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Abstract: Recent advances in time series classification (TSC) have exploited deep neural networks
(DNN) to improve the performance. One promising approach encodes time series as recurrence plot
(RP) images for the sake of leveraging the state-of-the-art DNN to achieve accuracy. Such an approach
has been shown to achieve impressive results, raising the interest of the community in it. However,
it remains unsolved how to handle not only the variability in the distinctive region scale and the length
of sequences but also the tendency confusion problem. In this paper, we tackle the problem using
Multi-scale Signed Recurrence Plots (MS-RP), an improvement of RP, and propose a novel method
based on MS-RP images and Fully Convolutional Networks (FCN) for TSC. This method first
introduces phase space dimension and time delay embedding of RP to produce multi-scale RP
images; then, with the use of asymmetrical structure, constructed RP images can represent very long
sequences (>700 points). Next, MS-RP images are obtained by multiplying designed sign masks
in order to remove the tendency confusion. Finally, FCN is trained with MS-RP images to perform
classification. Experimental results on 45 benchmark datasets demonstrate that our method improves
the state-of-the-art in terms of classification accuracy and visualization evaluation.

Keywords: time series classification; multi-scale signed recurrence plots; fully convolutional networks

1. Introduction

In the era of big data, the real world produces a huge number of time series worth being analyzed.
Among all the time series analyzing tasks, classification is likely to be the most fundamental one,
which predicts the associated category labels of sequences to be investigated. Due to the development
and maturity of sensor technology, time series classification (TSC) problems arise across a wide range
of domains, e.g., action recognition, medical diagnosis, natural language processing, mechinery fault
diagnosis, electrical energy monitoring [1–3], etc., and have received more and more attention.

In the literature, TSC approaches fall into three popular categories: feature based, distance based
and ensemble based. Feature-based approaches extract representative features from time series,
and then use a classifier to map each of them to a category [4–10]. Distance-based approaches
measure the elastic distance between the testing and training set, and assign a label to the testing
based on the distance similarity [11–15]. Ensemble based methods integrate different features
and multiple classifiers in one framework, thus obtaining a complementary effect and better
classification accuracy [16,17]. Recent years have witnessed the great success of deep neural networks
(DNN) in various domains. In particular, DNN-based methods have also been explored in TSC and show
inspiring advancement. Reference [18] proposes a multi-scale Convolutional Neural Network (CNN),

Sensors 2020, 20, 3818; doi:10.3390/s20143818 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-5919-5661
http://dx.doi.org/10.3390/s20143818
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/14/3818?type=check_update&version=2


Sensors 2020, 20, 3818 2 of 17

which first preprocesses the raw data through down-sampling, smooth filtering, and slicing up to
perform data augmentation; then, a traditional CNN is applied. Reference [19] proposes Multilayer
Perceptrons (MLP), Fully Convolutional Networks (FCN), and Residual Networks (ResNet) as baseline
architectures for TSC, which are the most traditional forms of DNNs. It is worth mentioning that
FCN and ResNet are regarded as the best DNN-based classifiers for TSC [3]. Reference [20] proposes
a multilevel Wavelet Decomposition Network, which first decomposes a time series into different
frequencies of subsequences through a fine-tuned Daubechies 4 Wavelet; these subsequences are then
handled with FCN and ResNet for classification. This work achieves very strong performance among
existing DNN-based methods. Reference [21] augments FCN with Attention LSTM (ALSTM) module.
ALSTM exhibits temporal information and obviously supplements the performance of FCN. This work
achieves state-of-the-art accuracy among existing DNN-based methods.

To make better use of the outstanding classification power of CNN, some recent works
first encode time-series as images, and then transform TSC problem to image classification.
With this way, the distinctive regions of a sequence are magnified and the temporal correlations
are constructed, thus an improvement in accuracy can be achieved. References [22–24] assemble
Gramian Angular Fields (GAF) and Markov Transition Fields (MTF) of sequences in multi-channel
images, then train a Tiled CNN on these images for classification. Reference [25] transforms
the acceleration data and angular velocity data to multi-channel GAF images respectively, and then
utilizes a multi-branch residual network to fuse these images for human activity recognition. Similarly,
reference [26] encodes time series as images through Recurrence Plots (RP), and then trains a CNN
on RP images to perform classification. This work achieves best performance among representative
sequence-to-image methods, which raises the interest of the community in it.

In this paper, inspired by the rich texture information provided by RP and the outstanding
results of DNN in image classification [27–29], we incorporate RP images and the state-of-the-art DNN
classifiers of TSC in one framework. RP is a widely used visualization technique for analyzing dynamical
systems [30,31]. Due to the graphical nature of exposing hidden patterns and local correlation information of
a sequence, RP has been introduced to TSC for representing time series as images [26,32,33]. However,
several defects limit its further application in TSC. In this paper, we summarize three major challenges
and provide our solutions as follows.

Firstly, sequences of different datasets vary significantly in length and their distinctive regions
usually distribute on various scales. Existing methods deal with this problem only by adjusting
the image size [26,32–34]. However, to avoid high computational overhead, the adjustable size is
limited to a small range, which often decreases the representation ability of RP. We address this
challenge by additionally introducing phase space dimension (m) and embedding time delay (τ) of RP,
which are fixed in other methods [26,32–34]. Different values of m, τ, and image sizes are explored
according to different datasets in order to enrich the scales of RP images. The images with suitable
scales will be selected as the input to a classifier.

Secondly, RP is not good at encoding very long sequences, especially when the length of a sequence
is larger than 700. For very long sequences, the sizes of their RP images are so large that they
are downsampled to being small enough. Consequently, it causes the loss of image information.
We address this challenge by constructing asymmetrical RP images. Specifically, a sequence is first
divided into two pieces, and each piece is encoded as an RP image. Then, thanks to the symmetrical
structure of RP image, the oblique triangle matrix of each RP image is extracted and reassembled
into one image. By this way of constructing an asymmetric matrix, the information loss caused by
downsampling obviously alleviates.

Thirdly, RP confuses the tendencies of time series. The reason is that the norm operation, being used to
calculating the distances of states in the phase space, leaves all of the pixel values in RP images positive.
Thus, RP could not distinguish the rising and falling trend of sequences. We address this challenge
by introducing the rule of signs. Specifically, designed signed masks are calculated, which utilize
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the positive and negative values to indicate the rising and falling trend of the sequences. Then, these
masks are multiplied to RP images for supplementing trend changing information.

We incorporate the aforementioned solutions together to propose Multi-scale Signed Recurrence
Plots (MS-RP), then FCN and ResNet, which are the state-of-the-art classifiers of TSC, are applied to
classify MS-RP images. Compared with the state-of-art time series classification algorithms, the advantages
of this algorithm are mainly reflected in two aspects. First, the proposed MS-RP preserves the advantages of
RP in providing temporal correlations and magnifying the distinctive regions. Moreover, compared with
other image encoding algorithms, MS-RP better accommodates the variations of sequences in tendency,
length, and scale. Second, the state-of-the-art deep learning classifiers, FCN, and ResNet, are used to handle
the transformed MS-RP images, which further improves classification performance.

Our proposed method achieves superior performance in 45 UCR (University of California,
Riverside) time series classification datasets [35] and the validation experiments are provided hierarchically.
Moreover, utilizing t-Distributed Stochastic Neighbor Embedding (t-SNE) [36], we visualize the spatial
distribution of the latent representation learned by the networks. It clearly demonstrates that MS-RP
better utilizes the advantage of DNN in extracting features.

2. Approaches

The proposed approach in this paper consists of two stages. In the first stage, we improve RP
comprehensively into MS-RP, and encode time series as MS-RP images. In the second stage, FCN and
ResNet are applied to handle these images. The framework of our approach is shown in Figure 1.

. . .

. . .

Input time series

Multi-scale 
Signed RP

IFCN/IRN

Multi-scale Images

best image as input

Classification 
Results

Mask Guided 
Grad-CAM 

visualization
approch

introduced

1×1 Convolution 3×3 Convolution

3×3 Convolution

3×3 Convolution

3×3 Pooling

1×1 Convolution

Concat

Modified Inception Module

Heat Map

Multi-scale 
Signed RP
Transform

FCN/ResNet
choose 

best 
scale

Classification 
Results

Time Series

MS-RP Images

Multi-scale 
Signed RP

IFCN/IRN
choose best 

scale

Classification 
Results

visualization
approch

introduced

. . .

. . .

Input time series

Multi-scale Images

Mask Guided 
Grad-CAM 

Heat Map

1×1 Conv 3×3 Conv

3×3 Conv

3×3 Conv

3×3 Pooling

1×1 Conv

Concat

Modified Inception Module

. . .

. . .

MS-RP Images

Multi-scale 
Signed RP
Transform

FCN/ResNet
Classification 

Results

Time Series

MS-RP Images

Choose
Best Scale

Figure 1. The framework of our approach. The x-axis and y-axis of time series represent the length and
the amplitude, respectively.

As shown in the figure, the input time series are first transformed into images through MS-RP.
Then, the MS-RP images are produced in various scales, and the images with best scale are selected.
Finally, the selected images are taken as the input of FCN and ResNet classifiers instead of the original
sequences for classification.

2.1. Proposed MS-RP

In this section, MS-RP is introduced in four parts. The basic theory of RP is described in Section 2.1.1,
the process of multi-scale RP is described in Section 2.1.2, Section 2.1.3 illustrates how to encode very
long sequences, and Section 2.1.4 introduces the rule of signs for RP. The general overview of MS-RP is
shown in Figure 2.

As shown in the figure, we separate the input sequences into two cases. For short sequences
(less than 700 in length), a sequence is first encoded as RP images in two different scales, and the sign
masks are extracted and multiplied to these RP images. Then, these multi-scale signed RP images
are resized into multiple sizes. Finally, through classification performances on the validation sets,
the image with the best scale is selected and taken as the input instead of the original sequences for
classification. For long sequences (more than 700 in length), a sequence is first divided into two pieces
of equal length, and each piece is encoded as RP images just like a short sequence. Then, utilizing
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the symmetrical structure of RP, two RP images corresponding to two divided pieces are reassembled
in one asymmetrical image. The rest part of the encoding process stays consistent with short sequences.
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Figure 2. The architecture of our proposed MS-RP. The x-axis and y-axis of time series represent
the length and the amplitude, respectively.

2.1.1. Review of RP

RP is a visualization tool widely used to analyze the recurrent behaviors of time series generated
in dynamical systems [30,31]. Concretely, a sequence is mapped to m-dimensional phase space; then,
RP image of the sequence is achieved by calculating the distance matrix between the states in the phase
space. RP reveals the local correlation information of a sequence through distance calculation between
subsequences, while autocorrelation information is crucial to TSC [16]; thus, it is widely used to encode
sequences as images (see Figure 3). Equation (1) defines RP formally:

RPi,j(ε) = Θ(ε− ‖−→x (i)−−→x (j)‖),
−→x (·) ∈ Rm, i, j = 1, . . . , N

(1)

where N is the number of states, m is the phase space dimension, −→x (i) is i-th state in the phase space
as well as the subsequence observed at the i-th position of the sequence, ‖ · ‖ is a norm operation, ε is
a threshold, Θ is the Heaviside function used to binarize the distance matrixes, whose value is zero
for negative argument and one for positive argument, and RPi,j is the pixel at position (i, j) of the RP
image. Moreover, another important parameter for the generation of states is embedding time delay τ,
which can be regarded as the sampling interval of the time series. Actually, the binarization step is
usually omitted in TSC, to avoid texture information loss; thus, Equation (1) can be simplified into
Equation (2):

RPi,j(ε) = ‖−→x (i)−−→x (j)‖,−→x (·) ∈ Rm, i, j = 1, . . . , N (2)

Though RP provides rich texture information [32,34] and facilitates the application of convolutional
networks [26,37], the mentioned challenges of Section 1 limit its further application in TSC.
In the following sections, the improvements of RP will be illustrated in detail.
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Figure 3. RP images of different sequences.The sequences come from ‘Adiac’ dataset (upper row) and
‘CBF’ dataset (lower row), respectively.

2.1.2. Multi-Scale RP: An Improvement of RP

The distinctive regions of sequences appear in various scales, and the lengths of sequences
vary largely. Existing methods adapt to these variabilities through adjusting the image sizes. However,
considering the computing costs, these image sizes are controlled in a relatively small range,
thus limiting the representation ability of RP.

The generation process of RP images is similar to the process of dilated convolution operations.
The subsequences sliding over the raw data can be regarded as dilated convolution kernels, except that
norm calculation is replaced by inner product. The lengths and sampling intervals of the subsequences
correspond to the kernel sizes and dilatation rates, respectively, and can be controlled by m and τ.
Different values of m and τ vary the receptive fields of sliding subsequences, and temporal correlations
can be constructed in various scales.

Thus, phase space dimension m and embedding time delay τ of RP are introduced to address
this challenge, which are always ignored and kept fixed in other articles. According to different
datasets, the values of m and τ are adjusted together with image sizes to produce multi-scale images.
Through selecting the multi-scale images properly, temporal correlations can be built in suitable scales,
and image sizes can better adapt to the length variability of sequences as well as the receptive field of
the network.

The most commonly used values of (m, τ) are either (2, 1) or (3, 4) [26,32–34]. Both of them are
adopted in this paper, corresponding to two different scales of RP images. Such a small search scope of
(m, τ) is due to our initial motivation validating the significance of adjusting these two parameters,
other than searching for the best values. Figure 4 shows a triangle periodic sequence and its RP images
with these two groups of m and τ. It can be seen that, even with same image sizes, smaller values
of (m, τ) produce a more fine-grained image, while larger values of (m, τ) produce an image with
overall information.
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Figure 4. The subsequences and RP images of a triangular periodic sequence, with different values
of m and τ. The red and blue dots in (a,b) correspond to the first subsequences of the sequence when
(m, τ) are (2, 1) and (3, 4), respectively.

2.1.3. Asymmetrical RP for Encoding Very Long Sequences

For very long sequences (>700), the sizes of RP images can be very large. On the one hand,
RP images with such large sizes will bring computation explosion, on the other hand; if these images
are resized to reasonable sizes, it will lead to serious information loss.

To address this challenge, asymmetrical RP is proposed. Figure 5 shows the process of constructing
an asymmetrical RP image. As is shown, a sequence is halved into two pieces, and each piece
is encoded as an image. Then, the upper and lower oblique triangle matrixes of the two images
are extracted separately and then reassembled in one image, utilizing the symmetrical structure of
RP. Through constructing the asymmetrical RP images, we alleviate the information loss brought
in the resizing process, and overcome the information redundancy problem of symmetrical RP.
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Figure 5. The illustration of constructing an asymmetrical RP image (the sequence comes from ‘Mallat’ dataset).
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2.1.4. Rule of Signs

As is indicated in Equation (2), norm operation is utilized for the distance calculation between
states in the phase space, these distances correspond to the pixel values in the RP image. The commonly
used norm operations are L1 − norm, L2 − norm and L∞ − norm; however, no matter which norm
operation is selected, all of the pixel values of RP images are positive, leading to serious tendency
confusion problem of RP.

A simple example can illustrate this problem. s1 and s2 are two short sequences, whose values are
[1, 2, 3] and [3, 2, 1], corresponding to two opposite monotonous trends, respectively. Equation (2) is
utilized for the calculation of RP matrixes, where ‖ · ‖ is L2− norm and (m, τ) is (2, 1). The RP matrixes
of s1 and s2 are shown in Equations (3) and (4) separately. As is shown, the RP matrixes of these two
sequences are totally the same:

RPs1 =

(
0
√

2√
2 0

)
, (3)

RPs2 =

(
0
√

2√
2 0

)
. (4)

To address this challenge, the rule of signs is introduced for RP. Firstly, a sequence is mapped to
phase space, then the subtraction and norm operations between states in phase space are performed,
to obtain the state difference vectors and the RP image pixel values respectively. Secondly, we sum
each state difference vector separately; then, the signs of the sum values are extracted to construct
a sign mask with the same size of the RP image. Finally, the sign mask is multiplied to the RP image,
thus we obtain the signed RP image. The whole process is defined by Equation (5):

RPi,j(ε) =
sum(−→x (i)−−→x (j)) · ‖−→x (i)−−→x (j)‖

|sum(−→x (i)−−→x (j))|
,

−→x (·) ∈ Rm, i, j = 1, . . . , N
(5)

where sum is the vector summation function, ‖ · ‖ is L2 − norm, | · | is the function calculating absolute
values. As a visual illustration, Figure 6 (left) shows the RP images of two sequences with opposite
tendencies. These sequences come from ’SyntheticControl’ dataset. Figure 6 (middle) shows the RP
images of the two sequences, and they can hardly be distinguished. Figure 6 (right) shows the signed
RP images of the two sequences, and these signed images reflect the trend of sequences and can be
easily distinguished.
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Figure 6. The RP images of sequences with opposite tendencies. (left column: two sequences with
opposite tendencies from ’SyntheticControl’ dataset, middle column: the RP images of the sequences,
right column: signed RP images of the sequences).
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2.2. Classification Using FCN on MS-RP Images

In the last section, RP is modified comprehensively into MS-RP to encode time series as images.
A high performance classifier should be applied for these images. Existing methods usually combine
RP with k-nearest neighbor (kNN) classifiers [32,34] or traditional CNN classifiers [26,37]. However,
the performances of kNN classifiers are heavily dependent on the handcrafted features; in addition,
although the traditional CNN classifiers unify feature learning and classification in one framework,
the pooling operation leads to serious information loss, and the fully connected layers with huge
number of parameters may overfit the MS-RP images.

To address these problems, in this paper, FCN and ResNet are introduced to handle MS-RP
images, which are expanded to 2D-version according to the image data format. FCN and ResNet are
firstly proposed as baseline classifiers in [19], and they are widely regarded as the state-of-the-art
classifiers for TSC [3]. The architectures of these two networks are shown in Figure 7b,c. FCN is a fully
convolutional network, which has three convolution layers; each layer follows a Batch Normalization
(BN) layer and a Rectified Linear Unit (ReLU) activation function. FCN has no Fully Connected (FC)
layers. After the convolution process, the features pass through a Global Average Pooling layer and
a Softmax layer for classification. ResNet expands FCN through residual connections. It has three
residual blocks, and each block has the same structure with FCN. ResNet explores a network with
deeper architecture; it is a compromise for balancing better representations and overfitting.
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Figure 7. The architectures of network classifiers used in this paper.

3. Experiments and Analysis

3.1. Experimental Setup

Our proposed method and the state-of-the-art competitors are evaluated on 45 datasets of the UCR
archive, which is an assembly of TSC datasets coming from various domains in the real world [35].
The competitive approaches are listed as follows:

• FCN and ResNet: These two models are proposed in [19], which have been regarded as the strong
baseline and best DNN-based classifiers for TSC.
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• RP-CNN: [26] combines RP with a traditional CNN, which is similar to our proposed approach.
We take it as the baseline for methods encoding time series as images. The RP image sizes
are consistent with our approach for fairness, and (m, τ) of RP are (3, 4). The architecture of
traditional CNN is shown in Figure 7a. The traditional CNN consists of two convolutional layers
(32 channels, 3 × 3 kernel), two pooling layers (2 × 2 Max Pooling), two FC layers (125 neurons),
and a Softmax layer.

• RP-FCN: This model combines RP and FCN into one frame work. It is provided by us for
comparison between RP and MS-RP.

• HIVE-COTE: This model ensembles five different features with various heterogeneous classifiers [17];
it achieves state-of-the-art performance among traditional time series classification methods.

• FCN Residual Classification Flow (FCN-RCF): [20] decomposes sequences as multiple frequencies
of subsequences through fine-grained wavelet, and FCN are then applied to handle these
subsequences. This model achieves very strong performances.

• ALSTM-FCN: This model combines FCN and ALSTM in one framework [21]. ALSTM supplements
important temporal information for FCN, which obviously improves classification performance.
The proposed ALSTM-FCN achieves state-of-the-art performance among DNN based methods.

The adjustable parameters of MS-RP are m, τ and image sizes, which vary according to different
dataset. The values of (m, τ) are selected between (2, 1) and (3, 4), and the image sizes range
over (16, 48, 64, 80, 96, 112, 128). Suitable parameters can be obtained according to classification
performances on the validation set. We first initialize the image sizes (usually 64, larger or smaller
according to the sequence length), and search the values of (m, τ). Then, we fix (m, τ) and search
the image sizes from the aforementioned range scope. Note that the search scope of image sizes can be
narrowed according to the sequence length. For the network parameter configuration, the sizes and
channel numbers of convolutional kernels in FCN are given in Table 1. ResNet is expanded from FCN,
thus the parameters of each residual block in ResNet stay consistent with FCN. The MS-RP image sizes
are provided in Table 2, and the three numbers in the parentheses represent the values of image sizes,
m and τ, respectively. FCN and ResNet are trained utilizing “categorical-crossentropy” loss function
and ’Adam’ optimizer [38], with learning rate 5e− 5.

The classification results of our proposed approach are the average of five repeated experiments.
The performances of the competitors are directly obtained from the corresponding articles [17,19,21,26],
and we supplement the missing experimental results utilizing author provided code. For the evaluation
of our proposed approach and the competitors, Number of Wins, Average Arithmetic ranking, Average
Geometric ranking, and Mean Per-Class Error (MPCE) are introduced from [19]. Then, we follow
the recommendations of [39] to adopt the Friedman test for rejecting the null hypothesis [40].
Finally, utilizing a Wilcoxon signed-rank test with Holm correction (α = 0:05) [41,42], we measure
the significance of difference between different classifiers. A critical difference (CD) diagram [39] is
performed to visualize these comparisons intuitively.

Table 1. Parameter configuration of FCN.

Network Parameters
Convolution Blocks

Conv1 Conv2 Conv3

Conv Kernel Size 5 × 5 5 × 5 5 × 5

Filter Channel Number 128 256 128
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Table 2. Comparison in terms of classification error rates on 45 UCR datasets.

Dataset RP-CNN Res-Net FCN RP-FCN HIVE-COTE FCN-RCF ALSTM-FCN MS-RP-Res MS-RP-FCN

Adiac(64,2,1) 0.2800 0.1740 0.1430 0.1709 0.1846 0.1550 0.1330 0.1560 0.1379
Beef(64,2,1) 0.0800 0.2330 0.2500 0.1667 0.2773 0.0300 0.0667 0.0667 0.1333
CBF(64,2,1) 0.0050 0.0060 0 0.0033 0.0006 0 0 0 0

ChlorineCon(112,2,1) 0.1049 0.1720 0.1570 0.1992 0.2749 0.0680 0.1930 0.1987 0.1992
CinTorso(128,3,4) 0.0087 0.2290 0.1870 0.2866 0.0120 0.0140 0.0942 0.0486 0.1123

Coffee(64,2,1) 0 0 0 0 0.0018 0 0 0 0
CricketX(64,3,4) 0.2718 0.1790 0.1850 0.2187 0.1696 0.2160 0.1949 0.1538 0.1821
CricketY(64,3,4) 0.2462 0.1950 0.2080 0.2349 0.1630 0.1720 0.1795 0.1564 0.1718
CricketZ(64,3,4) 0.2667 0.1870 0.1870 0.2064 0.1523 0.1620 0.1692 0.1487 0.1615

DiatomSizeR(64,2,1) 0.0098 0.0690 0.0700 0.0196 0.0581 0.0230 0.0261 0.0065 0.0098
ECG200(64,2,1) 0 0.1300 0.1000 0.0800 0.1181 0.0625 0.0900 0.0500 0.0800

ECGFiveDays(64,3,4) 0.0023 0.0450 0.0150 0 0.0105 0.0100 0.0046 0 0
FaceAll(96,2,1) 0.1900 0.1660 0.0710 0.1775 0.0037 0.0980 0.0343 0.0627 0.0320

FaceFour(96,2,1) 0 0.0680 0.0680 0.0341 0.0505 0.0500 0.0568 0.0795 0.0400
FacesUCR(64,2,1) 0.0483 0.0420 0.0520 0.0751 0.0164 0.0870 0.0566 0.0585 0.0561

FiftyWords(48,3,4) 0.2600 0.2730 0.3210 0.1846 0.1932 0.2880 0.1758 0.1692 0.1780
Fish(64,2,1) 0.0850 0.0110 0.0290 0 0.0238 0.0210 0.0229 0.0114 0

GunPoint(64,2,1) 0 0.0070 0 0 0.0033 0 0 0 0
Haptics(64,2,1) 0.5390 0.4940 0.4490 0.4578 0.4697 0.4610 0.4351 0.4708 0.4675

InlineSkate(128,2,1) 0.6436 0.6350 0.5890 0.5382 0.4741 0.5660 0.5073 0.5655 0.5491
ItaPowDemand(16,2,1) 0.0330 0.0400 0.0300 0.0447 0.0322 0.0310 0.0398 0.0262 0.0292

Lightning2(64,3,4) 0.1639 0.2460 0.1970 0.0984 0.2030 0.1450 0.2131 0.1148 0.0984
Lightning7(64,3,4) 0.2600 0.1640 0.1370 0.1470 0.1889 0.0910 0.1781 0.1440 0.1233

Mallat(128,3,4) 0.0512 0.0210 0.0200 0.0752 0.0245 0.0440 0.0162 0.0473 0.0422
MedicalImg(96,2,1) 0.2658 0.2280 0.2080 0.2329 0.1846 0.1640 0.2039 0.2066 0.1947
MoteStrain(80,2,1) 0.1182 0.1050 0.0500 0.1741 0.0532 0.0760 0.0639 0.0847 0.0831

NonInThorax1(128,3,4) 0.0580 0.0520 0.0390 0.0580 0.0683 0.0260 0.0249 0.0575 0.0361
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Table 2. Cont.

Dataset RP-CNN Res-Net FCN RP-FCN HIVE-COTE FCN-RCF ALSTM-FCN MS-RP-Res MS-RP-FCN

NonInThorax2(128,3,4) 0.0489 0.0490 0.0450 0.0579 0.0477 0.0280 0.0336 0.0453 0.0366
OliveOil(96,2,1) 0.1100 0.1330 0.1670 0.1333 0.1023 0 0.0667 0.0667 0.0500
OSULeaf(96,2,1) 0.2900 0.0210 0.0120 0.0909 0.0295 0.0180 0.0041 0.0248 0.0165

SonyAIRobot1(64,2,1) 0.0499 0.0150 0.0320 0.0266 0.1132 0.0420 0.0300 0.0166 0.0067
SonyAIRobot2(64,2,1) 0.0923 0.0380 0.0380 0.0546 0.0546 0.0640 0.0252 0.0535 0.0210

StarLigCurves(128,3,4) 0.0234 0.0250 0.0330 0.0238 0.0185 0.0180 0.0233 0.0195 0.0180
SwedishLeaf(64,2,1) 0.0600 0.0420 0.0340 0.0304 0.0314 0.0570 0.0144 0.0272 0.0272

Symbols(64,3,4) 0.0824 0.1280 0.0380 0.0181 0.0342 0.0400 0.0131 0.0141 0.0161
SynControl(64,2,1) 0.3433 0 0.0100 0.3100 0.0004 0.0382 0.0100 0 0

Trace(64,2,1) 0 0 0 0 0 0.0940 0 0 0
TwoLeadECG(64,2,1) 0.0026 0 0 0.0018 0.0065 0.0643 0.0009 0 0

TwoPatterns(64,2,1) 0.4935 0 0.1030 0.4888 0.0001 0 0.0032 0 0
UWaveX(64,3,4) 0.3582 0.2130 0.2460 0.3778 0.1616 0.2180 0.1519 0.1790 0.1963
UWaveY(64,3,4) 0.3439 0.3320 0.2750 0.3425 0.2245 0.2320 0.2342 0.2496 0.2725
UWaveZ(64,2,1) 0.3317 0.2450 0.2710 0.3490 0.2217 0.2650 0.2018 0.2272 0.2462

Wafer(64,2,1) 0 0.0030 0.0030 0.0015 0.0003 0 0.0019 0.0006 0.0011
WoSynonyms(64,2,1) 0.3135 0.3680 0.4200 0.2900 0.2520 0.3380 0.3323 0.2774 0.2978

Yoga(64,2,1) 0.1180 0.1420 0.1550 0.0953 0.0830 0.1120 0.0810 0.0887 0.0930

Win num 7 5 6 6 6 11 14 14 13
Arithmetic ranking 6.3111 5.9111 5.2889 5.7778 4.8444 4.3778 3.6444 3.3111 2.9111
Geometric ranking 5.0800 4.9744 4.3512 4.7974 3.8710 3.4003 2.8214 2.6007 2.4147

MPCE 0.0256 0.0240 0.0220 0.0252 0.0203 0.0175 0.0175 0.0164 0.0164
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3.2. Results and Analysis

Comparison of classification results is listed in Table 2, with the best performance of each dataset
highlighted in bold. The CD diagram is shown in Figure 8. Moreover, pairwise comparison between
MS-RP-FCN and its competitors are provided in Figure 9.

Figure 8. The CD diagram of the competitive approaches and our proposed two classifiers over
45 UCR datasets; the thick horizontal lines in the diagram indicate a cluster of classifiers that are not
significantly different in terms of classification performance.
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Figure 9. Pairwise comparison of classification performances between MS-RP-FCN and the competitors.



Sensors 2020, 20, 3818 13 of 17

In the CD diagram of Figure 8, it is clear to see that MS-RP-FCN and MS-RP-ResNet achieve
the best performance among all of the competitors. The evaluation indexes of Table 2 shows
that MS-RP-FCN wins three of the four metrics and MS-RP-ResNet wins two of the four metrics.
For the MPCE index, MS-RP-FCN and MS-RP-ResNet are tied for the first. For the Arithmetic ranking
and Geometric ranking indexes, MS-RP-FCN ranks first and MS-RP-ResNet ranks second. The relative
disadvantage of MS-RP-FCN is win number index. This is due to the sizes of datasets in the UCR
archive having a large variability. FCN is slightly inferior to large datasets due to the shallow structure.

Some interesting and more detailed observations can be made as follows. First, compared
with FCN and ResNet, the advantages of our proposed methods are obvious. It demonstrates that
the texture information provided by MS-RP can be more easily distinguished by the networks. Second,
the performances of MS-RP-FCN are far better than RP-CNN and RP-FCN, due to better classifiers
and the improvement of RP. Finally, although HIVE-COTE, FCN-RCF, and ALSTM-FCN achieve
very competitive performances, they have small gaps with MS-RP-FCN and MS-RP-ResNet as shown
in Figure 8, which further demonstrates the effectiveness of our proposed methods.

Considering MS-RP is composed of three parts as mentioned in Section 2.1, and the effectiveness
of each part should be demonstrated. Thus, the validation experiment of each part is provided
in Tables 3–5 respectively, with FCN selected as the classifier. For visual convenience, the best
performance of each dataset in these tables is highlighted in bold.

Comparison between Different Values of m and τ. Table 3 provides ten pairs of classification
error rates for performance comparison between two different groups of m and τ, with the image sizes
staying consistent with Table 2. Distinct gaps between the two groups of error rates can be found
in the table. As is aforementioned, different values of (m, τ) enrich the scales of RP images, which are
helpful in better representing time series.

Table 3. Comparison in terms of error rates between different m and τ.

Dataset Adiac Face-
All

Medical-
Img

Mote-
Strain

OSU-
Leaf CricketY CricketZ Fifty-

Words Lightning2 Lightning7

m = 2,τ = 1 0.1379 0.0320 0.1947 0.0831 0.0165 0.2077 0.1897 0.2066 0.1475 0.1507
m = 3,τ = 4 0.1637 0.0698 0.2316 0.1222 0.0620 0.1718 0.1615 0.1780 0.0984 0.1233

Comparison between Symmetric RP and Asymmetric RP. Asymmetric RP images are proposed
for encoding very long sequences. To compare the performances of symmetric and asymmetric
RP, six UCR datasets with very long sequences are selected, and the error rates are provided
in Table 4. It can be seen that the asymmetric structure is helpful, though the gains are small except for
the ’CinCECGTorso’ dataset. This is likely due to asymmetric RP being more capable of preserving
detailed information, while most selected datasets own global shapes.

Table 4. Comparison in terms of error rates between symmetric RP and asymmetric RP.

Dataset CinTorso InlineSkate Mallat NonInThorax1 NonInThorax2 StarLigCurves

Asymmetric RP 0.1123 0.5491 0.0422 0.0361 0.0366 0.0180
Symmetric RP 0.2866 0.5382 0.0729 0.0539 0.0514 0.0232

Comparison between Signed RP and Unsigned RP. The rule of signs is introduced to overcome
the tendency confusion problem of RP. To evaluate its effectiveness, we select ten datasets and provide
the performances of signed and unsigned RP in Table 5. As is shown, signed RP has obtained
a huge advantage. Thus, the sign masks are effective supplements to RP, which describe the tendency
variations of sequences. Actually, the sign masks are more critical for action recognition datasets,
and sequences of these datasets are more sensitive to tendency changing.
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Table 5. Comparison in terms of error rates between signed RP and unsigned RP.

Dataset CricketX CricketY CricketZ Lightning7 OSU-
Leaf

Syn-
Control

Two-
Patterns UWaveX UWaveY UWaveZ

Signed RP 0.1821 0.1718 0.1615 0.1233 0.0165 0 0 0.1963 0.2725 0.2462
Unsigned RP 0.2187 0.2349 0.2064 0.1469 0.0744 0.2967 0.4850 0.3778 0.3425 0.3431

3.3. Visualization

In order to visually demonstrate that MS-RP better utilizes the advantage of DNN in extracting
features, we gain some insights on the spatial distribution of the latent representation learned by
the networks. Specifically, we feed the raw data, RP images, and MS-RP images into FCN respectively,
and extract the last latent representations (feature vectors of global average pooling layer) learned
by the network. Then, t-Distributed Stochastic Neighbor Embedding (t-SNE) [36] is introduced to
visualize the classification results of different input data. It is a technique embedding high-dimensional
vectors into a two-dimensional map.

We select ’TwoPatterns’ and ’Fish’ datasets to produce the mentioned three kinds of input data,
and FCN is trained on 2000 epochs with each kind of data. Figure 10 shows the visualization results.
As is shown, when FCN is trained with the raw data, the feature crowds of different classes are hard to
separate, and they are close in distance. When FCN is trained with RP images, the results of the ’Fish’
dataset are pretty good, though small category confusion still exists, while the results of ’TwoPattern’
dataset are disastrous, due to the tendency confusion problem of RP. When FCN is trained with MS-RP
images, the feature crowds of different classes can be totally distinguished with a relatively large
distance on both datasets.

FCN MS-RP-FCN

FCN

Class 1

Class 3

Class 6

Class 4

Class 2

Class 5

Class 7

MS-RP-FCN

RP-FCN

RP-FCN

Class 1

Class 2

Class 3

Class 4

(a) ‘TwoPattern’ dataset

FCN MS-RP-FCN

FCN

Class 1

Class 3

Class 6

Class 4

Class 2

Class 5

Class 7

MS-RP-FCN

RP-FCN

RP-FCN

Class 1

Class 2

Class 3

Class 4

(b) ‘Fish’ dataset

Figure 10. Visualizations of different input data by t-SNE. (left column: features learned from the raw
data; middle column: features learned from the RP image data; right column: features learned from
MS-RP image data).
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4. Conclusions

In this paper, we improve RP comprehensively into MS-RP, and then transform TSC problems
as image classification tasks for DNN. Firstly, phase space dimension m and embedding time delay
τ of RP are introduced to enrich the scales of RP images. Secondly, asymmetrical RP is constructed
to encode very long sequences. Finally, the rule of signs is introduced to overcome the tendency
confusion problem of RP. Moreover, FCN and ResNet are trained to handle MS-RP images, which are
state-of-the-art classifiers for TSC.

Experimental results on 45 UCR datasets demonstrate that our proposed method outperforms
the state-of-the-art, and each block of MS-RP is also demonstrated hierarchically through validation
experiments. Furthermore, utilizing t-SNE, the classification results of different input data are analyzed
visually, which further supports the effectiveness of our proposed approach.

Thanks to the the popularity of wearable sensors, our work can be easily extended to practical
applications, e.g., motion recognition, ECG health, and sleep state monitoring on mobile phones.
We would like to take these interesting jobs as our future work.
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