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Regulatory T (Treg) cells are a heterogenous population of immunosuppressive T cells
whose therapeutic potential for the treatment of autoimmune diseases and graft rejection
is currently being explored. While clinical trial results thus far support the safety and
efficacy of adoptive therapies using polyclonal Treg cells, some studies suggest that
antigen-specific Treg cells are more potent in regulating and improving immune tolerance
in a disease-specific manner. Hence, several approaches to generate and/or expand
antigen-specific Treg cells in vitro or in vivo are currently under investigation. However,
antigen-specific Treg cell therapies face additional challenges that require further
consideration, including the identification of disease-relevant antigens as well as the in
vivo stability and migratory behavior of Treg cells following transfer. In this review, we
discuss these approaches and the potential limitations and describe prospective
strategies to enhance the efficacy of antigen-specific Treg cell treatments in
autoimmunity and transplantation.
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INTRODUCTION

Treg cells play an essential role in the maintenance of immune homeostasis by inhibiting pathological
responses towards self-antigens and controlling potentially harmful inflammatory reactions following
infections. While different T cell populations with immunosuppressive capacity have been described in
recent years including type 1 regulatory T (Tr1) cells and T helper 3 (Th3) cells (1, 2), CD4+CD127-

CD25high T cells that express the transcription factor forkhead box P3 (FOXP3) remain the most
studied Treg subset to date and thus, will be the main focus of this review. In healthy individuals,
FOXP3+ Treg cells are generated both in the thymus (tTreg) upon intermediate avidity interaction of
developing thymocytes with self-peptides (3) and in the periphery (pTreg) during antigen encounter
of conventional naïve CD4+ T cells in tolerogenic environments, such as the presence of transforming
growth factor beta (TGF-ß) and interleukin-2 (IL-2) (4, 5). Although specific biomarkers that allow
the distinction between tTreg and pTreg cells are currently not available, it is assumed that the antigen
specificities of these Treg subsets differ substantially due to their distinct developmental origin (6, 7).
The T cell receptor (TCR) repertoire of tTreg cells is skewed toward autoantigen recognition and
hence, they predominantly maintain self-tolerance by preventing immune responses against the
body’s own tissues and organs (8). In contrast, pTreg cells mainly recognize non-self-antigens derived
from commensal bacteria, infectious pathogens or ingested food and thus, sustain mucosal tolerance,
org May 2021 | Volume 12 | Article 6618751
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inhibit inflammation-induced tissue damage and avert allergic
reactions (5, 9–11). Importantly, various critical questions about
the maintenance and function of these antigen-specific Treg cells
remain unanswered, involving their in vivo cellular targets, the
molecular pathways triggering their activation and the underlying
mechanisms controlling their suppressive function.

Considering the crucial functions of FOXP3+ Treg cells in
maintaining a healthy state, it is not surprising that defects in
their biology can lead to detrimental disruptions of immune
homeostasis. In particular, multiple preclinical and human studies
have demonstrated that a number of Treg-specific defects are
associated with the development of several autoimmune disorders
(AID) such as type 1 diabetes (T1D) (12–14), rheumatoid arthritis
(RA) (15, 16), multiple sclerosis (MS) (17–19), systemic lupus
erythematosus (SLE) (20) and psoriasis (21, 22). These Treg-
specific defects include reduced proliferative and migratory
capabilities (21, 23) as well as lower expression levels of essential
Treg markers, including FOXP3 and CD25 (24–27). Moreover,
Treg cells isolated from patients with several AID exhibit impaired
immunosuppressive functions associated with reduced expression
of anti-inflammatory molecules such as IL-10, cytotoxic T
lymphocyte antigen 4 (CTLA-4), T cell immunoglobulin and
mucin domain-containing 3 (Tim-3) and indoleamine 2,3-
dioxygenase (IDO) (16, 28–30), and increased production of pro-
inflammatory cytokines such as interferon gamma (IFN-g) and IL-
17 (13, 19). Some studies indicate that these deficiencies are
predominantly observed in the naïve Treg compartment which is
presumed to be largely comprised of tTreg cells (18, 31).
Nonetheless, it is still unclear whether defects of Treg cell
numbers and/or function in human AID are limited to disease-
associated antigen-specific Treg cells or affect polyclonal Treg
populations since the antigen specificity of impaired Treg cells
remains insufficiently characterized.
POLYCLONAL VS. ANTIGEN-SPECIFIC
TREG THERAPIES

While new key factors and mechanisms underlying Treg biology
continue being elucidated, Treg cell-based therapies have been
proposed to be a promising strategy for the re-establishment of
immune tolerance in individuals with AID, allergies or organ
transplantation (32–35). These treatments currently involve
either the adoptive transfer of in vitro expanded Treg cells, or
the administration of immunomodulatory interventions that
promote the expansion and/or function of Treg cells in vivo
(Figure 1). Notably, both of these applications have the potential
to promote Treg-mediated immune regulation in a polyclonal or
antigen-specific manner with each harboring their own
advantages and limitations.

The success of adoptive Treg cell therapies depends onmultiple
critical factors, including the optimal source of Treg cells,
appropriate cell isolation and expansion procedures as well as
optimal cell dose and number of infusions administered. First
early-phase clinical trials investigating the safety of autologous or
allogeneic Treg transfer demonstrated good toxicity profiles in
Frontiers in Immunology | www.frontiersin.org 2
patients with T1D (32, 36–38), MS (39), Crohn’s disease (33), graft
versus host disease (GvHD) (40–42) and kidney/liver
transplantation (34, 43–46). In addition, some of these
interventions induced signs of disease improvement which
supported the investigation of treatment efficacy in larger trials
(36–38, 41, 46). Importantly, while these initial human studies
adopted somewhat comparable cell enrichment and culture
protocols, all of them utilized polyclonal Treg subsets that
exhibit a plethora of different TCR specificities. The potential
therapeutic benefit of polyclonal Treg population infusion relies
on bystander immunosuppression which allows regulation by
activated Treg cells through antigen-independent processes (47).
Since polyclonal Treg cells undergo extensive activation and
expansion in vitro prior to adoptive transfer, it is possible that
they are capable of implementing this bystander effect. Therefore,
a number of ongoing clinical studies are using polyclonal Treg
cells for the treatment of AID including T1D (NCT02772679,
NCT03444064), ulcerative colitis (NCT04691232) and Pemphigus
(NCT03239470). However, growing evidence from animal models
indicates that antigen-specific Treg cells may be more efficient in
controlling pathological immune responses in a disease-specific
manner (Table 1) (48–64). This is likely due to the migration of
infused Treg cells towards tissues of cognate antigen exposure (49,
63) leading to more potent and localized control of inflammation
with reduced risks of broad immunosuppression and associated
adverse events. Moreover, the enhanced trafficking of antigen-
specific Treg cells to target tissues presumably allows the
administration of lower Treg cell numbers than polyclonal
approaches, potentially facilitating the obtention of these cell
numbers in standard in vitro expansion protocols. Nevertheless,
the purification and expansion of disease-relevant antigen-specific
Treg cells remains technically challenging because of their very low
frequency in the peripheral blood (65). Therefore, current efforts
are focusing on the generation of antigen-specific Treg cells in
vitro by transformation of antigen-specific effector T (Teff) cells
into cells with suppressive capacity (66–68), or genetic insertion of
synthetic antigen receptors with disease-relevant antigenic
specificities into isolated Treg populations (53, 64, 69)
(Figure 1D).
GENERATION OF ANTIGEN-SPECIFIC
TREG CELLS BY ANTIGEN-SPECIFIC
EFFECTOR T CELL ENGINEERING

Similar to the development of pTreg cells in vivo several studies
have demonstrated that both murine and human Treg cells can
be generated from naïve CD4+ T cells in vitro when they are
stimulated in the presence of TGF-ß and IL-2 (induced Treg,
iTreg) (66, 70). Hence, isolated antigen-specific effector T cells
(Teff) could serve as a useful source to generate antigen-specific
iTreg cells for adoptive cell therapy. However, it has become clear
that the phenotype and function of iTreg cells is not properly
maintained under inflammatory conditions (71–73). This is
clinically relevant as iTreg cells might be able to regain their
pro-inflammatory characteristics in vivo and contribute to an
May 2021 | Volume 12 | Article 661875
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augmented autoimmune response especially considering the
inflammatory environment where they will be re-infused in.
Thus, other strategies to re-program Teff lymphocytes into
Treg cells have been developed including transgenic
overexpression of FOXP3 via lentivirus-based techniques (74–
78). While several studies demonstrated that FOXP3-transduced
Teff cells exhibit Treg-like phenotypes and immunosuppressive
functions, the random insertion of FOXP3 at different lentiviral
integration sites might entail potential safety risks due to the
heterogeneity of the final clinical product. Therefore, more
advanced genetic tools, such as CRISPR/Cas9 or TALEN, have
been recently utilized to generate FOXP3-expressing Teff cells
via homology-directed repair-based gene editing (52, 79).
Moreover, a CRISPR-based system has been shown to
successfully repair the FOXP3 gene in T cells from IPEX
(immune dysregulation polyendocrinopathy enteropathy and
Frontiers in Immunology | www.frontiersin.org 3
X-linked) syndrome patients (79). In addition, recent data have
demonstrated the feasibility of generating human antigen-
specific Treg cells from tetramer-enriched Teff populations by
introduction of a transgenic FOXP3 promoter via TALEN and
adeno-associated virus-based editing (52). It is noteworthy that
Teff cells can also acquire Treg-like characteristics by FOXP3-
independent approaches, including blockade of cyclin-
dependent kinase 8 (CDK8) and CDK19 signaling pathways
(67), as well as by a combination of CTLA-4 overexpression, IL-2
ablation and antigenic stimulation (80). All of these strategies
were able to confer immunosuppressive functions to both naïve
and activated Teff cells which retained their anti-inflammatory
properties in vivo when transferred into different mouse models
of autoimmunity (52, 67, 80). Nonetheless, it remains to be
determined whether these applications would have clinical utility
in human AID.
FIGURE 1 | Different approaches of polyclonal and antigen-specific Treg cell-based therapies. To date, two main strategies have been developed: the administration
of immunomodulatory agents that enhance the number and/or function of Treg cells in vivo (A, B), and the adoptive transfer of in vitro expanded Treg cells (C, D).
Interventions that increase polyclonal endogenous Treg cells in vivo involve low-dose interleukin-2 (IL-2), mutant IL-2, IL2/Anti-IL-2 Ab complexes as well as selective
depletion of Teff cells by Anti-CD3 Ab (A). In contrast, applications of antigen-based treatments could lead to the enhancement of antigen-specific Treg subsets (B).
On the other hand, adoptive Treg cell therapies rely on the optimal isolation and expansion of Treg cells in vitro. Thus far, clinical trials in autoimmunity have only
utilized expanded polyclonal Treg cell populations (C). However, antigen-specific Treg cells can be generated in vitro (D) by genetic insertion of synthetic receptors
(including engineered T cell receptors (TCR), chimeric antigen receptors (CAR) or B cell antibody receptors (BAR)), or by transformation of antigen-specific effector T
(Teff) cells into induced Treg (iTreg) cells via stimulation in the presence of transforming growth factor beta (TGF-ß) and IL-2, transgenic FOXP3 overexpression,
blockade of cyclin-dependent kinase 8 (CDK8) and CDK19 signaling, or a combination of cytotoxic T lymphocyte antigen 4 (CTLA-4) overexpression, IL-2 ablation
and antigenic stimulation. The isolation and expansion of endogenous antigen-specific Treg cells remains technically challenging. Ag, antigen; DCs, dendritic cells;
APL, altered peptide ligands; pMHC, peptide-major histocompatibility complex.
May 2021 | Volume 12 | Article 661875
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GENERATION OF ANTIGEN-SPECIFIC
TREG CELLS BY GENETIC ENGINEERING

A different approach to generate antigen-specific Treg cells in
vitro involves the alteration of polyclonal Treg specificities by
genetic introduction of synthetic receptors, including engineered
TCRs and chimeric antigen receptors (CARs). For example, Treg
cells transduced with an exogenous TCR isolated from human
islet-specific CD4+ T cell clones possess more potent antigen-
specific suppressive capacities than polyclonal Treg populations
(64). Furthermore, adoptive transfer of Treg cells engineered
with a TCR specific for myelin basic protein can efficiently
improve experimental autoimmune encephalitis (EAE) (81).
Different reports from animal models of T1D and RA also
demonstrate that TCR engineering can be successfully
combined with the transduction of FOXP3 in order to convert
Teff lymphocytes into immunosuppressive antigen-specific Treg-
like cells (68, 82). Although these preclinical studies are
Frontiers in Immunology | www.frontiersin.org 4
encouraging, the translation of TCR-engineered Tregs into the
clinic is somewhat limited by their major histocompatibility
complex (MHC) restriction and the need to isolate and
identify antigen-specific and disease-relevant TCRs.

On the other hand, the development of chimeric antigen
receptors (CARs) enables the generation of engineered Treg cells
that recognize their antigen directly (including whole proteins)
in a non-MHC restricted manner (83). CARs consist of an
extracellular single-chain variable antibody fragment (scFv)
fused with an intracellular CD3 activation domain and
(potentially multiple) co-stimulation domains. While it has
been suggested that integration of the co-stimulatory molecule
CD28 is essential for potent CAR Treg functions (84), the
optimal design of CAR Treg cells is still under ongoing
investigation (85). Nevertheless, based on their successful
application and tolerable safety profiles in cancer treatments
(86), the transduction of CARs may be considered a promising
approach for future clinical administration of antigen-specific
TABLE 1 | Pre-clinical studies demonstrating increased efficacy of antigen-specific adoptive Treg cell therapies for AID and transplantation.

Disease Model Antigen-specific Treg population Evidence of superior function Ref.

T1D (BDC2.5)
NOD
mice

CD4+ CD25+ T cells from TCR-transgenic
BDC2.5 mice expanded in vitro with BDC
peptide and NOD DCs

Efficient inhibition of diabetogenic T cell-induced diabetes in NOD mice (no
suppression with polyclonal CD4+ CD25+ NOD Treg cells)

(48)

T1D (BDC2.5)
NOD
mice

CD4+ CD25+ T cells from TCR-transgenic
BDC2.5 mice expanded in vitro with anti-
CD3/CD28 beads

Enhanced suppression + reversal of diabetogenic T cell-induced diabetes in
NOD.RAG-/- or NOD CD28-/- mice (only slight delay of disease with 4-fold higher
numbers of polyclonal CD4+ CD25+ NOD Treg cells)

(49)

RA DBA1
mice

CD4+ T cells transduced with FOXP3 and a
TCR of a CIA-associated T cell clone

Effective inhibition + reversal of CIA (no effect with FOXP3-transduced CD4+ T cells
without antigen specificity)

(50)

MS (Tg4)
B10.PL
mice

CD4+ CD25+ T cells from TCR-transgenic
Tg4 mice expanded in vitro with anti-CD3/
CD28 beads

Potent inhibition + amelioration of MBP- or PLP-induced EAE (no effect with polyclonal
B10.PL Treg cells)

(51)

MS (2D2)
C57Bl/6
mice

HDR-edited FOXP3-overexpressing T cells
(edTreg) from TCR-transgenic 2D2 mice

Better suppression of Teff proliferation in vivo in MOG-induced EAE compared to
polyclonal C57Bl/6 edTreg cells

(52)

MS C57Bl/6
mice

MOG-specific CAR-engineered CD4+ T
cells with transgenic FOXP3 expression

Increased migration into the brain + better control of MOG-induced EAE than MOCK-
treated FOXP3+ T cells

(53)

Autoimmune
Neuropathy

Lewis
rats

CD4+ CD25+ T cells from rats expanded in
vitro with PNM and IL-2

Amelioration of PNM-induced EAN (no effects with CD4+ CD25+ T cells expanded with
irrelevant autoantigen)

(54)

Colitis TNP-Tg
BALB/c
mice

CAR-engineered CD4+ CD25+ Treg cells
specific for TNP

Protection from TNBS-induced colitis (no effect with control CAR Treg cells) (55)

Colitis CEABAC
mice

CAR-engineered CD4+ CD25+ Treg cells
specific for CEA

Enhanced colon homing + more efficient amelioration of Teff-mediated and AOM-DSS-
induced colitis compared to control CAR Treg cells

(56)

AIG (TxA23)
BALB/c
mice

TGF-ß-induced iTreg cells generated from
CD4+ T cells of TxA23 mice

Prevention of Teff cell-induced AIG (no suppression with polyclonal BALB/c iTreg cells) (57)

Skin
transplantation

BRG
mice

CAR-engineered human CD4+ CD25+ Treg
cells specific for HLA-A2

Reduced graft injury in a human skin xenograft model compared to polyclonal Treg
cells

(58)

Skin
transplantation

NRG
mice

CAR-engineered human CD4+ CD25+ Treg
cells specific for HLA-A2

Superior inhibition of allospecific immune responses than polyclonal Treg cells in
human skin xenograft model

(59)

Skin
transplantation/
GvHD

NSG
mice

CAR-engineered human CD8+ CD45RClow

Treg cells specific for HLA-A2
More potent suppression of immune responses than control CAR Treg cells (60)

GvHD (OVA Tg)
C57Bl/6
mice

TGF-ß-induced OVA-specific iTreg cells
generated from CD4+ T cells of OT-II mice

Better prevention of GvHD than polyclonal iTreg cells (61)
May 2021 | Volume 12 | Article 66
T1D, type 1 diabetes; NOD, non-obese diabetic; RA, rheumatoid arthritis; MS, multiple sclerosis; AIG, autoimmune gastritis; TCR, T cell receptor; DCs, dendritic cells; CIA, collagen-
induced arthritis; HDR, homology-directed repair; MOG, myelin oligodendrocyte glycoprotein; MBP, myelin basic protein; PLP, proteolipid protein; EAE, experimental autoimmune
encephalomyelitis; CAR, chimeric antigen receptor; PNM, peripheral nerve myelin; EAN, experimental autoimmune neuritis; TNP, 2,4,6-trinitrophenol; TNBS, 2,4,6-trinitrobenzene
sulphonic acid; CEA, carcinoembryonic antigen; AOM-DSS, azoxymethane-dextran sodium sulfate; TGF-ß, transforming growth factor beta; HLA, human leukocyte antigen; GvHD, graft
versus host disease; OVA, ovalbumin.
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Treg cells in AID and transplantation. Notably, whereas CARs
possess a higher affinity for their cognate antigen than TCRs,
data suggest that CARs require a greater density of antigen for
their activation (87, 88) [reviewed in (89)]. Thus, the use of CAR
Treg cells might be more beneficial for clinical settings where the
relevant antigen is highly expressed in the target site while TCR-
engineered Treg cells are potentially more efficacious in diseases
associated with low antigen expression levels.

Initial studies in autoimmunity reported that CAR-
engineered Treg cells specific for 2,4,6-trinitrophenol (TNP)
can efficiently reduce murine colitis whereas this was not
observed with irrelevant CAR Treg cells (55, 90). Similar
results were obtained in two different experimental colitis
mode l s tha t ut i l i zed CAR Treg ce l l s recogn iz ing
carcinoembryonic antigen (CEA) and confirmed the superior
immunosuppressive function of CEA-specific Treg cells
compared to non-specific control Treg cells. Moreover,
histological analysis revealed that only CEA-CAR Treg cells
were able to migrate to the inflamed colon of diseased animals
(56). Furthermore, myelin oligodendrocyte glycoprotein
(MOG)-specific CAR Treg cells have been shown to better
control EAE than sham-treated Treg cells. In this study, CAR
engineering was combined with the transgenic expression of
FOXP3 in CD4+ Teff cells resulting in MOG-specific
immunosuppressive Treg cells that were able to home to the
brain, to decrease EAE symptoms and to mediate protection
from a second EAE challenge using pertussis toxin and complete
Freund’s adjuvant (53). In addition, HLA-A2 CAR-expressing
(CD4+ or CD8+) Treg cells have been used in different pre-
clinical studies of skin transplantation demonstrating superior
suppression of human skin graft rejection and reduced GvHD in
humanized mouse models (58–60). A phase 1/2a trial is currently
examining the safety of HLA-A2 CAR-engineered autologous
Treg cells in kidney transplantation (NCT04817774).

Strategies utilizing genetically engineered Treg cells with B
cell antibody receptors (BARs) are also under ongoing
investigation. Instead of the extracellular scFv used in CARs,
BARs contain an antigen or antigen fragment that can be
recognized by B cell receptors (BCRs) on inflammatory
antibody producing B cells (91). Like CAR Treg cells, BAR
Tregs are not MHC restricted and initial results demonstrated
potent immunosuppression in mouse models of allergy (92) and
hemophilia (69). Finally, although only currently studied in the
context of T cells, and not Tregs, chimeric autoantibody receptor
(CAAR) engineering could provide an additional approach to
directly target autoreactive B cells in AID (93).
IN VIVO TREG CELL-BASED THERAPIES

While the development and conduction of adoptive Treg cell
therapies are costly and laborious, immunomodulatory drugs
that target key molecules of Treg maintenance have the potential
to improve Treg-mediated immune tolerance in vivo. These
treatments can increase the expansion and/or function of
polyclonal or antigen-specific Treg subsets depending on the
Frontiers in Immunology | www.frontiersin.org 5
underlying mechanism of action targeted (Figures 1A, B,
respectively). Due to the higher expression of CD25 (the alpha
chain of IL-2 receptor) on Treg cells compared to Teff cell
populations, interventions that promote Treg-specific IL-2
signaling constitute an attractive approach to improve the
performance of the whole endogenous Treg cell pool.
Nonetheless, because of its wide range of cellular targets
including CD4+ and CD8+ effector T cells and natural killer
cells, different strategies that avoid bystander activation of these
pro-inflammatory subsets have been developed. These include
the treatment with low-dose IL-2 (94–96), engineered IL-2
muteins (97–99) and IL-2/IL-2 antibody complexes (100, 101)
that predominantly bind to CD25 over CD122 (IL-2R beta
chain) and hence, preferentially induce the expansion of Treg
population over Teff lymphocytes. Besides IL-2, some studies
suggest that multiple other cytokines can promote the induction
and/or suppressive function of antigen-specific Treg cells,
including IL-4 (102), IL-5 (103), IL-7 (104), IL-12 (105), IL-15
(106) and IFN-g (107). Furthermore, Treg cell homeostasis relies
on several other signaling molecules that can be targeted to
increase Treg cell performance in vivo, like mammalian target of
rapamycin (mTOR) (108), phosphatase and tensin homolog
(PTEN) and protein phosphatase 2A (PP2A) (109–111) as well
as essential metabolites (e.g. kynurenine and adenosine) (112,
113). The activation of costimulatory [such as tumor necrosis
factor receptor 2, TNFR2 (114)] or co-inhibitory receptors
including T cell immunoreceptor with Ig and ITIM domains
(TIGIT) (115) or programmed cell death 1 (PD-1) (116),
predominantly expressed on the surface of Treg cells, also have
the potential to promote the expansion and/or function of
certain Treg subsets more selectively (117). In addition,
interventions that preferentially inhibit pathogenic T cells over
Treg cells could be beneficial for the amelioration of
autoimmunity or graft rejection. For example, anti-CD3
antibody-mediated improvement of immune tolerance in
animal models and patients with AID has been associated with
the promotion of Treg cells, partially by selective Teff cell
depletion (118, 119).

In contrast to these non-specific immunomodulatory
therapies, multiple studies suggest that treatment with disease-
associated antigens can lead to the induction of antigen-specific
Treg cells without the risk of broad immunosuppression (120–
123). Several promising strategies to administer different kinds of
antigenic drugs have been shown to inhibit inflammation and
disease in preclinical models, but antigen delivery in human
studies did not result in the same level of clinical improvements
to date, with some of them even leading to worsening of disease
(124) (reviewed in (125)). However, some reports detected signs
of therapeutic benefit and induced immunotolerance which was
associated with the expansion of FOXP3+ Treg cells (122, 123).
In the phase 1/2 Pre-Point trial islet autoantibody-negative
children that were genetically at risk to develop T1D received
oral insulin for 3-18 months. Interestingly, insulin treatment led
to an immune response without unwanted hypoglycemia and
induced insulin- and proinsulin-responsive T cells that exhibited
characteristics of Treg cells, including FOXP3 expression and
May 2021 | Volume 12 | Article 661875

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Selck and Dominguez-Villar Antigen-Specific Treg Therapy in Autoimmunity
lack of CD127 and pro-inflammatory cytokines (122). Another
study reported improved C-peptide retention and lower insulin
use in new-onset T1D patients that were intradermally injected
with an immunodominant proinsulin peptide compared to a
placebo group (123). This clinical benefit was associated with
increased FOXP3 expression in Treg cells and higher levels of IL-
10 secretion following proinsulin stimulation. It is worth
mentioning that antigen administration in animal models of
T1D, EAE and collagen-induced arthritis have also resulted in
the generation of immunosuppressive IL-10 producing Tr1-like
cells (120, 126) which might as well be beneficial in human AID
(127, 128).
CHALLENGES AND IMPROVEMENTS OF
ANTIGEN-SPECIFIC TREG THERAPIES

In order to develop efficient antigen-specific Treg cell-based
treatments, disease-associated autoantigens must be well
identified and characterized. However, this has not been
achieved for many AID, including MS and psoriasis. The choice
of the most appropriate antigen is also limited by possible antigen
spreading following initial tissue damage, which could hinder the
success of therapies that are based on a single antigen. This hurdle
could potentially be overcome by targeting multiple self-antigens
at the same time (if applicable). Nevertheless, some studies suggest
that the exact definition of disease-initiating antigens might not
always be necessary as long as the administered intervention leads
to the accumulation of activated Treg cells in the affected
inflammatory tissues that can induce other immunoregulatory
populations in a contact-independent manner. This ‘infectious
tolerance’ has been observed in a murine model of colitis where
TNP-specific CAR Treg cells were able to reduce 2,4,6-
trinitrobenzene sulphonic acid (TNBS)-induced colitis (55).
Localized bystander suppression could be further supported by
the transgenic introduction of appropriate surface molecules that
are necessary for the migration of activated Treg cells into disease-
specific inflamed sites. While critical signals of Treg cell trafficking
to specific tissues remain insufficiently described, previous studies
suggest that lymphocytes require the expression of the chemokine
receptor CXCR3 in order to home to the brain of MS patients and
the pancreatic islets of patients with T1D (129, 130). Thus, both
efficacy and tolerability of Treg cell administration in these AID
could be enhanced by engineering CXCR3+ tissue-specific Treg
cells. On the other hand, patients suffering from psoriasis might
benefit from Treg cells expressing the homing receptors CCR4 and
cutaneous lymphocyte antigen (CLA) which are necessary for
migration into the skin (131, 132).

Importantly, uncertainties about the safety of Treg cell
infusions and in vivo immunomodulatory interventions still
remain and have to be investigated with caution. In particular,
the in vivo maintenance and suppressive function of in vitro
generated (polyclonal or antigen-specific) Treg populations is an
essential factor for the toxicity and efficacy of adoptive cell
therapies. While small molecules have been shown to enhance
the stability of iTreg cells in vitro, gene editing tools could be
Frontiers in Immunology | www.frontiersin.org 6
utilized to generate Treg cell populations with better resistance to
pathological Treg plasticity in inflammatory environments (133).
Such potential strategies could include overexpression of FOXP3
as aforementioned, or the knockout of molecules involved in
pro-inflammatory signaling pathways present in inflamed tissues
of autoimmunity. Notably, although the underlying mechanisms
of Treg deficiencies in many AID are not well understood,
human studies have reported that cytokines like IL-12 and IL-6
can induce defective Treg functions in vitro (19, 134). Hence,
ablation of receptors that bind these cytokines might avoid
pathological Treg instability following adoptive transfer.
Moreover, genetic engineering approaches could be utilized to
integrate suicide gene cassettes that can be activated in the case of
disease augmentation or severe adverse events caused by harmful
immune suppression, such as cancer development or chronic
infections (135).

On the other hand, combination therapies of Treg cell transfer
with immunomodulatory drugs that reduce autoimmune
inflammation or support Treg maintenance could reduce the risk
of Treg instability in vivo. Recently, a report demonstrated that
combinatory intervention with anti-CD3 antibody enabled
improved engraftment of autoantigen-specific Treg cells in the
islets of a mouse model of T1D (136). The potential of anti-CD3
combination has been further confirmed in the context of antigenic
peptide-based therapies with increased expansion of FOXP3+

insulin-specific Treg cells and more potent remission of murine
autoimmune diabetes upon nasal administration of proinsulin
combined with anti-CD3 treatment (137). In order to minimize
the risks of severe side effects caused by immunomodulatory drugs,
combination strategies that support the in vivo maintenance of
transferred Treg cells more selectively can also be envisioned. For
example, engineering of antigen-specific Treg cells with a mutant
IL-2 receptor might enable specific potentiation of these infused
cells in response to mutant IL-2 administration and thereby, avoid
the activation of pro-inflammatory cells by wild type IL-2 (138).

A major obstacle for the development of successful antigen-
specific Treg therapies is the substantial level of Treg cell
heterogeneity demonstrated by the expression of different
lineage-defining transcription factors, such as T-box expressed
in T cells (T-bet) (139), GATA-3 (140) or retinoic acid receptor-
related orphan receptor gamma (RORgt) (141), and varying
levels of cell surface molecules, including co-inhibitory/co-
stimulatory receptors such as PD-1 (142) and inducible T cell
costimulator [(ICOS) (143)], as well as chemokine receptors
including CXCR3 and L-selectin [(CD62L) (144–146)]. In
addition, Treg cells can mediate their immunosuppressive
effects via numerous mechanisms involving the secretion of
anti-inflammatory cytokines (147–150), IDO (151) and
granzymes (152, 153), the actions of the ectoenzymes such as
CD39 and CD73 (154) and multiple inhibitory molecules, such
as PD-1 (155) and CTLA-4 (156, 157). This suggests that at a
given time point distinct subpopulations of FOXP3+ Treg cells
can be identified in an individual with specialized functions and
maintenance requirements which might depend on their
developmental origin, the type of immune response they are
controlling (Th1, Th2, or Th17-mediated inflammation) (144),
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or the tissue they reside in. Tissue-resident Treg cells have been
found in multiple non-lymphoid tissues and organs of healthy
individuals (e.g. the skin, gut, lungs, liver, adipose tissue and
skeletal muscle) where they can control local inflammation, but
also contribute to normal tissue homeostasis during non-
inflammatory settings via mechanisms that are independent of
their immunosuppressive functions (158–160). However, the
critical maintenance factors and characteristics of tissue-
resident Treg cells during health and autoimmunity are still
largely unknown. Hence, it is uncertain whether antigen-specific
iTreg cells or antigen-based treatments can induce tissue-specific
mechanisms of Treg-mediated immune regulation and
tissue homeostasis.

Moreover, the underlying causes of numerical and/or
functional deficiencies of antigen-specific Treg cells in AID are
not well understood and might differ between patients suffering
from similar disease symptoms. This is a particularly important
factor in the context of autologous adoptive Treg cell therapy as
the administration of potentially defective Treg cells might not
result in a desired therapeutic outcome. Hence, it is crucial to
identify specific Treg defects in an individual and repair affected
pathways during the in vitro generation/expansion of antigen-
specific Treg cells before adoptive transfer. This personalized
strategy could include genetic editing of molecules involved in
Treg survival and fitness (such as pathways involved in IL-2
signaling and FOXP3 expression) as well as the insertion of
potentially underexpressed chemokine receptors (e.g. CXCR3,
CCR4, CLA) in order to increase their capacity to migrate into
disease-relevant tissues.
CONCLUSIONS

In order to develop safe and efficacious antigen-specific Treg
therapies, further in-depth studies of the biology of human Treg
cells during physiological homeostasis and autoimmune
Frontiers in Immunology | www.frontiersin.org 7
pathogenesis are needed. This requires new strategies to
characterize distinct Treg subsets, better approaches to identify
disease-relevant antigens and Treg defects as well as optimized
tools to investigate clinical outcomes. In particular, new Treg
biomarkers and technologies which can monitor the migratory
behavior and function of infused or endogenous Treg cells in
vivo are necessary to identify potential pitfalls that might limit
therapeutic benefits. Moreover, it is conceivable that patients
with AID might require subject-specific Treg-based treatments
that rely on the identification of the individual’s underlying Treg
deficiency. Nonetheless, the limitations of autologous Treg cell
therapies could be circumvented by the use of allogeneic Treg
populations with optimal MHC matching. In addition, the
creation of universal Treg donor lines by genetic alterations of
MHC molecules constitutes a possible strategy that deserves
further investigation (discussed in (161)). Together with the
ongoing efforts to develop technologies to optimally engineer
human Tregs, future studies on the molecular and cellular
mechanisms that control human Treg function, stability and
maintenance will be critical to optimize current Treg cell-based
treatments and to identify new Treg-specific targets amenable to
therapeutic intervention.
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