). However, the equivalence between pCCD and DOCI
is not strict mathematically speaking,63,67,89 and significant
differences have been revealed for pairing Hamiltonians in
particular.64 Here, we propose to investigate whether or not
this energetic similarity between pCCD and DOCI pertains for
excited states in the case of molecular systems.
The pCCD equations can be easily obtained from the usual

CCD equations by restricting the excitation manifold to
electron pairs, that is,

∑̂ = †T t P P
ia

ii
aa

a i
(12)

where we have defined, for convenience, the pair operators Pq
†

= cq↑
† cq↓

† . For the sake of conciseness, we denote the pair
amplitudes tii

aa as ti
a from here on as we will not consider single

excitations. By considering the similarly-transformed Hamil-
tonian H̅ defined in eq 7, we obtain
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where f p
q are elements of the Fock operator and vpq

rs = ⟨pq|rs⟩
are two-electron integrals in the spatial orbital basis written
following Dirac’s notation.
Equation 14b provides OV quadratic equations in the OV

unknown amplitudes ti
a (where O and V are the numbers of

occupied and virtual spatial orbitals, respectively). An upper
bound for the number of solutions of a system of polynomial
equations is provided by Beźout’s number, which is equal to
2OV in the present case.30,52,55,90,91 In contrast, the number of
DOCI solutions is strictly equal to the binomial coefficient

+( )O V
O .

Starting with amplitudes borrowed from second-order “pair”
Møller−Plesset

̃ =
−

t
v

f f2 2i
a ii

aa

a
a

i
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the usual approach to solve these equations employs a quasi-
Newton algorithm (where the differences of the Fock diagonal
elements are taken as an approximate Jacobian matrix) which
consists in updating the pCCD amplitudes as

← −
−

t t
r

f f2 2i
a

i
a i

a

a
a

i
i

(16)

where the pCCD residuals ri
a are given by eq 14b and are only

equal to zero at convergence. These equations can be solved in
cubic computational cost if one defines an intermediate array
to bypass the only quartic step (see the last term in eq
14b).63,76−78

Unlike CCD, the pCCD energy depends on orbital rotations
within the occupied and virtual spaces (besides the occupied−
virtual rotations). By variationally optimizing all orbitals, we
have what may be called orbital optimized pCCD (oo-pCCD).
For the sake of consistency, we briefly review how to

perform orbital optimization92,93 for a pCCD ansatz.63 To do
so, the energy has to be expressed as a functional to be
minimized, that is,

̃ = ⟨Φ| + ̂ ̅ |Φ⟩E Z H(1 ) (17)

where the de-excitation operator

∑̂ = †Z z P P
ia

a
i

i a
(18)

is introduced. Then, imposing the functional to be stationary
with respect to the z-amplitudes, that is, ∂Ẽ/∂za

i = 0,
immediately returns the equations for the t-amplitudes (eq
14b) and thereby for the pCCD energy (eq 14a). Doing the
same for the t-amplitudes, that is, ∂Ẽ/∂ti

a = 0, gives a new set of
(linear) equations to be solved for the z-amplitudes (see ref 63
for its explicit expression).
As commonly done, the orbital rotations are introduced by

an exponential unitary operator, eκ̂, which acts on the right-
and left-hand wave functions.94 The operator

∑κ κ̂ = − + −
>

↑
†

↑ ↑
†

↑ ↓
†

↓ ↓
†

↓c c c c c c c c( )
p q

pq p q q p p q q p
(19)

encompasses all unique orbital rotations, and its antihermiticity
guarantees the unitarity of eκ̂ and hence the orthogonality of
the rotated orbitals. Next, the energy is expressed as a
functional of the orbital rotation operator κ̂, that is,
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κ̃ ̂ = ⟨Φ| + ̂ ̂ |Φ⟩κ κ− ̂ − ̂ ̂ ̂E Z e e He e( ) (1 ) T T (20)

Using matrix representations, stationary points with respect to
κpq can be found with the Newton−Raphson method, which
consist in expanding the energy to the second order around κ
= 0

κ κ κ κ̃ ≈ ̃ + · + · ·†g HE E 0( ) ( )
1
2 (21)

where g is the orbital gradient and H is the orbital Hessian,
with both evaluated at κ = 0, that is,

κ κ
κ κ κ

= ∂ ̃
∂

= ∂ ̃
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κ κ= =

g
E

H
E( )

,
( )

pq
pq

pq rs
pq rs

0 0

,

2

(22)

The approximated energy functional is minimized with the
orbital rotation κ = −H−1·g, which then defines a new second-
order approximation. This procedure is repeated until the
orbitals become stationary, that is, ||g||∞ < τ, where τ is a user-
defined threshold which has been set to 10−5 a.u. in the present
study.
All the additional equations required to energetically

optimize the orbitals can be found in ref 63, particularly the
one- and two-body density matrices required to compute the
orbital gradient and Hessian matrices.

4. PCCD FOR EXCITED STATES
Excited states can be accessed with a pCCD reference via the
EOM formalism as investigated by Boguslawski.69,71,72 By
including single and paired double excitations in the EOM
excitation operator, one arrives at the EOM-pCCD + S
model.69,71 Approximately accounting for the nonpair ex-
citations provides a more sophisticated approach, the EOM-
pCCD-LCCSD method.72 More precisely, the reference is
described with a hybrid pCCD and linearized CC approach for
the nonpair excitations, while all single and double excitations
are included in the EOM excitation operator. Both methods
have been used for computing excitation energies of singly and
doubly excited states,69,71,72,95,96 and very good performance
was attained in these applications. However, excitation energies
tend to be somewhat overestimated with respect to reference
(FCI) values. This takes place because the reference wave
functions are built from orbitals optimized for the ground state
(for either the HF or pCCD wave function), thus biasing the
calculations toward this state.
One of our main goals here is to explore an alternative route

for describing doubly excited states, while still making use of
the pCCD ansatz. The idea is to perform independent, state-
specific oo-pCCD calculations for the ground state and for a
specifically targeted doubly excited state. This defines the Δoo-
pCCD method, where excitation energies are evaluated from
the energy difference between these two separate oo-pCCD
calculations. In this way, we hope that our Δoo-pCCD method
can provide a more balanced description of correlation effects
for both states and thus more accurate excitation energies
when compared with more computationally demanding CC
alternatives, such as CC3 and EOM-CCSDT.

5. COMPUTATIONAL DETAILS
A selected version of DOCI was implemented in QUANTUM

PACKAGE via a straightforward modification of the CI using a
perturbative selection made iteratively (CIPSI) algorithm97−99

where only the seniority zero determinants of the FCI space

are considered100−102 (note that the calculation of the second-
order perturbative correction is also restricted to the seniority
zero subspace100). A similar modification has been employed
by Shepherd et al.67 to perform DOCI calculations within
FCIQMC.103 In our DOCI implementation, the roots are
located with the standard Davidson diagonalization method.104

The pCCD method and the corresponding orbital optimiza-
tion algorithm were also implemented in QUANTUM PACKAGE

following ref 63. The FCI calculations presented here are also
performed with the CIPSI algorithm implemented in QUANTUM

PACKAGE.97−99,102 Solving the CC equations and optimizing the
orbitals for excited states are central to our discussion and are
thus discussed in separate sections below. Details regarding the
particular applications are also given in their respective
sections. Complementary CC3, EOM-CCSDT, and EOM-
CCSDTQ calculations were also performed with the CFOUR
package.105

6. RESULTS AND DISCUSSION

6.1. Targeting Excited States. When aiming at excited
states, important aspects regarding the algorithms for solving
the pCCD equations and the orbital optimization should be
addressed first. We illustrate these points with pCCD
calculations for the helium atom in the small 6-31G basis set
made of two basis functions, where the working equations can
be solved analytically for the single amplitude t ≡ th

l between
the highest occupied molecular orbital (HOMO) (h) and the
lowest unoccupied molecular orbital (LUMO) (l) orbitals.
The first aspect concerns the updating step of the algorithm

(see eq 16), which must be modified to properly target excited
states. Once the two canonical HF orbitals are obtained, the
pCCD amplitude t is obtained by finding the roots of a single
second-order polynomial equation

= + − − + + + −r t v f f v v v v t v t( ) (2 2 4 2 )hh
ll

l
l

h
h

hl
hl

lh
hl

ll
ll

hh
hh

ll
hh 2

(23)

which is shown in Figure 1 (top panel). The first root is
located at a small t and corresponds to the ground state (where
the HOMO orbital is doubly occupied), whereas the second
root appears at a larger t value and corresponds to the doubly

Figure 1. Ground and doubly excited states for the helium atom (6-
31G basis set), identified as the roots of the pCCD residual
polynomial (top panel) or as the stationary points of the integrated
residual polynomial (bottom panel).
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excited state (where the LUMO is doubly occupied). As
readily seen, eq 16 implicitly assumes that the derivative of the
residual with respect to t (the denominator) can be
approximated by the orbital energy differences (2f l

l − 2f h
h in

our case study). However, this quantity is independent of the
amplitudes (and usually positive for a ground-state reference).
This assumption clearly breaks down far from the ground-state
solution. At a given iteration, t will keep decreasing/increasing
when the residual is positive/negative. Therefore, one either
converges to the ground state (when the guess amplitude is
smaller than the second root) or diverges (when the guess
amplitude is larger than the second root).
The picture might become more familiar when the root-

finding problem is framed as an optimization problem, also
depicted in Figure 1 (bottom panel) for our case study. In this
framework, we look for the stationary points, but the
equivalent of eq 16 only works properly when looking for
minima. The equivalent assumption is that the second
derivative is constant and positive, even though it is actually
negative close to the maximum. Locating this additional
stationary point thus requires information about the actual
curvature.
Back to the original root-finding problem, this implies

employing the first derivative of the residual as the
denominator in eq 16. Doing so is precisely the Newton−
Raphson method. For the single-amplitude case, the correct
residual derivative is

= − − + + + −r t
t

f f v v v v v t
d ( )

d
2 2 4 2 2l

l
h
h

hl
hl

lh
hl

ll
ll

hh
hh

ll
hh

(24)

while in eq 16, only the orbital energy differences (2f l
l − 2f h

h)
are considered. When the terms involving the two-electron
integrals are accounted for, both roots depicted in Figure 1 can
be located, each one with a well-defined basin of attraction.
Therefore, the usual updating algorithm can only find the

roots where all the residual first derivatives are positive. While
this holds in general for the lowest-lying solution, it does not
for higher-lying roots. In the latter case, one should provide the
Jacobian matrix or at least some descent approximation of it.
Here, we have employed the Newton−Raphson method by
evaluating and inverting the full Jacobian matrix J of the system
of residual equations (see Eq. 14b), that is, Jia,jb = ∂ri

a/∂tj
b,

which in pCCD is given as
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Then, at each Newton−Raphson step, the pCCD amplitudes
are updated as

∑← − −Jt t r( )i
a

i
a

jb
ia jb j

b1
,

(26)

Compared with the usual quasi-Newton approach (see eq
16), the main overhead concerns storing and inverting the
Jacobian matrix. On the other hand, its computation comes
with a minor cost (and the same scaling) as all the needed

contractions are already performed for the residuals.
Alternatively, we may approximate the Jacobian matrix by its
diagonal, which requires much less memory. Making use of the
full or diagonal Jacobian matrix proved to be quite reliable
when targeting excited states besides requiring much fewer
iterations to converge.

6.2. Orbital Optimization. The orbital optimization
procedure represents the second key aspect to address when
targeting excited states. Still considering the helium atom in
the 6-31G basis set, we present in Figure 2 how the pCCD

amplitudes and energies behave as one varies the reference
orbitals, which are solely determined by the parameter κ that
rotates the HOMO and LUMO HF orbitals (the case depicted
in Figure 1 corresponds to κ = 0, where the HOMO HF orbital
is doubly occupied). Crossings between the two pCCD
solutions are observed around 44 and 134° for both t-
amplitudes and energies. In between these points, the reference
wave function resembles more the excited state, while the
ground state is reached with large t-amplitudes. The bottom
panels of Figure 2 highlight the stationary points for the pCCD
energy, where the reference orbitals are said to be optimized.
In particular, oo-pCCD and FCI deliver the same energies, as
should be for a two-electron system.63 For the ground state,
this takes place with very slight orbital mixing (κ = 0.11°),
while optimized orbitals for the doubly excited state are found
at κ = 87.6°, close to double occupation of the LUMO HF
orbital (κ = 90°). In contrast, a more significant mixing of the
HF orbitals provides a very poor reference (for either state),
and pCCD cannot recover from this.
For helium, obtaining oo-pCCD solutions is relatively

straightforward. However, as the number of orbital rotation

Figure 2. Amplitudes (top), pCCD total energies EpCCD (middle),
and the difference to the first [EFCI(1)] and second [EFCI(2)] FCI
energies (bottom) for the lower (red) and higher (blue) pCCD
solutions of the helium atom computed with the 6-31G basis set along
the single orbital rotation parameter κ between HOMO and LUMO
HF orbitals (κ = 0 represents the ground-state HF reference).
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parameters increases, one needs a reliable and hopefully black-
box optimization protocol. Optimizing orbitals for excited
states has proved to be considerably more challenging than for
the ground state. While at least one minimum exists for the
latter, the former typically appear as saddle points. Addition-
ally, a multitude of local minima and saddle points can be
expected, and a correspondence between each stationary point
and each physical state does not necessarily exist. One might
encounter more than one stationary point that actually
represents the same physical state. Alternatively, some of
them could be artifacts of the underlying (approximate) level
of theory. Furthermore, if the optimization is aimed at a given
excited state, there is no way to tell beforehand the order of the
corresponding saddle point, not even if it exists. Also, even
when we do land in such a point, there is no guarantee that it is
the only one describing the targeted state. Finally, one might
converge to the ground state when another state was intended,
and this collapse to the wrong solution should be avoided
when implementing a robust algorithm.
Our previous discussion about how to optimize t-amplitudes

for excited states (see Section 6.1) applies in the same way for
orbital optimization. When higher-lying pCCD solutions are
targeted, some information about the orbital rotation Hessian
has to be provided (even if approximate). Here, we have
computed the full orbital Hessian and gradients63 during the
entire optimization process. We also tried computing only the
diagonal Hessian, but convergence deteriorated significantly.
Evaluating and storing the full Hessian is affordable for the
cases we have considered here, and we have proceeded as such.
We further explored the DIIS algorithm,42 but this was often
unstable for excited states or favored the collapse to the ground
state. We stress, however, that the orbital optimization
protocol that we have devised here (for either ground or
excited states) is computationally feasible only for small
molecules. In view of the need to compute and store the full
Hessian, our approach would become impractical for larger
systems, where more approximate and efficient algorithms
should be employed instead. Tailored algorithms have recently
allowed orbital optimization within pCCD for ground-state
calculations of a model vitamin B12 compound,106 and
adapted versions of such algorithms might be required for
oo-pCCD calculations targeting excited states in large systems.
The orbitals were optimized with a modified Newton−

Raphson method. At each iteration, the full Hessian is
diagonalized and before solving the corresponding linear
system, the eigenvalues are modified as follows: the positive
ones are increased by a constant positive factor, which
effectively damps the next step along the corresponding
eigenvector direction. Doing the same for the negative
eigenvalues could turn one positive, thereby changing the
Hessian structure and guiding the optimization toward a
stationary point with an unintended saddle order. Therefore,
we have added a constant negative factor to the negative
eigenvalues, which damps the step while preserving the
Hessian structure. When there are more negative eigenvalues
than intended, we step along the gradients corresponding to
the largest negative ones. By carefully choosing the damping
factors, we were able to converge to a desired stationary point
for the states we have targeted here.
At this point, we summarize the complete algorithm

employed in our oo-pCCD calculations. Each calculation
starts with ground-state HF orbitals, and when doubly excited
states are concerned, the corresponding non-Aufbau occu-

pancy is employed. The pCCD equations are solved for the t-
amplitudes (eq 14b) with the Newton−Raphson algorithm.
With these converged amplitudes, the de-excitation z-
amplitudes are obtained with a single Newton−Raphson step
(since they appear linearly63). Both sets of amplitudes as well
as the one- and two-electron integrals are needed to compute
one- and two-body density matrices. These, in turn, are used to
compute orbital gradient and Hessian, which provide the
orbital rotation parameters according to our modified
Newton−Raphson algorithm. This defines a new reference
wave function, and the process repeats iteratively until
convergence.

6.3. Hydrogen Chains. As a first example, we consider the
linear H4 molecule in a minimal basis (STO-6G), and we
compute the ground- and excited-state energies of this system
at the pCCD and DOCI levels as a function of the distance
between the (equally spaced) hydrogen atoms RH−H. This
corresponds to a system with four electrons in four spatial
orbitals with the respective symmetries σg, σu, σg*, and σu* (in
ascending energies).
We have considered two scenarios. In the first (top panel of

Figure 3), canonical HF orbitals were employed throughout,
and both pCCD and DOCI potential energy curves represent
different solutions of their corresponding equations. In the
second scenario (bottom panel of Figure 3), oo-pCCD
calculations were performed for each targeted state, and the
same set of optimized orbitals was used to find the matching
DOCI root. In order to help our discussion, the differences
between pCCD and DOCI energies (with and without orbital
optimization) are also shown in Figure 4.
The obtained pCCD optimized orbitals are shown in the

Supporting Information. Even though they were allowed to
break spatial symmetry, only symmetry-preserving orbitals
were found for the excited states. This does not constitute a
limitation for our purpose of comparing the two methods, yet
we might still be missing possible symmetry-broken oo-pCCD
solutions.107,108 In particular, the ground-state orbital Hessian
has one negative eigenvalue between 1.4a0 and 2.7a0, which
indicates the existence of a lower-lying solution with
symmetry-broken orbitals.109−112 Similarly, the number of
negative Hessian eigenvalues changes from 3 to 2 when
stretching beyond 2.3−2.4a0 for the second excited state and
from 6 to 5 above 1.9−2.0a0 for the fifth excited state. In
contrast, the index is constant for the first, third, and fourth
excited states (2, 3, and 3, respectively). While symmetry-
broken solutions describing these doubly excited states might
still exist, they were not found, suggesting that the potential
number of multiple solutions for this small basis set might not
be too large.
For the same set of orbitals, pCCD and DOCI ground-state

energies are very close, as expected. We notice, however, that
orbital optimization improves the comparison at more
stretched geometries (see the top left panel of Figure 4).
Our results regarding the excited states are much more
interesting, revealing several important features about the
comparison between pCCD and DOCI. In the first scenario
(ground-state HF reference), the striking similarity between
pCCD and DOCI energies does not hold for excited states.
While the potential energy curves still share a common
behavior, significant energy differences are observed by as
much as 1 hartree for the quadruply excited state, (σg*)

2(σu*)
2.

Furthermore, the first [(σg)
2(σg*)

2] and the third [(σg)
2(σu*)

2]
doubly excited states can be described by two distinct pCCD
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solutions each. For the lower-lying one, there are two real
solutions close in energy below 1.7a0, where they merge into a
complex conjugate pair. The branching point for the higher-
lying state is found at 3.3a0, but here, the complex solutions are
found at shorter distances.
When orbitals are variationally optimized for each state at

the pCCD level (see the bottom panel of Figure 3), the
scenario is completely different. Now, oo-pCCD and DOCI
levels of theory provide quite similar energies for all doubly
(and quadruply) excited states, with visually indistinguishable
potential energy curves (note that the DOCI calculations are
also performed with the pCCD optimized orbitals in this case,
such that the two methods are being compared for the same
set of orbitals. Another line of comparison would consider
separate orbital optimizations for pCCD and DOCI. However,
doing so for the latter would be much more computationally
demanding, and we did not explore this scenario here). For all
states, oo-pCCD represents a massive improvement with
respect to pCCD with HF orbitals. The average deviations to
the corresponding DOCI results drop by 1 or 2 orders of
magnitude, while the maximum deviation amounts to 0.02
hartree, compared with 1 hartree in the case of HF orbitals

(see Figure 4). Not only this, but orbital optimization
eliminates the double (and complex) solutions previously
discussed for the first doubly excited state. While such
solutions could arguably be assigned as unphysical, we see
that their troubling behavior is as an artifact of the HF
reference. Once this constraint is removed and the orbitals are
allowed to relax, only single-valued real solutions appear. In
general, we thus expect that oo-pCCD can locate physical
states where nonoptimized pCCD fails or gives more dubious
results.
Our findings can be explained as follows: the deficiencies of

the first set of pCCD calculations can be traced back to the
ground-state HF orbitals, which represents a poor reference
when excited states are concerned. Of course, the argument
applies for both pCCD and DOCI, but it is more serious for
the former as it lacks higher-order connected excitations (most
importantly the connected quadruple excitations). In partic-
ular, these missing excitations account for the largely
overestimated pCCD energies associated with the quadruply
excited state. By optimizing the orbitals at the pCCD level, the
reference now provides a qualitatively correct description of
each targeted state. In this sense, more electronic correlation is
recovered with the paired double excitations for the optimized
reference, in comparison with a ground-state HF reference.
Therefore, higher-order excitations lose importance in oo-
pCCD, and the computed energies are very close to the DOCI
results.

Figure 3. Ground- and excited-state energies of the linear H4
molecule in the STO-6G basis obtained with various methods as
functions of the distance between the (equally spaced) hydrogen
atoms RH−H. On the top panel, pCCD (dashed lines) and DOCI
(markers) energies, both computed with ground-state HF orbitals
(gray dashed lines denote the real part of the complex solutions), are
shown. On the bottom panel, oo-pCCD (solid lines) and DOCI
(markers) energies, both computed with state-specific optimized
orbitals, are shown. Raw data are provided in the Supporting
Information.

Figure 4. Differences between oo-pCCD and DOCI energies, both
computed with ground-state HF (dashed lines) and state-specific
optimized orbitals (solid lines), for the linear H4 molecule in the
STO-6G basis as functions of the distance between the (equally
spaced) hydrogen atoms RH−H. Gray dashed lines correspond to the
regions where the pCCD solutions become complex (the real part is
used to compute the difference).
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We also found that DOCI is much less sensitive to the
orbital choice than pCCD. The latter energies change by 0.17
hartree in average, compared with the 0.02 hartree difference
observed in the former. Again, this can be understood from the
lack of higher-order connected excitations in pCCD, which in
turn would be partially accounted for by orbital optimization.
On the other hand, all paired excitations are present in DOCI
and hence less dependence on the reference.
We notice, however, that oo-pCCD also faced convergence

problems when stretching the H−H bonds beyond a certain
point. Either the pCCD equations failed to converge for the
targeted excited state or the orbital optimization leads to a
solution representing another state. This took place for all
states, typically at shorter distances as we moved higher in
energy. It could be that a stationary point would only be found
if the orbitals had been allowed to become complex, but we did
not explore this possibility here. Instead, this could be a
genuine limitation of projected pCCD in describing physical
states at geometries with stronger static correlation. Finally,
symmetry-broken orbitals could perhaps be required at larger
bond lengths, but no such solutions were found for the excited
states.
6.4. Larger Molecules. The goal of this section is to

showcase that Δoo-pCCD can provide reliable excitation
energies for more realistic molecules. An exhaustive compar-
ison including a larger set of systems and employing different
basis sets is beyond the scope of this work. Here, we have
considered five molecules with well-known doubly excited
states, namely, CH+, BH, nitroxyl (HNO), nitrosomethane
(H3C−NO), and formaldehyde (H2CO). Following pre-
vious studies, we employed a bond length of 2.137 13a0 for
CH+25,72,113,114 and of 2.3289a0 for BH.

115 For the remaining
molecules, the geometries reported in ref 22 were also adopted
here. The frozen-core approximation and the 6-31+G(d) basis
set (with spherical Gaussian functions) were employed
throughout. For the particular case of CH+, we have also
considered the basis set presented in ref 113 and employed in
subsequent studies.25,72,114

The set of pCCD optimized orbitals for both ground and
doubly excited states can be found in the Supporting
Information. These orbitals have been allowed to fully relax
and break the molecular point group symmetry, which took
place for the doubly excited states of nitroxyl, nitrosomethane,
and formaldehyde as well as for the ground state of the latter
two. Doing so can further lower the energy at the expense of
losing the spatial symmetry of the wave function. We have tried
different orbital guesses and damping factors for the orbital
optimization, and no other stationary symmetry-broken
orbitals were found, suggesting that the potential problem of
multiple solutions would be less serious for the cases studied
here. An inspection of the orbitals confirms that we describe
the 31Σ+ and 21Σ+ doubly excited states of BH and CH+,
respectively, in line with previous results.25,72,113−115 Due to
the symmetry-broken nature of the orbitals in larger molecules,
a precise assignment of the excitation becomes less
straightforward but possible nonetheless. By analyzing the
differences in the orbital densities of ground and excited states,
we can infer the (n)2 → (π*)2 excitations of formaldehyde,
nitroxyl, and nitrosomethane, also in consistency with the
existing assignments.22

Table 1 summarizes the excitation energies for the first
excited states with a dominant double-excitation character.
While a detailed analysis comprising several levels of theory

can be found elsewhere,22 here, the comparison is focused on
our pCCD calculations and EOM-CC-based methodologies,
having the (extrapolated) FCI as the reference result.22 For
CH+, BH, and nitroxyl, we managed to find higher-lying
solutions of the pCCD amplitude equations, when considering
ground-state HF orbitals as reference orbitals. These solutions
were assigned to the targeted doubly excited states and are
labeled in Table 1 as HF-pCCD. This was achieved by using a
very large guess amplitude (typically in the range of ∼102 to
103) for the intended excitation. At convergence, many other
amplitudes attain absolute values larger than 1, yet the one
representing the dominant excitation remains the largest.
Higher-lying solutions were also found for nitrosomethane and
formaldehyde but at significantly higher energies, and it is not
clear if they provide a descent representation of the targeted
excited state. Overall, the performance of HF-pCCD is quite

Table 1. Vertical Excitation Energies ΔE (and Their
Corresponding Deviation ΔΔE with Respect to the FCI
Reference Energies) Computed with Various Methods for
the First Doubly Excited States of Five Moleculesa

molecule method ΔE (eV) ΔΔE (eV)

CH+b HF-pCCD 7.74 −0.81
Δoo-pCCD 8.36 −0.19
FCIc 8.55 0
EOM-CCSDTd 8.62 0.07
EOM-CCSDtd 8.64 0.09
EOM-oo-pCCD-LCCSDe 8.84 0.29
EOM-pCCD-LCCSDe 7.61 −0.94
CC3f 8.78 0.23

CH+ HF-pCCD 7.90 −0.61
Δoo-pCCD 8.32 −0.19
FCI 8.51 0
EOM-CCSDTQ 8.52 0.01
EOM-CCSDT 8.59 0.08
CC3 8.75 0.24

BH HF-pCCD 15.89 8.78
Δoo-pCCD 7.35 0.24
FCI 7.11 0
EOM-CCSDTQ 7.12 0.01
EOM-CCSDT 7.15 0.04
CC3 7.30 0.19

HNO HF-pCCD 5.53 1.02
Δoo-pCCD 4.49 −0.02
FCIg 4.51 0
EOM-CCSDTQg 4.54 0.03
EOM-CCSDTg 4.81 0.30
CC3g 5.28 0.77

H3C−NO Δoo-pCCD 4.66 −0.20
FCIg 4.86 0
EOM-CCSDTg 5.26 0.40
CC3g 5.73 0.87

H2CO Δoo-pCCD 11.26 0.40
FCIg 10.86 0
EOM-CCSDTQg 10.87 0.01
EOM-CCSDTg 11.10 0.24
CC3g 11.49 0.63

aThe 6-31+G(d) basis set was considered throughout, except for the
first entry, where the basis set was presented elsewhere.113 Total
energies are provided in the Supporting Information. bBasis set taken
from ref 113. cResults from ref 113. dResults from ref 114. eResults
from ref 72. fResults from ref 25. gResults from ref 22.
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erratic, with surprisingly decent results for CH+ and nitroxyl
but qualitatively wrong ones for BH, nitrosomethane, and
formaldehyde. This probably reflects the inadequacy of using
ground-state HF orbitals as a reference for describing such
states.
However, one of the key insights of the present work is that

this issue can be largely eliminated by state-specific orbital
optimization. The results labeled as Δoo-pCCD in Table 1
stem from the energy difference between two separate oo-
pCCD calculations, one for the intended doubly excited state
and the other for the ground state. Not only this method
correctly locates all the targeted states but also the excitation
energies also compare very favorably with FCI. For the set of
molecules surveyed with the 6-31+G(d) basis set, the mean
absolute error (MAE) is 0.21 eV, the root-mean-square error
(RMSE) is 0.24 eV, and the mean signed error (MSE) is 0.05
eV. Δoo-pCCD is thus considerably more accurate than CC3
(an MAE and an MSE of 0.54 eV and an RMSE of 0.61 eV)
and comparable to EOM-CCSDT (an MAE and an MSE of
0.21 eV and an RMSE of 0.25 eV). Importantly, the excitation
energies are not systematically over- or underestimated with
respect to the reference values. In contrast, they tend to be
overestimated with EOM-CC methodologies not only for
doubly excited states but also for singly excited states.
The above observations regarding accuracy and precision of

Δoo-pCCD and EOM-CC methods can be understood based
on how the reference wave functions are described and how
correlation effects are included in each case. In EOM-CC, the
HF Slater determinant serves as the reference for both ground
and doubly excited states, thereby creating a bias toward the
former. In addition, excitations are introduced exponentially in
the cluster operator but linearly in the EOM excitation
operator, further favoring the ground state. All in all, electronic
correlation is quickly (in the sense of the excitation degree)
introduced for the ground state, while the excited states are still
recovering from its poor HF reference. This is most critical in
the case of EOM-CCSD, which largely overestimates (by ∼1
eV or more) excitation energies of doubly excited states.114

Higher orders of excitation are needed in order to obtain more
accurate results, yet still they tend to approach the reference
values from above.
The situation for Δoo-pCCD is quite different. Each state

has its own reference, with orbitals variationally optimized for a
pCCD wave function. We notice that this goes beyond an
MOM-based pCCD calculation, where the excited-state
optimized orbitals would have mean-field quality. Another
key distinction is that Δoo-pCCD provides a unified
description of each state, while EOM-based formalisms rely
on a formal distinction between them. Therefore, correlation
effects should be accounted for at the same pace, regardless of
the targeted state. This is exactly what we observe as excitation
energies lie either above or below the reference values. This
implies that the correlation energy of both ground and excited
states is recovered in a balanced way. Furthermore, paired
double excitations already account for important electronic
correlation of the doubly excited states, given that their orbitals
have been optimized. This explains the comparable perform-
ances of Δoo-pCCD and EOM-CCSDT. In the latter, lower-
order excitations would account for orbital relaxation, while
actual correlation would only be introduced with the higher-
order terms.
Recent studies with state-specific, orbital-optimized density

functional theory have also pointed out encouraging

results.37,40,41 RMSEs lie in the range of 0.15−0.65 eV,
depending on the choice of the functional. Bearing in mind the
limited set of molecules we explore here, the accuracy of Δoo-
pCCD would be comparable to that of the best-performing
functional (B97M-V).37,40

While having a dominant doubly excited character, the states
that we have surveyed also present some single-excitation
contribution, however not surpassing 5% based on CC3
calculations.22 As long as this percentage is small, the lack of
single excitations is not expected to greatly affect the
performance of the Δoo-pCCD method. Furthermore, part
of this contribution would not correspond to a truly singly
excited character but rather to orbital relaxation in the excited
state, which in turn is accounted for in Δoo-pCCD. It remains
to be seen how the method performs for doubly excited states
that have a more considerable singly excited character, as in
butadiene and benzene.22,35,36

7. CONCLUSIONS
We have explored excited-state solutions of the pCCD method,
a version of CCD where the cluster operator is restricted to
paired double excitations. For the helium atom in the 6-31G
basis set, we have discussed key aspects regarding the solutions
of pCCD and orbital optimization. In particular, we have
shown that the Jacobian matrix of the CC residual equations
has to be provided (even if approximately) when aiming for
excited states. Similarly, the orbital rotation Hessian is needed
when performing orbital optimization for excited states.
Our first goal was to establish a connection between pCCD

and DOCI for excited states. For this, we have investigated the
symmetric dissociation of the linear H4 molecule with the
STO-6G basis set as a function of the distance between the
hydrogen atoms. When the reference is described with ground-
state HF orbitals, excited-state solutions of pCCD and DOCI
no longer match, in contrast to the ground-state case. Such
deviations arise because pCCD struggles more than DOCI in
recovering electronic correlation due to the missing higher-
order connected excitations in the former. However, these
higher-order excitations only become important because of the
unsuitable starting point provided by the ground-state HF
wave function. By variationally optimizing the orbitals (at the
pCCD level) for a targeted doubly excited state, the reference
is significantly improved, and higher-order excitations become
much less relevant. Therefore, when state-specific optimized
orbitals were employed, pCCD and DOCI methodologies
delivered much closer excited-state energies.
The second goal was to probe the performance of state-

specific orbital-optimized pCCD (or Δoo-pCCD) in describ-
ing excited states with strong double-excitation character. We
have surveyed a set of five molecules with well-characterized
doubly excited states. With ground-state HF orbitals, higher
roots of pCCD either provide inaccurate excitation energies or
fail to locate the targeted state at reasonable energies. Once
again, the problem lies on the reference function, rather than
on pCCD itself. Orbital optimization brings a dramatic
improvement as excitation energies become in much better
agreement to the reference (FCI) values, with a performance
superior to CC3 and similar to EOM-CCSDT.
Thus, Δoo-pCCD might be considered as an alternative and

accurate option for targeting doubly excited states. Although
studies on a larger set of molecules and with other basis sets
would be recommended, the current initial results on Δoo-
pCCD are quite promising. Of course, additional challenges
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might appear when one considers more chemically challenging
situations (larger systems, strong correlation, etc.). Further-
more, it remains to be seen how the method would perform
when one employs state-specific HF orbitals instead of the
more expensive optimized orbitals at the pCCD level, as has
been done here. We hope to report further on these aspects in
the near future.
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(2) Paldus, J.; Čízěk, J.; Shavitt, I. Correlation Problems in Atomic
and Molecular Systems. IV. Extended Coupled-Pair Many-Electron
Theory and Its Application to the BH3 Molecule. Phys. Rev. A 1972, 5,
50−67.

(3) Crawford, T. D.; Schaefer, H. F. Reviews in Computational
Chemistry; John Wiley & Sons, Ltd., 2000; pp 33−136.
(4) Bartlett, R. J.; Musiał, M. Coupled-Cluster Theory in Quantum
Chemistry. Rev. Mod. Phys. 2007, 79, 291−352.
(5) Shavitt, I.; Bartlett, R. J. Many-Body Methods in Chemistry and
Physics: MBPT and Coupled-Cluster Theory; Cambridge Molecular
Science; Cambridge University Press: Cambridge, 2009.
(6) Pople, J. A.; Krishnan, R.; Schlegel, H. B.; Binkley, J. S. Electron
Correlation Theories and Their Application to the Study of Simple
Reaction Potential Surfaces. Int. J. Quantum Chem. 1978, 14, 545−
560.
(7) Bartlett, R. J.; Purvis, G. D. Many-body perturbation theory,
coupled-pair many-electron theory, and the importance of quadruple
excitations for the correlation problem. Int. J. Quantum Chem. 1978,
14, 561−581.
(8) Purvis, G. D.; Bartlett, R. J. A Full Coupled-cluster Singles and
Doubles Model: The Inclusion of Disconnected Triples. J. Chem.
Phys. 1982, 76, 1910−1918.
(9) Scuseria, G. E.; Scheiner, A. C.; Lee, T. J.; Rice, J. E.; Schaefer,
H. F. The Closed-shell Coupled Cluster Single and Double Excitation
(CCSD) Model for the Description of Electron Correlation. A
Comparison with Configuration Interaction (CISD) Results. J. Chem.
Phys. 1987, 86, 2881−2890.
(10) Scuseria, G. E.; Janssen, C. L.; Schaefer, H. F. An Efficient
Reformulation of the Closed-shell Coupled Cluster Single and Double
Excitation (CCSD) Equations. J. Chem. Phys. 1988, 89, 7382−7387.
(11) Scuseria, G. E.; Schaefer, H. F. Is Coupled Cluster Singles and
Doubles (CCSD) More Computationally Intensive than Quadratic
Configuration Interaction (QCISD)? J. Chem. Phys. 1989, 90, 3700−
3703.
(12) Raghavachari, K.; Trucks, G. W.; Pople, J. A.; Head-Gordon, M.
A Fifth-Order Perturbation Comparison of Electron Correlation
Theories. Chem. Phys. Lett. 1989, 157, 479−483.
(13) Bartlett, R. J.; Noga, J. The Expectation Value Coupled-Cluster
Method and Analytical Energy Derivatives. Chem. Phys. Lett. 1988,
150, 29−36.
(14) Van Voorhis, T.; Head-Gordon, M. Benchmark Variational
Coupled Cluster Doubles Results. J. Chem. Phys. 2000, 113, 8873−
8879.
(15) Rowe, D. J. Equations-of-Motion Method and the Extended
Shell Model. Rev. Mod. Phys. 1968, 40, 153−166.
(16) Monkhorst, H. J. Calculation of properties with the coupled-
cluster method. Int. J. Quantum Chem. 1977, 12, 421−432.
(17) Koch, H.; Jensen, H. J. r. A.; Jo/rgensen, P.; Helgaker, T.
Excitation Energies from the Coupled Cluster Singles and Doubles
Linear Response Function (CCSDLR). Applications to Be, CH + ,
CO, and H 2 O. J. Chem. Phys. 1990, 93, 3345−3350.
(18) Stanton, J. F.; Bartlett, R. J. The equation of motion coupled-
cluster method. A systematic biorthogonal approach to molecular
excitation energies, transition probabilities, and excited state proper-
ties. J. Chem. Phys. 1993, 98, 7029−7039.
(19) Koch, H.; Kobayashi, R.; Sanchez de Merás, A.; Jorgensen, P.
Calculation of size-intensive transition moments from the coupled
cluster singles and doubles linear response function. J. Chem. Phys.
1994, 100, 4393−4400.
(20) Loos, P.-F.; Scemama, A.; Blondel, A.; Garniron, Y.; Caffarel,
M.; Jacquemin, D. A Mountaineering Strategy to Excited States:
Highly Accurate Reference Energies and Benchmarks. J. Chem. Theory
Comput. 2018, 14, 4360.
(21) Loos, P.-F.; Lipparini, F.; Boggio-Pasqua, M.; Scemama, A.;
Jacquemin, D. A Mountaineering Strategy to Excited States: Highly-
Accurate Energies and Benchmarks for Medium Sized Molecules. J.
Chem. Theory Comput. 2020, 16, 1711−1741.
(22) Loos, P.-F.; Boggio-Pasqua, M.; Scemama, A.; Caffarel, M.;
Jacquemin, D. Reference Energies for Double Excitations. J. Chem.
Theory Comput. 2019, 15, 1939−1956.
(23) Loos, P.-F.; Scemama, A.; Jacquemin, D. The Quest for Highly
Accurate Excitation Energies: A Computational Perspective. J. Phys.
Chem. Lett. 2020, 11, 2374−2383.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c00348
J. Chem. Theory Comput. 2021, 17, 4756−4768

4765

https://pubs.acs.org/doi/10.1021/acs.jctc.1c00348?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.1c00348/suppl_file/ct1c00348_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.1c00348/suppl_file/ct1c00348_si_002.txt
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.1c00348/suppl_file/ct1c00348_si_003.txt
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Fa%CC%81bris+Kossoski"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-1627-7093
https://orcid.org/0000-0002-1627-7093
mailto:fkossoski@irsamc.ups-tlse.fr
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Pierre-Franc%CC%A7ois+Loos"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-0598-7425
https://orcid.org/0000-0003-0598-7425
mailto:loos@irsamc.ups-tlse.fr
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Antoine+Marie"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Anthony+Scemama"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-4955-7136
https://orcid.org/0000-0003-4955-7136
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Michel+Caffarel"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00348?ref=pdf
https://doi.org/10.1063/1.1727484
https://doi.org/10.1063/1.1727484
https://doi.org/10.1063/1.1727484
https://doi.org/10.1103/physreva.5.50
https://doi.org/10.1103/physreva.5.50
https://doi.org/10.1103/physreva.5.50
https://doi.org/10.1103/revmodphys.79.291
https://doi.org/10.1103/revmodphys.79.291
https://doi.org/10.1002/qua.560140503
https://doi.org/10.1002/qua.560140503
https://doi.org/10.1002/qua.560140503
https://doi.org/10.1002/qua.560140504
https://doi.org/10.1002/qua.560140504
https://doi.org/10.1002/qua.560140504
https://doi.org/10.1063/1.443164
https://doi.org/10.1063/1.443164
https://doi.org/10.1063/1.452039
https://doi.org/10.1063/1.452039
https://doi.org/10.1063/1.452039
https://doi.org/10.1063/1.455269
https://doi.org/10.1063/1.455269
https://doi.org/10.1063/1.455269
https://doi.org/10.1063/1.455827
https://doi.org/10.1063/1.455827
https://doi.org/10.1063/1.455827
https://doi.org/10.1016/s0009-2614(89)87395-6
https://doi.org/10.1016/s0009-2614(89)87395-6
https://doi.org/10.1016/0009-2614(88)80392-0
https://doi.org/10.1016/0009-2614(88)80392-0
https://doi.org/10.1063/1.1319643
https://doi.org/10.1063/1.1319643
https://doi.org/10.1103/revmodphys.40.153
https://doi.org/10.1103/revmodphys.40.153
https://doi.org/10.1002/qua.560120850
https://doi.org/10.1002/qua.560120850
https://doi.org/10.1063/1.458815
https://doi.org/10.1063/1.458815
https://doi.org/10.1063/1.458815
https://doi.org/10.1063/1.464746
https://doi.org/10.1063/1.464746
https://doi.org/10.1063/1.464746
https://doi.org/10.1063/1.464746
https://doi.org/10.1063/1.466321
https://doi.org/10.1063/1.466321
https://doi.org/10.1021/acs.jctc.8b00406?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.8b00406?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.9b01216?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.9b01216?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.8b01205?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.0c00014?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.0c00014?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c00348?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(24) Kucharski, S. A.; Bartlett, R. J. Recursive Intermediate
Factorization and Complete Computational Linearization of the
Coupled-Cluster Single, Double, Triple, and Quadruple Excitation
Equations. Theor. Chim. Acta 1991, 80, 387−405.
(25) Christiansen, O.; Koch, H.; Jo/rgensen, P. Response Functions
in the CC3 Iterative Triple Excitation Model. J. Chem. Phys. 1995,
103, 7429−7441.
(26) Kucharski, S. A.; Włoch, M.; Musiał, M.; Bartlett, R. J. Coupled-
Cluster Theory for Excited Electronic States: The Full Equation-Of-
Motion Coupled-Cluster Single, Double, and Triple Excitation
Method. J. Chem. Phys. 2001, 115, 8263−8266.
(27) Kowalski, K.; Piecuch, P. The Active-Space Equation-of-Motion
Coupled-Cluster Methods for Excited Electronic States: Full
EOMCCSDt. J. Chem. Phys. 2001, 115, 643−651.
(28) Hirata, S.; Bartlett, R. J. High-Order Coupled-Cluster
Calculations through Connected Octuple Excitations. Chem. Phys.
Lett. 2000, 321, 216−224.
(29) Hirata, S. Higher-Order Equation-of-Motion Coupled-Cluster
Methods. J. Chem. Phys. 2004, 121, 51−59.
(30) Piecuch, P.; Kowalski, K. Computational Chemistry: Reviews of
Current Trends; Computational Chemistry: Reviews of Current Trends;
World Scientific, 2000; Vol. 5, pp 1−104.
(31) Mayhall, N. J.; Raghavachari, K. Multiple Solutions to the
Single-Reference CCSD Equations for NiH. J. Chem. Theory Comput.
2010, 6, 2714−2720.
(32) Lee, J.; Small, D. W.; Head-Gordon, M. Excited States via
Coupled Cluster Theory without Equation-of-Motion Methods:
Seeking Higher Roots with Application to Doubly Excited States
and Double Core Hole States. J. Chem. Phys. 2019, 151, 214103.
(33) Gilbert, A. T. B.; Besley, N. A.; Gill, P. M. W. Self-Consistent
Field Calculations of Excited States Using the Maximum Overlap
Method (MOM). J. Phys. Chem. A 2008, 112, 13164.
(34) Barca, G. M. J.; Gilbert, A. T. B.; Gill, P. M. W. Hartree−Fock
description of excited states of H2. J. Chem. Phys. 2014, 141, 111104.
(35) Barca, G. M. J.; Gilbert, A. T. B.; Gill, P. M. W. Simple Models
for Difficult Electronic Excitations. J. Chem. Theory Comput. 2018, 14,
1501.
(36) Barca, G. M. J.; Gilbert, A. T. B.; Gill, P. M. W. Excitation
Number: Characterizing Multiply Excited States. J. Chem. Theory
Comput. 2018, 14, 9.
(37) Hait, D.; Head-Gordon, M. Excited State Orbital Optimization
via Minimizing the Square of the Gradient: General Approach and
Application to Singly and Doubly Excited States via Density
Functional Theory. J. Chem. Theory Comput. 2020, 16, 1699−1710.
(38) Levi, G.; Ivanov, A. V.; Jónsson, H. Variational Density
Functional Calculations of Excited States via Direct Optimization. J.
Chem. Theory Comput. 2020, 16, 6968−6982.
(39) Levi, G.; Ivanov, A. V.; Jónsson, H. Variational calculations of
excited states via direct optimization of the orbitals in DFT. Faraday
Discuss. 2020, 224, 448−466.
(40) Carter-Fenk, K.; Herbert, J. M. State-Targeted Energy
Projection: A Simple and Robust Approach to Orbital Relaxation of
Non-Aufbau Self-Consistent Field Solutions. J. Chem. Theory Comput.
2020, 16, 5067−5082.
(41) Hait, D.; Head-Gordon, M. Orbital Optimized Density
Functional Theory for Electronic Excited States. Phys. Chem. Lett.
2021, 12, 4517.
(42) Pulay, P. Convergence Acceleration of Iterative Sequences. the
Case of Scf Iteration. Chem. Phys. Lett. 1980, 73, 393−398.
(43) Pulay, P. ImprovedSCF Convergence Acceleration. J. Comput.
Chem. 1982, 3, 556−560.
(44) Scuseria, G. E.; Lee, T. J.; Schaefer, H. F., III Accelerating the
convergence of the coupled-cluster approach: The use of the DIIS
method. Chem. Phys. Lett. 1986, 130, 236−239.
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