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Abstract: Tanshinones, the major bioactive components in Salvia miltiorrhiza Bunge (Danshen),
are synthesized via the mevalonic acid (MVA) pathway or the 2-C-methyl-D-erythritol-4-phosphate
(MEP) pathway and the downstream biosynthesis pathway. In this study, the bacterial component
lipopolysaccharide (LPS) was utilized as a novel elicitor to induce the wild type hairy roots of
S. miltiorrhiza. HPLC analysis revealed that LPS treatment resulted in a significant accumulation of
cryptotanshinone (CT) and dihydrotanshinone I (DTI). qRT-PCR analysis confirmed that biosynthesis
genes such as SmAACT and SmHMGS from the MVA pathway, SmDXS and SmHDR from the MEP
pathway, and SmCPS, SmKSL and SmCYP76AH1 from the downstream pathway were markedly
upregulated by LPS in a time-dependent manner. Furthermore, transcription factors SmWRKY1 and
SmWRKY2, which can activate the expression of SmDXR, SmDXS and SmCPS, were also increased by
LPS. Since Ca2+ signaling is essential for the LPS-triggered immune response, Ca2+ channel blocker
LaCl3 and CaM antagonist W-7 were used to investigate the role of Ca2+ signaling in tanshinone
biosynthesis. HPLC analysis demonstrated that both LaCl3 and W-7 diminished LPS-induced
tanshinone accumulation. The downstream biosynthesis genes including SmCPS and SmCYP76AH1
were especially regulated by Ca2+ signaling. To summarize, LPS enhances tanshinone biosynthesis
through SmWRKY1- and SmWRKY2-regulated pathways relying on Ca2+ signaling. Ca2+ signal
transduction plays a key role in regulating tanshinone biosynthesis in S. miltiorrhiza.
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1. Introduction

Salvia miltiorrhiza Bunge, also known as danshen, is a widely used Chinese herbal medicine
for treating cardiovascular and cerebrovascular diseases [1]. The primary bioactive ingredients
of S. miltiorrhiza comprises salvianolic acids and tanshinones. In these secondary metabolites,
tanshinones have received extensive attention for their multiple pharmacological properties, including
cardioprotective effects, antitumor activity, anti-inflammatory activity and antibacterial activity [1,2].
The valuable tanshinones consist of tanshinone I (TI), tanshinone IIA (TIIA), tanshinone IIB (TIIB),
cryptotanshinone (CT), dihydrotanshinone I (DTI), etc.
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In S. miltiorrhiza, tanshinone biosynthesis experiences a complicated process. Based on metabonomics
and genomics research, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP)
have been identified as the precursors of tanshinones. These two compounds can be generated
either from the mevalonic acid (MVA) pathway or the 2-C-methyl-D-erythritol-4-phosphate (MEP)
pathway [2]. In the MVA pathway, two molecules of acetyl-CoA are formed to acetoacetyl-CoA by
acetyl-CoA C-acetyltransferase (AACT), firstly. Then, 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA)
is synthesized through adding another acetyl-CoA by 3-hydroxy-3-methylglutaryl-CoA synthase
(HMGS). HMG-CoA is further reduced to MVA by 3-hydroxy-3-methylglutaryl-CoA reductase
(HMGR). Subsequently, MVA is catalyzed in turn by mevalonate kinase (MK), 5-phosphomevalonate
kinase (PMK) and MVAPP decarboxylase (MDC) to generate key intermediate IPP. IPP can
be transformed to another precursor DMAPP by isopentenyl-diphosphate deltaisomerase (IPPI).
In the MEP pathway, the initial reactants pyruvate and glyceraldehyde 3-phosphate (GA-3P)
are catalyzed by 1-deoxy-D-xylulose 5-phosphate synthase (DXS) to form 1-deoxy-D-xylulose
5-phosphate (DXP). Then, DXP is reduced to MEP catalyzed by DXP reductoisomerase
(DXR). In the rest of the reactions, there are five enzymes contributing to IPP and DMAPP
synthesis, including 2-C-methyl-D-erythritol-4-phosphate cytidyl transferase (MCT), 4-(cytidine
5-diphospho)-2-C-methyl-D-erythritol kinase (CMK), 2-C-methyl-D-erythritol-2,4-cyclodiphosphate
synthase (MDS), 1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate (HMBPP) synthase (HDS),
and HMBPP reductase (HDR) [2,3].

In the subsequent cyclization reactions, IPP and DMAPP are transformed into ferruginol catalyzed
in turn by copalyl diphosphate synthase (CPS), kaurene synthase-like (KSL) and cytochrome P450
monooxygenase (CYP76AH1). During the last stage, ferruginol is eventually transformed into different
tanshinones through some undefined reactions [4].

Recently, researchers have improved the content of tanshinones in S. miltiorrhiza through various
strategies, including elicitor treatment, hormone signal regulation, overexpression of key biosynthesis
genes, and transcriptional regulation [3,5,6]. Nevertheless, few studies have illustrated the role of
Ca2+ signaling in tanshinone biosynthesis. In plant cells, calcium acts not only as an essential nutrient,
but also as a crucial second messenger. When confronted with diverse abiotic and biotic stresses, plant
cells generate a cytoplasmic Ca2+ signal, which can be decoded by calcium sensors such as calmodulin
(CaM), calmodulin-like proteins (CMLs), Ca2+-dependent protein kinases (CDPKs), and calcineurin
B-like proteins (CBLs) to regulate numerous downstream metabolic reactions [7,8].

Notably, Ca2+ signaling is closely related to secondary metabolism in plants [9–12]. For instance,
through binding with a Ca2+-CaM complex, transcription factor CAMTA3 promotes the production
of glucosinolates, which are defensive compounds against herbivores [9,10]. The biosynthesis of
salicylic acid (SA) is controlled by CaM-binding transcription factors such as CBP60g, SARD1 and
CAMTA3 [11,12]. Our previous studies have shown that Ca2+ signaling is essential to the SA-induced
rosmarinic acid accumulation in S. miltiorrhiza [13]. Therefore, Ca2+ signaling can act as a vital player
to regulate secondary metabolite biosynthesis.

Here, we focused on the regulation of secondary metabolism by Ca2+ signaling. In this study,
bacterial endotoxin lipopolysaccharide (LPS), which is a characteristic glycolipid component of a
Gram-negative bacteria cell wall and is a stimulator of pathogen-associated molecular pattern (PAMP)
triggered immunity (PTI) [14–16], was utilized as an elicitor to treat the wild type hairy roots of
S. miltiorrhiza. We found that LPS treatment significantly upregulated the expression of key tanshinone
biosynthesis genes and enhanced the accumulation of tanshinones in hairy roots. Due to LPS-triggered
PTI depending on Ca2+ signaling in plant cells [15], the Ca2+ channel blocker LaCl3 and CaM antagonist
W-7 were also used to analyze the role of Ca2+ signaling in tanshinone biosynthesis. These results
demonstrate that LPS enhances tanshinone biosynthesis in a Ca2+-dependent manner and suggest that
Ca2+ signal transduction is essential for modulating secondary metabolism in S. miltiorrhiza.
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2. Results

2.1. LPS Enhances Tanshinone Accumulation in the Wild Type Hairy Roots of S. miltiorrhiza

Since the biosynthesis of secondary metabolites might be induced by microorganisms, the bacterial
component LPS was applied as a novel elicitor to treat the wild type (WT) hairy roots of S. miltiorrhiza.
After being treated by 50 µg/mL LPS for 10 days, the hairy roots and the culture medium showed a deep
red color, which is the characteristic color of tanshinones (Figure 1A). Compared to the control, LPS did
not obviously affect the growth of hairy roots (Figure 1A). Further, the content of the tanshinones,
including dihydrotanshinone I (DTI), cryptotanshinone (CT), tanshinones I (TI) and tanshinones
IIA (TIIA), was analyzed by HPLC. When the hairy roots were treated by LPS, the content of DTI
significantly increased from 0.38 mg/g to 0.86 mg/g in contrast to the control (Figure 1B), and the content
of CT increased from 0.62 mg/g to 0.9 mg/g (Figure 1C). However, the content of TI and TIIA showed
no significant change (Figure 1D,E). These results indicate that LPS can induce the accumulation of
DTI and CT without markedly inhibiting the growth of S. miltiorrhiza WT hairy roots.
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induced by LPS, the transcripts levels of SmAACT and SmHMGS were obviously upregulated at 6 h 
(Figure 2B,C). Similarly, SmDXS and SmHDR showed the same response to LPS treatment (Figure 
2D,E). In the confirmed biosynthesis pathway of tanshinones, SmCPS, SmKSL and SmCYP76AH1 are 
located downstream the MVA and MEP pathways (Figure 2A). Notably, the expression of these three 
genes also increased along with LPS treatment (Figure 2F–H). SmCPS and SmCYP76AH1 were 
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Figure 1. Lipopolysaccharide (LPS) enhances tanshinone accumulation in the wild type (WT) hairy
roots of S. miltiorrhiza. (A) LPS-treated WT hairy roots of S. miltiorrhiza. The hairy roots were treated by
50 µg/mL LPS for 10 days. H2O was used as a control. (B–E) The content of tanshinones in LPS-treated
hairy roots. The content of the tanshinones was analyzed by HPLC and presented by the means ± SD.
The significant differences between different groups were calculated by the Student’s t-test. (**) indicates
a very significant difference (p ≤ 0.01). TI, tanshinone I; TIIA, tanshinone IIA; CT, cryptotanshinone;
DT, dihydrotanshinone.

2.2. LPS Upregulates Key Gene’s Expression in Tanshinone Biosynthesis Pathways

To elucidate the regulation mechanism of LPS, the key biosynthesis genes of tanshinones were
analyzed by qRT-PCR. In the biosynthesis pathways of tanshinones, SmAACT and SmHMGS are from
the MVA pathway, and SmDXS and SmHDR are from the MEP pathway (Figure 2A). After being
induced by LPS, the transcripts levels of SmAACT and SmHMGS were obviously upregulated at 6 h
(Figure 2B,C). Similarly, SmDXS and SmHDR showed the same response to LPS treatment (Figure 2D,E).
In the confirmed biosynthesis pathway of tanshinones, SmCPS, SmKSL and SmCYP76AH1 are located
downstream the MVA and MEP pathways (Figure 2A). Notably, the expression of these three genes
also increased along with LPS treatment (Figure 2F–H). SmCPS and SmCYP76AH1 were especially
upregulated by LPS in a time-dependent manner (Figure 2F,H).
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SmWRKY1 can bind with the promoter of SmDXR, and SmWRKY2 can bind with SmDXS and SmCPS, 
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upregulated the transcript levels of SmWRKY1 and SmWRKY2 in the same time-dependent manner. 
The expression of these transcription factors responded to LPS and reached a peak at 6 h (Figure 
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SmWRKY1 and SmWRKY2. 

Taken together, the secondary metabolite tanshinones can be induced by the immune regulator 
LPS. LPS enhances tanshinone accumulation through stimulating SmWRKY1- and SmWRKY2-
regulated gene expression in tanshinone biosynthesis pathways. 

Figure 2. LPS upregulates the expression of key tanshinone biosynthesis genes in the WT hairy roots
of S. miltiorrhiza. (A) The biosynthesis pathways of tanshinones in S. miltiorrhiza. (B,C) The relative
expression levels of key genes in the MVA pathway. The transcript levels of SmAACT and SmHMGS
were analyzed by qRT-PCR using SmACT for normalization. (D,E) The relative expression levels of key
genes in the MEP pathway. The transcript levels of SmDXS and SmHDR were analyzed by qRT-PCR
using SmACT for normalization. (F–H) The relative expression levels of key downstream genes in
tanshinone biosynthesis. The transcripts levels of SmCPS, SmKSL and SmCYP76AH1 were analyzed by
qRT-PCR using SmACT for normalization. (B–H) The hairy roots were treated by 50 µg/mL LPS in a
time gradient. The gene’s expression level of 0 h was set to 1. The expression value of genes is shown
as the means ± SD.

To further explore the stimulation mechanism of these biosynthesis genes by LPS, the expression of
transcription factors SmWRKY1 and SmWRKY2 was analyzed by qRT-PCR. In S. miltiorrhiza, SmWRKY1
can bind with the promoter of SmDXR, and SmWRKY2 can bind with SmDXS and SmCPS, to positively
regulate tanshinone biosynthesis [5,17,18]. Our further analysis indicated that LPS upregulated the
transcript levels of SmWRKY1 and SmWRKY2 in the same time-dependent manner. The expression of
these transcription factors responded to LPS and reached a peak at 6 h (Figure 3A,B). Hence, SmDXS,
SmCPS and SmDXR can be highly transcribed due to the activation of SmWRKY1 and SmWRKY2.

Taken together, the secondary metabolite tanshinones can be induced by the immune regulator LPS.
LPS enhances tanshinone accumulation through stimulating SmWRKY1- and SmWRKY2-regulated
gene expression in tanshinone biosynthesis pathways.
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Figure 3. LPS upregulates the expression of SmWRKY1 and SmWRKY2 in the WT hairy roots of
S. miltiorrhiza. (A,B) The relative expression levels of SmWRKY1 and SmWRKY2 were analyzed by
qRT-PCR using SmACT for normalization. The hairy roots were treated by 50 µg/mL LPS in a time
gradient. The gene’s expression level of 0 h was set to 1. The expression value of genes is shown as the
means ± SD.

2.3. Ca2+ Inhibitors Affect Tanshinone Accumulation

Ca2+ signal transduction is essential for the LPS-triggered plant immune response [15]. Thus,
three Ca2+ signal inhibitors, including Ca2+ channel blocker LaCl3, CaM antagonist W-7 and Ca2+

chelator EGTA, were applied to analyze the role of Ca2+ signaling in tanshinone biosynthesis [15,19].
Since tanshinones can generate a deep red color in the roots of S. miltiorrhiza, we preliminarily observed
the color of the hairy roots treated by different Ca2+ reagents. As shown in Figure 4A,B, the hairy roots
treated by 1 mmol/L LaCl3 apparently showed a light color compared to the H2O control. Similarly,
100 µmol/L W-7 also led to light color in contrast to the DMSO control. Nevertheless, 1mmol/L EGTA
did not obviously affect the color of the hairy roots compared to the H2O control. These results
suggest that Ca2+ signaling is closely associated with tanshinone biosynthesis. The accumulation of
tanshinones might be inhibited by blocking Ca2+ influx or repressing CaM-mediated signaling in the
hairy roots of S. miltiorrhiza.

Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 5 of 15 

 

 
Figure 3. LPS upregulates the expression of SmWRKY1 and SmWRKY2 in the WT hairy roots of S. 
miltiorrhiza. (A,B) The relative expression levels of SmWRKY1 and SmWRKY2 were analyzed by qRT-
PCR using SmACT for normalization. The hairy roots were treated by 50 μg/mL LPS in a time 
gradient. The gene’s expression level of 0 h was set to 1. The expression value of genes is shown as 
the means ± SD. 

2.3. Ca2+ Inhibitors Affect Tanshinone Accumulation 

Ca2+ signal transduction is essential for the LPS-triggered plant immune response [15]. Thus, 
three Ca2+ signal inhibitors, including Ca2+ channel blocker LaCl3, CaM antagonist W-7 and Ca2+ 

chelator EGTA, were applied to analyze the role of Ca2+ signaling in tanshinone biosynthesis [15,19]. 
Since tanshinones can generate a deep red color in the roots of S. miltiorrhiza, we preliminarily 
observed the color of the hairy roots treated by different Ca2+ reagents. As shown in Figure 4A,B, the 
hairy roots treated by 1 mmol/L LaCl3 apparently showed a light color compared to the H2O control. 
Similarly, 100 μmol/L W-7 also led to light color in contrast to the DMSO control. Nevertheless, 
1mmol/L EGTA did not obviously affect the color of the hairy roots compared to the H2O control. 
These results suggest that Ca2+ signaling is closely associated with tanshinone biosynthesis. The 
accumulation of tanshinones might be inhibited by blocking Ca2+ influx or repressing CaM-mediated 
signaling in the hairy roots of S. miltiorrhiza. 

 
Figure 4. Ca2+ inhibitors affect tanshinone accumulation in the WT hairy roots of S. miltiorrhiza. (A) 
The culture medium of different treated hairy roots. (B) The different treated hairy roots. (A,B) The 
hairy roots were treated by 1 mmol/L LaCl3, 100 μmol/L W-7 and 1mmol/L EGTA for 10 days, 
respectively. H2O was the control of LaCl3 and EGTA. DMSO was the control of W-7. 

2.4. Ca2+ Channel Blocker Inhibits LPS-Induced Tanshinone Accumulation 

LaCl3 is capable of suppressing cytoplasmic Ca2+ elevation via blocking Ca2+ influx [15,19]. Thus, 
LaCl3 was synergistically utilized with LPS to analyze the role of Ca2+ signaling in tanshinone 

Figure 4. Ca2+ inhibitors affect tanshinone accumulation in the WT hairy roots of S. miltiorrhiza. (A) The
culture medium of different treated hairy roots. (B) The different treated hairy roots. (A,B) The hairy
roots were treated by 1 mmol/L LaCl3, 100 µmol/L W-7 and 1mmol/L EGTA for 10 days, respectively.
H2O was the control of LaCl3 and EGTA. DMSO was the control of W-7.
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2.4. Ca2+ Channel Blocker Inhibits LPS-Induced Tanshinone Accumulation

LaCl3 is capable of suppressing cytoplasmic Ca2+ elevation via blocking Ca2+ influx [15,19].
Thus, LaCl3 was synergistically utilized with LPS to analyze the role of Ca2+ signaling in tanshinone
biosynthesis. As shown in Figure 5A, the LPS-treated hairy roots showed the deepest color and
LaCl3 treatment resulted in the lightest color. LPS-induced deep red was apparently decreased by
LaCl3 synergetic treatment (Figure 5A). Further, the content of tanshinones was examined by HPLC.
Compared to the LPS treatment, the content of DTI in the LaCl3+LPS-treated sample significantly
reduced from 0.71 mg/g to 0.28 mg/g, and CT reduced from 0.88 mg/g to 0.63 mg/g (Figure 5B,C).
The LPS+LaCl3 treatment also led to a significant reduction in TI and TIIA in a similar way (Figure 5D,E).
These results confirmed that with the inhibition of Ca2+ influx by LaCl3, LPS-induced tanshinone
accumulation was accordingly diminished. Therefore, the Ca2+ influx signal is involved in regulating
tanshinone accumulation.
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Figure 5. LaCl3 affects tanshinone accumulation in the WT hairy roots of S. miltiorrhiza. (A) The cultures
of treated hairy roots. The WT hairy roots were treated by 50 µg/mL LPS, 1 mmol/L LaCl3 and 50 µg/mL
LPS + 1 mmol/L LaCl3 for 10 days. H2O was used as a control. (B–E) The content of tanshinones in
treated hairy roots. The content of tanshinones in H2O, LPS, LaCl3 and LPS+LaCl3 treated hairy roots
was analyzed by HPLC. The bars are shown as the means ± SD. The significant differences between
different groups were calculated by the Student’s t-test. (**) indicates a very significant difference
(p ≤ 0.01).
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2.5. CaM Antagonist Inhibits LPS-Induced Tanshinone Accumulation

CaM serves as a crucial sensor in Ca2+ signal transduction. Through binding with Ca2+,
the Ca2+-CaM complex interacts with target proteins such as CNGC, CDPK, and MAPK to regulate
numerous metabolism reactions [8,20]. Hence, the CaM antagonist W-7 was utilized to corporately
treat hairy roots with LPS. As shown in Figure 6A, W-7 treatment partly decreased the LPS-induced
deep red of the hairy roots and generated the lightest color, while showing no obvious growth
inhibition. Compared to LPS treatment, the content of DTI, CT and TI significantly declined from
0.52 mg/g to 0.23 mg/g, 1.15 mg/g to 0.52 mg/g, and 0.29 mg/g to 0.20 mg/g in LPS+W-7 treated hairy
roots (Figure 6B–D). Notably, the separate W-7 treatment resulted in extreme inhibition of these four
tanshinones, especially CT and TI (Figure 6B–E). Taken together, CaM-mediated signaling is essential
for LPS-induced tanshinone accumulation in S. miltiorrhiza hairy roots.
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Figure 6. W-7 affects tanshinone accumulation in the WT hairy roots of S. miltiorrhiza. (A) The cultures
of treated hairy roots. The WT hairy roots were treated by 50 µg/mL LPS, 100 µmol/L W-7 and 50 µg/mL
LPS + 100 µmol/L W-7 for 10 days, DMSO was used as a control. (B–E) The content of tanshinones in
treated hairy roots. The content of tanshinones in DMSO, LPS, W-7 and LPS+W-7 treated hairy roots
was analyzed by HPLC. The bars are shown as the means ± SD. The significant differences between
different groups were calculated by the Student’s t-test. (**) indicates a very significant difference
(p ≤ 0.01).
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2.6. LPS Induces the Expression of Key Tanshinone Biosynthesis Genes in a Ca2+-Dependent Manner

To further investigate the role of Ca2+ signaling in tanshinone biosynthesis, the expression
levels of key genes in LPS and LaCl3 treated WT hairy roots were analyzed by qRT-PCR. When
synergistically treated by LaCl3 and LPS for 6 h, the expression levels of SmCPS and SmCYP76AH1
reduced approximately 40-fold and 37-fold, respectively, compared to the LPS separate treatment
(Figure 7A,B). However, SmHDR and SmDXS did not show apparent reduction by LaCl3+LPS
treatment (Figure 7C,D). Comparatively, LaCl3 preferentially inhibits the downstream genes (SmCPS
and SmCYP76AH1) in tanshinone biosynthesis pathways. This suggests that the downstream genes of
the tanshinone biosynthesis pathway are more likely to be regulated by Ca2+ signaling than the MEP
pathway genes.
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Figure 7. LaCl3 regulates the expression of downstream tanshinone biosynthesis genes. (A,B) The
expression of SmCPS and SmCYP76AH1 in treated hairy roots. The WT hairy roots were treated by
50 µg/mL LPS and 50 µg/mL LPS + 1 mmol/L LaCl3 for 6 h. H2O was used as a control. SmCPS and
SmCYP76AH1 were analyzed by qRT-PCR using SmACT for normalization. The expression value of
genes is shown as the means ± SD. (C,D) The expression of SmDXS and SmHDR in treated hairy roots.
The expression of SmDXS and SmHDR were analyzed by qRT-PCR using SmACT for normalization.
(A–D) The gene’s expression level of 0 h was set to 1. The expression value of genes is shown as the
means ± SD. The significant differences between different groups were calculated by the Student’s
t-test. (**) indicates a very significant difference (p ≤ 0.01).

Therefore, we present the mechanism of LPS-induced tanshinone biosynthesis in Figure 8. Firstly,
LPS induces the generation of Ca2+ signaling in the cytoplasm, which is accordingly decoded by the
Ca2+-dependent regulators. Then, SmWRKY1 and SmWRKY2 are upregulated and activated by some
undefined Ca2+-dependent regulators. Eventually, the key biosynthesis genes of tanshinones such as
SmCPS, SmDXS, SmDXR and SmCYP76AH1 are transcribed in a high level that in turn synthesizes the
tanshinones in the hairy roots of S. miltiorrhiza.
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Figure 8. The diagram of LPS-induced tanshinone biosynthesis in S. miltiorrhiza. LPS induces tanshinone
biosynthesis in a Ca2+-dependent manner. Firstly, LPS treatment leads to a Ca2+ elevation signal
in the cytoplasm. Then, the transcription factors SmWRKY1 and SmWRKY2 are activated by some
undetermined Ca2+-related regulators. Finally, key tanshinone biosynthesis genes are upregulated by
SmWRKY1 and SmWRKY2 resulting in tanshinone accumulation in hairy roots of S. miltiorrhiza.

3. Discussion

The dry roots of S. miltiorrhiza (Danshen) have been used in Traditional Chinese Medicine (TCM)
since 200–300AD [2]. Because of slow growth and a low content of bioactive components, the wild
resources of S. miltiorrhiza cannot meet the growing requirements from pharmaceutical markets.
Therefore, improving the content of pharmacological ingredients is the main purpose of metabolic
research. Up to now, many approaches have been applied to enhance the content of phenolic acids
and tanshinones in S. miltiorrhiza [21]. In this study, the bacterial component lipopolysaccharide (LPS)
was utilized as a novel elicitor to induce the wild type hairy roots of S. miltiorrhiza. According to the
biosynthesis pathway of tanshinones, cryptotanshinone (CT) is the first tanshinone to be generated,
and then tanshinone IIA (TIIA), tanshinone IIB (TIIB), tanshinone I (TI), and dihydrotanshinone I
(DTI) [3,22]. We have found that LPS significantly enhances the accumulation of tanshinones CT and
DTI. Furthermore, the gene expression analysis has shown that key genes from the MVA pathway
(SmAACT, SmHMGS), the MEP pathway (SmDXS, smHDR) and the downstream biosynthesis pathway
(SmCPS, SmKSL, SmCYP76AH1) respond to LPS treatment in a time-dependent manner. These results
demonstrate that LPS is capable of activating key genes’ expression in the tanshinone biosynthesis
process. It is worth noting that LPS does not obviously inhibit the growth of hairy roots. Thus, LPS can
be applied as a positive elicitor to enhance the content of tanshinones without affecting the growth of
the S. miltiorrhiza hairy roots. This is valuable for increasing the content of metabolites.

In S. miltiorrhiza, researchers have promoted the content of tanshinones via pathway engineering
such as SmGGPPS-SmDXS2 [23], SmHMGR-SmDXR [24]; or overexpression of key transcription factors
including SmMYB98 [25], SmMYB36 [26], SmWRKY1 [17], SmWRKY2 [5], and SmbHLH3 [6]. Previous
studies have confirmed that SmDXS2 and SmCPS are the target genes of SmWRKY2 [5], and SmDXR is
the target of SmWRKY1 [17]. Our results have further shown that SmWRKY1 and SmWRKY2 were
upregulated by LPS in the same manner as SmCPS, SmDXS2, SmCYP76AH1, etc. Therefore, we deduce
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that LPS promotes tanshinone biosynthesis through activating the SmWRKY1,2-SmCPS, SmDXS2,
SmDXR pathway. In plants, WRKY transcription factors act as a key regulator in response to diverse
abiotic and biotic stresses [18,27], including PAMP triggered immunity (PTI) [28,29]. WRKYs can
interact with Ca2+-related regulators to regulate immune reactions, such as CPK and calmodulin [30–33].
These suggest that tanshinone metabolism is closely related with Ca2+ signaling and might be regulated
in a similar way by immunity responding reactions.

The bacterial component LPS is an immune activator. It is capable of inducing cytoplasm Ca2+

elevation, which is essential for the plant innate immune response [15,34]. To analyze the role of
Ca2+ signaling in tanshinone biosynthesis, S. miltiorrhiza hairy roots were collaboratively treated by
LPS and Ca2+ inhibitors. Both Ca2+ channel blocker LaCl3 and CaM antagonist W-7 can significantly
inhibit the accumulation of tanshinones. Further analysis has shown that the downstream biosynthetic
genes (SmCPS, SmCYP76AH1) are presumably regulated by Ca2+ signaling in priority. Based on these
data, we present the pathway of LPS-induced tanshinone biosynthesis as Ca2+ signal-Ca2+-dependent
regulators-SmWRKY1,2-downstream genes axis in S. miltiorrhiza. Our study provides a new insight
into the essential role of Ca2+ signaling in tanshinone biosynthesis. However, the exact mechanism of
how SmWRKY1 and SmWRKY2 are modulated by Ca2+-dependent regulators remains unresolved.
In the future, searching for the Ca2+-dependent master regulators, which are capable of activating
SmWRKY1 and SmWRKY2, might be the key to uncovering the mechanism of Ca2+-mediated tanshinone
biosynthesis in S. miltiorrhiza. For the purpose of promoting the content of valuable metabolites,
the Ca2+ transduction pathway might be the potential regulation target.

Based on our findings, the LPS-induced Ca2+ signal is highly associated with ion influx sourced
from apoplast. In plant tissues, the arabinogalactan proteins (AGPs), negatively charged and anchored
to the extracellular side of the plasma membrane, can reversibly bind with Ca2+ and hypothetically serve
as the calcium capacitor [35]. Triggered by a low pH related to plasma membrane (PM) H+-ATPases,
the AGPs-Ca2+ complex can release free Ca2+ into the cell-surface apoplast and in turn lead to [Ca2+]cyt

signal generation [35]. In recent in-depth research, knockouts of the key β-glucuronosyltransferases
(GlcATs), which are responsible for adding glucuronic acid (GlcA) to AGPs, resulted in reduced
AGPs glucuronidation, impaired Ca2+ signaling and consequent deficient plant development [36,37].
This AGPs-Ca2+ interaction model highlights the crucial role of the proton pump in modulating Ca2+

signaling. The post-translational regulation, especially phosphorylation, is central to alternating PM
H+-ATPases between the auto-inhibited state and active state [38]. For instance, fusicoccin, the secreta
of fungi Fusicoccum amygdali, is able to activate plant PM H+-ATPases by increasing the phosphorylation
level [38,39]. Notably, LPS-induced phosphorylation of key proteins such as AMPK [40], p53 [41]
and mTOR [42], has been proved by massive studies in animals. In plants, LPS might similarly
regulate phosphorylation of crucial proteins and might be a potential activator of PM H+-ATPases.
Thus, we further hypothesize that LPS induces Ca2+ influx via the regulation of PM H+-ATPases.
The phosphorylation modification of PM H+-ATPases could be the key to uncover LPS-generated Ca2+

influx in S. miltiorrhiza.
In addition, in comparison with the elaborated studies in animals, LPS-regulated pathways in

plants are still elusive. Up to date, several proteins including AtLBR1,2 (LPS binding protein) and
OsCERK1 (LysM-type receptor-like kinase) have been determined as the key players in LPS-induced
immune responses [43,44]. However, the potential correlations between these LPS-related regulators
and secondary metabolism have not been deeply elucidated. Consequently, the regulatory network of
LPS in plants still needs to be illuminated by more comprehensive research in the future.

4. Materials and Methods

4.1. Reagents

Lipopolysaccharides (L9143) and LaCl3 (449830) were from Sigma-Aldrich (St. Louis, MO, USA)
and were dissolved in sterile water. W-7 (N-(6-Aminohexyl)-5-chloro-1-naphthalenesulfonamide
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Hydrochloride) (N136431) was from Aladdin (Shanghai, China) and was dissolved in DMSO.
The SteadyPure Plant RNA Extraction Kit (AG21019), the Evo M-MLV RT Kit with gDNA Clean for
qPCR (AG11601), and the SYBR® Green Premix Pro Taq HS qPCR Kit (AG11701) were from Accurate
Biotechnology(Changsha, China). Acetonitrile and methyl alcohol for HPLC analysis were from TEDIA
(Fairfield, OH, USA). The standards of DT, CT, TI and TIIA were from Herbpurify (Chengdu, China).

4.2. Hairy Roots Culture and Treatment

The S. miltiorrhiza wild type (WT) hairy roots were generated by Agrobacterium rhizogenes
(ATCC15834). The generation and culture of hairy roots were based on previous research [45].
Before analysis, hairy roots weighing 0.3 g were cultured in 50 mL 6, 7-V liquid medium [46] containing
an amount of 30 g/L sucrose for 21 days at 25 ◦C. LPS and other reagents were added into the culturing
medium on the 10th day, and then the hairy roots were harvested on the 21st day. The hairy roots were
dried at 45 ◦C for 4 days before HPLC analysis.

4.3. Reverse Transcription and Quantitative Real-Time PCR Analysis

To investigate the expression of key biosynthesis genes, the WT hairy roots were treated by
50 µg/mL LPS in a time gradient, and the 0 h treatment was used as a control. The total RNAs of
the control and LPS-treated hairy roots were extracted by a SteadyPure Plant RNA Extraction Kit
(AG21019). Total RNA (1 µg) was reversely transcribed by an Evo M-MLV RT Kit (with gDNA Clean)
(AG11601). The gene expression was analyzed by a SYBR® Green Premix Pro Taq HS qPCR Kit
(AG11701). qRT-PCR was conducted on a real-time PCR system (Bio-RAD CFX96, Hercules, CA, USA).
SmACT was used as a reference gene. The relative expression level of a gene was calculated by the
2−∆∆Ct method. The gene’s expression level of 0 h was set to 1. Gene-specific primers were shown in
the Appendix A Table A1.

To investigate the regulation of Ca2+ signaling in gene expression, the WT hairy roots were treated
by 50 µg/mL LPS and 50 µg/mL LPS + 1 mmol/L LaCl3 for 6 h, and H2O was used as a control. The total
RNAs of the control and the different treated hairy roots were extracted, reversely transcribed and
analyzed by qRT-PCR, as mentioned above. The gene’s expression level of control at 0 h was set to 1.

4.4. HPLC Analysis

The dried hairy roots powder (0.02 g) was extracted by 70% methyl alcohol (4 mL) overnight
and treated by ultrasonic for 45 min. Then, the mixture was centrifuged at 10,000 rpm for 10 min.
The supernatant was filtered through a 0.45 µm membrane before HPLC analysis. The content of DTI,
CT, TI and TIIA was determined by the Waters 1525/2489 HPLC system (Milford, MA, USA) equipped
with an InertSustain® C18 column (5 um, 250 mm × 4.6 mm, SHIMADZU-GL, Tokyo, Japan).

The HPLC operation software was Empower 2. The detection wavelength for tanshinones was
270 nm. Elution gradients are as follows (A: acetonitrile; B: 0.02% phosphoric acid solution): 0–10 min,
5–20% A; 10–15 min, 20–22% A; 15–20 min, 22–25% A; 20–28 min, 25–30% A; 28–40 min, 30–35% A;
40–45 min, 35–45% A; 45–50 min, 45–50% A; 50–58 min, 50–58% A; 58–67 min, 58–50% A; 67–70 min,
50–60% A; 70–80 min, 60–70% A; 80–85 min, 70–100% A; 85–95 min, 100–5% A. The column temperature
was set at 30 ◦C. The flow rate was set as 1 mL/min.

4.5. Statistical Analysis

All experiments were conducted over three times. The results were described as the mean ±
standard deviation (SD). The significant differences between different groups were calculated by the
Student’s t-test. (*) indicates a significant difference (0.01 < p < 0.05). (**) indicates a very significant
difference (p ≤ 0.01).
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5. Conclusions

On the basis of the data in this study, we proposed the model of LPS-enhanced tanshinone
biosynthesis in S. miltiorrhiza. Firstly, LPS induces a cytoplasmic Ca2+ signal which consequently
activates the expression of the transcription factors SmWRKY1 and SmWRKY2 via some undefined
Ca2+ sensors. Then, the key biosynthesis genes of tanshinones are upregulated by SmWRKY1 and
SmWRKY2. To summarize, the Ca2+ signal-Ca2+-dependent regulators-SmWRKY1,2-downstream
genes axis might be central to regulate tanshinone biosynthesis in S. miltiorrhiza.
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Appendix A

Table A1. Primers for qRT-PCR.

Primer Sequence (5′–3′)

SmACT-F GGTGCCCTGAGGTCCTGTT
SmACT-R AGGAACCACCGATCCAGACA

SmAACT1-F TGAAGGACGGACTCTGGGATGT
SmAACT1-R CCTTGTCAACAATGGTGGATGG

SmCPS1-F CCACATCGCCTTCAGGGAAGAAAT
SmCPS1-R TTTATGCTCGATTTCGCTGCGATCT

SmCYP76AH1-F ACGCATCACTTCACCCATCTCA
SmCYP76AH1-R ATTGCCGACTCATCCACGAT

SmDXS2-F CTCACGGTCGCATTGCATCAT
SmDXS2-R CGCTTTCGTCTCGTTTAGGGA
SmHDR1-F GGATTTGACCCGGACAAGGAT
SmHDR1-R CCGCCAATGACTAGGATGAGA

SmHMGS1-F TTAGGGCGAATCACATGGCTCA
SmHMGS1-R TCGGCATCCAAGATCGAGAAC

SmKSL1-F TGGAAACAGTGTGACCCTTCTGCT
SmKSL1-R GCTTGCATACAAATAACACCCAATCCT

SmWRKY1-F ACCTACAACGGCCAACACACT
SmWRKY1-R TCGTCCGGTGTTTTCATTTG
SmWRKY2-F ACTCATCCAAGCTGTCCGGT
SmWRKY2-R ATTCATTGTTCCGTTTGAGCC
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