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ABSTRACT

Motivation: Scholarly biomedical publications report on the findings
of a research investigation. Scientists use a well-established
discourse structure to relate their work to the state of the art, express
their own motivation and hypotheses and report on their methods,
results and conclusions. In previous work, we have proposed ways
to explicitly annotate the structure of scientific investigations in
scholarly publications. Here we present the means to facilitate
automatic access to the scientific discourse of articles by automating
the recognition of 11 categories at the sentence level, which we
call Core Scientific Concepts (CoreSCs). These include: Hypothesis,
Motivation, Goal, Object, Background, Method, Experiment, Model,
Observation, Result and Conclusion. CoreSCs provide the structure
and context to all statements and relations within an article and their
automatic recognition can greatly facilitate biomedical information
extraction by characterizing the different types of facts, hypotheses
and evidence available in a scientific publication.
Results: We have trained and compared machine learning classifiers
(support vector machines and conditional random fields) on a corpus
of 265 full articles in biochemistry and chemistry to automatically
recognize CoreSCs. We have evaluated our automatic classifications
against a manually annotated gold standard, and have achieved
promising accuracies with ‘Experiment’, ‘Background’ and ‘Model’
being the categories with the highest F1-scores (76%, 62% and
53%, respectively). We have analysed the task of CoreSC annotation
both from a sentence classification as well as sequence labelling
perspective and we present a detailed feature evaluation. The most
discriminative features are local sentence features such as unigrams,
bigrams and grammatical dependencies while features encoding
the document structure, such as section headings, also play an
important role for some of the categories. We discuss the usefulness
of automatically generated CoreSCs in two biomedical applications
as well as work in progress.
Availability: A web-based tool for the automatic annotation
of articles with CoreSCs and corresponding documentation
is available online at http://www.sapientaproject.com/software
http://www.sapientaproject.com also contains detailed information
pertaining to CoreSC annotation and links to annotation guidelines
as well as a corpus of manually annotated articles, which served as
our training data.
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1 INTRODUCTION
Since the launch of the first scientific journal in 1665, Philosophical
transactions of the Royal Society, the scientific literature has
developed into the core medium for the exchange of ideas and
findings across all scientific communities. In recent years, numerous
initiatives have emerged to automatically process electronic
documents in the life sciences, add semantic markup to them
and facilitate access to scientific facts. Most work in biological
text mining (Ananiadou et al., 2010; Cohen and Hersh, 2005)
has concentrated on identifying biological entities and extracting
the relations between these entities as facts or events appearing
in article abstracts while recently, the focus has shifted towards
full text articles (Kim et al., 2011). While system performance on
biomolecular event extraction is improving (Kim et al., 2011), there
is little progress in the analysis of the context of extracted events and
relations which help to characterize the knowledge conveyed within
the text and build the argumentation within the article discourse.

The analysis of the scientific discourse plays a key role in
differentiating between the nature of the knowledge encoded in
relations and events, e.g. ‘AhR agonists suppress B lymphopoiesis’
in the fourth sentence of Figure 1 is a known fact whereas
‘the potential of two AhR agonists to alter stromal cell cytokine
responses’ in sentence 5 is a hypothesis to be investigated. Such
a distinction between events or relations is currently ignored in
standard biomedical information extraction. Discourse analysis of
this type would improve the distinction between facts, speculative
statements, pre-existing and new work. In Figure 1, factual
sentences (denoted as ‘Background’, sentences 1, 2 and 4) are
distinguished from a sentence containing information inferred from
the ‘Background’, a hypothesis driving and justifying the work
presented in the article (‘Hypothesis’, sentence 3). Sentence 5 which
conveys the aim of the work as being that of evaluating a certain
hypothesis, is annotated as both Goal and Hypothesis.
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Fig. 1. Example of discourse labelling using CoreSC.

The categorization of sentences within scientific discourse has
been studied in previous work and from a number of different
angles. Simone Teufel (Teufel et al., 1999; Teufel, 2010) created
argumentative zoning (AZ), an annotation scheme which models
rhetorical and argumentational aspects of scientific writing and
concentrates on author claims. AZ has been modified for the
annotation of biology articles (Mizuta et al., 2006) and chemistry
articles (Teufel et al., 2009). Other work has looked at the annotation
of information structure in abstracts, based on abstract sections
(Hirohata et al., 2008; Lin et al., 2006; McKnight and Srinivasan,
2003; Ruch et al., 2007). A separate line of work has looked at
the characterization of scientific discourse in terms of modality
and speculation (Kilicoglu and Bergler, 2008; Light et al., 2004;
Medlock and Briscoe, 2007) while Shatkay et al. (2008) and Wilbur
et al. (2006) annotate sentences according to various dimensions
such as focus, polarity and certainty. There is as yet no general
consensus among researchers in scientific discourse regarding the
optimal unit of annotation. Most of the previous research considers
sentences as their basic unit while de Waard et al. (2009) has
proposed the annotation at the clause level and Nawaz et al. (2010)
and Thompson et al. (2011) consider a multi-dimensional scheme
for the annotation of biological events in texts (bio-events).

Existing schemes vary in their scope and granularity, with ones
designed for abstracts considering only four categories and schemes
for full articles generally consisting of at most seven content-related
categories. However, especially for the case of full articles, it is
becoming apparent that more information is required to characterize
statements and claims. Researchers are interested in identifying
hypotheses and different types of evidence to support claims
(Ciccarese et al., 2008), which are not readily identifiable by current
schemes.

Our work fills the need for finer-grained annotation to capture
the content and conceptual structure of a scientific article. Inspired
by the definitions in the EXPO ontology for scientific experiments
(Soldatova and King, 2006) and the CISP meta-data (Soldatova
and Liakata, 2007), in Liakata and Soldatova (2008) and Liakata
et al. (2010) we introduced a sentence-based, three layer scheme
which recognizes the main components of scientific investigations
as represented in articles (see Fig. 2 and Supplementary Material).
The first layer consists of 11 categories which describe the main
components of a scientific investigation, the second layer is
properties of those categories (e.g. Novelty, Advantage), and the
third layer provides identifiers that link together instances of the
same concept.

In comparison to closely related schemes (de Waard, 2007;
Nawaz et al., 2010; Teufel et al., 2009), none of which

have been automated yet, the Core Scientific Concept (CoreSC)
scheme makes finer grained distinctions between the different
types of objective (Hypothesis–Goal–Motivation–Object), approach
(Method–Model–Experiment) and outcome (Observation–Result–
Conclusion) and constitutes the most fine grained analysis of
knowledge types of any such scheme. The distinction between the
above types of objective, approach and outcome are important to
expert needs (For more details, see the definitions and explanations
in the Supplementary Material.).

The CoreSC scheme has been applied to articles in biochemistry
and chemistry to create a corpus of 265 annotated articles
(ART/CoreSC corpus, 39 915 sentences + 265 titles, over 1 million
words) (Liakata and Soldatova, 2009; Liakata et al., 2010). Guo
et al. (2011) showed that a finer level of annotation of cancer risk
assessment (CRA) abstracts using CoreSC categories, increased
experts’ efficiency in extracting information from the text while
White et al. (2011) argue that the CoreSC scheme is ‘uniquely
suited to recovering common types of scientific arguments about
hypotheses, explanations, and evidence’.

In this article, we automate the annotation of full scientific articles
with categories from the first layer of the CoreSC scheme, provide
intrinsic evaluation of the results and discuss existing and future
applications of this work. The article is structured as follows: In
Section 2, we describe how we trained and tested machine learning
classifiers on automatic recognition of CoreSCs in full articles. In
Section 3, we analyse the classifier performance and discuss the
features used for building the classifiers and their contributions
to each category. Finally in Section 4, we discuss existing and
future applications of the work. Our system for the classification
of CoreSCs, our guidelines and annotated articles are all available
online for researchers in biology to use.

To our knowledge this is the first time a discourse annotation
scheme is being used to automatically annotate full articles in
the biosciences on this scale. It is also the first such scheme for
which machine learning classifiers have been trained and tested on
chemistry articles. Both the resources and the tools for automatic
annotation are available online.

2 METHODS
The data: the training and test data used as input to the machine learning
classifiers consist of 265 articles from biochemistry and chemistry annotated
at the sentence level by experts using the CoreSC annotation scheme.
These articles constitute the ART/CoreSC corpus (Liakata and Soldatova,
2009; Liakata et al., 2010), which was developed in three phases (training,
evaluation and expansion). During the first-phase 20 annotators, all chemistry
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Fig. 2. Hierarchical representation of concepts and properties in the CoreSC
scheme.

experts at postdoc or PhD level, recruited from UK Universities, were
trained on four full papers with the first version of the guidelines and
detailed explanations resulting from error analysis. This data and individual
comments from annotators were used to improve the annotation guidelines.
The second phase was designed to evaluate both the guidelines and expert
performance in terms of κ-inter-annotator agreement (κ-IAA). Our goal
was to obtain IAA for a reasonable amount of papers, while ensuring at
least three annotators per paper, so as to minimize the chance of random
agreements. Thus, 16 annotators from the first phase were split into 5 groups
of 3 annotators each, where each group annotated 8 different papers and
1 additional paper was common across all 5 groups. The 16th annotator
annotated across groups to provide a normalizing factor. The κ-IAA for the
41 papers obtained in this manner, measured according to Cohen’s κ (Cohen,
1960), was κ=0.55 (median average for the 9 best annotators across all groups
and the paper common to all annotators). The third and final phase of corpus
development aimed at expanding the size of the corpus by selecting the
nine best performing annotators (according to IAA) from the second phase
to annotate 25 papers each. While no IAA could be obtained for the 225
papers1 annotated in this way, the assumption is that it would be the same
as the average of the agreement achieved by each of the nine annotators in
the second phase of development. The 265 journal articles were chosen by
a chemistry expert with extensive experience in publishing, so as to cover
a wide range of topics and journals. The 265 articles cover 16 different
chemistry journals and 25 topics, with the majority involving spectroscopy,
biochemistry, kinetics and theoretical work. Article length ranges between
32 and 379 sentences and numbers of authors range between 1 and 11, with
the majority attributed to 2–3 authors and being 150 sentences long. More
details about the papers can be found in the Supplementary Material. The
corpus has therefore good coverage of the field and was designed in three
phases with the contribution of multiple experts so as to minimize classifier
bias.

Statistics on the corpus are available in Table 1. The corpus consists of
39 915 sentences (>1 million words) with the majority categories being
Result (21%) and Background (19%). The next most populous category
is Observation (14%), followed by Method (11%), Experiment (10%),
Conclusion (9%) and Model (9%). Finally, the categories designating the
Objectives (Hypothesis, Object, Motivation and Goal) altogether amount
to 7% with Object and Hypothesis the most prominent at 3% and 2%,
respectively.

To segment sentences we used the XML aware sentence splitter SSSplit,
described in Liakata et al., 2009. The choice of the sentence as our unit of
annotation stems mainly from the fact that sentences are the most common
unit of text selection for summaries (Brandow et al., 1995; Kupiec et al.,

1one of the 225 papers had been annotated already in phase II, giving a total
of 265 unique papers

1995). We also regard the sentence as the most meaningful minimal unit for
the analysis of scientific discourse, in agreement with earlier work (Teufel,
2000, Chapter 3).

The methods: we have used state of the art supervised machine learning
algorithms to train classifiers on the automatic annotation of papers
with the first layer of the CoreSC scheme, that is, the following 11
categories: Background (BAC), Hypothesis (HYP), Motivation (MOT),
Goal (GOA), Object (OBJ), Method (MET), Model (MOD), Experiment
(EXP), Observation (OBS), Result (RES) and Conclusion (CON) (Liakata
et al., 2010). From a machine learning perspective we treat the recognition
of CoreSCs as: (i) text classification and (ii) sequence labelling. In text
classification sentences are classified independently of each other and any
dependencies between sentences need to be added explicitly. On the other
hand, in sequence labelling the assignment of labels is such as to satisfy
dependencies between sentences. The latter is a more natural approach when
considering discourse annotation since the flow of the narrative is influenced
by what has already been mentioned. For classification, we employed support
vector machines (SVMs) and for sequence labelling conditional random
fields (CRFs). Previous work on discovering information structure from
papers and abstracts has made successful use of both of these methods (Guo
et al., 2010; Hirohata et al., 2008; Mullen et al., 2005). While experimental
settings vary in each of the above cases, most notably in the number and
type of classification categories, the amount of training data available and
whether abstracts of full papers are used, the best performing algorithms
were SVMs and CRFs.

SVM and LibLinear: we used the LibSVM (LibS) implementation of SVMs
(Chang and Lin, 2011) coded in C++. Our experiments were conducted using
a linear kernel, known to perform well in document classification. We used
the default values for the C, γ and ε parameters and concentrated on the input
features. When we experimented with different types of cross-validation and
feature configuration we used LibLinear (LibL) (Fan et al., 2008) instead of
LibS as the latter is costly timewise both in training and testing. LibL is a
classifier for large scale data, which uses linear SVMs, splits data into blocks
and considers one block at a time. To give an indication about the gain in
speed using LibL as opposed to LibS, it takes 29 h 41 min to train one of our
models with LibS and 8 h 15 min for testing a single fold versus 10 min and
4 h 36 min,2 respectively, for LibL.

Conditional random fields: we chose CRFs because they do not assume
independent features but do not suffer from the label bias problem, where
preference is given to states with fewer transition possibilities. For our
purposes we used CRFSuite (Okazaki, 2007) an algorithm for linear-chain,
first-order CRFs, optimized for speed and implemented in C. Stochastic
Gradient Descent was employed for parameter estimation.

Features for classification: features are extracted from each sentence and
are represented in a sparse binary matrix format. In selecting features our
aim was to take into account different aspects of a sentence, ranging from
its location within the paper and the document structure (global features),
to its length and sentence-internal features such as the citations, verbs, n-
grams and grammatical triples (GRs) it may contain (local features). Below
we describe all our features in detail. The following are all implemented as
binary features:

• Absolute location (absloc): we divide the document into 10 unequal
segments (as in Loc of (Teufel, 2000)) and assign 1 of the 10 locations,
A–J, to the sentences. Larger segments, containing more sentences,
are designated to be in the middle of the paper.

• SectionId: a sequentially incremented section number (up to 10) is
assigned to each section and inherited at sentence level. SectionId is

2Testing is done sentence by sentence and so takes longer than training.
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Table 1. Statistics on the training data (ART/CoreSC corpus)

Measure Bac Con Exp Goa Met Mot Obs Res Mod Obj Hyp Total

Number of sentences 7606 3636 3858 582 4281 541 5410 8404 3656 1161 780 39 915
Number of words 193 930 102 173 93 882 16 564 107 309 13 737 123 394 224 353 99 313 29 215 21 315 1 025 185
Percentage of sentences 19 9 10 1 11 1 14 21 9 3 2
Number of words p/s (mean) 25.5 28.1 24.33 28.46 25.07 25.39 22.81 26.7 27.16 25.16 27.33
Number of words p/s (SD) 12.32 12.49 20.6 12.69 11.4 10.34 11.44 12.65 14.76 11.16 12.01
κ-IAA 0.87 0.89 0.65 0.60 0.74 0.46 0.79 0.78 0.43 0.81 0.46

assigned independently of the section heading, which is addressed by
feature Struct-3 below.

• Struct-1: the location of a sentence within seven unequal segments of
a section.3 Each section is first divided into three equally sized slices;
the first and the last sentence of the section are considered separate
segments (1 and 7) whereas the second and the third sentence of the
section also form a segment (2). The rest of the first slice is segment
3 and the second slice is segment 4. Segment 6 consists of the second
and third sentence from the end of the section and the rest of the third
slice is segment 5 (Teufel, 2000).

• Struct-2: location within a paragraph split in five equal segments.
(Teufel, 2000)

• Struct-3: one of 16 heading types assigned to a sentence by matching
its section heading against a set of regular expressions (a variant on
Struct-3 of Teufel, 2000). SectionId and Struct-3 are complementary
features since the first pertains to the absolute location of a section and
is dependent on the length of the paper, while the other follows section
structure irrespective of paper length. Details on header matching are
available in the Supplementary Material.

• Location in section (sectionloc): like Struct-2 but at section level.

• Length: sentences are assigned to one of nine bins, representing a
word count range. More details are available in the Supplementary
Material.

• Citation: we distinguish three cases: no citations, one citation, and
two or more citations present.

• History: the CoreSC category of the previous sentence. Only used in
LibS and LibL, implicit in first-order CRF.

• N-grams: binary values for significant unigrams (Uni), bigrams (Bi)
and trigrams. N-grams are lemmatized using morpha (Minnen et al.,
2001). Significant unigrams have frequency >3. Bigrams and trigrams
are filtered according to the measure of Fair Symmetrical Conditional
Probability and the LocalMaxs algorithm, defined in Silva et al.
(1999). We considered filtering our n-grams by adapting an online
stop word list.4 However, classifier performance was better when we
did not filter stop words. In this latter case, no trigrams exceeded
the threshold. Examples of significant n-grams are available in the
Supplementary Material.

• Verb POS (VPOS): for each verb within the sentence we determine
which of the six binary POS tags (VBD, VBN, VBG, VBZ, VBP and
VB) representing the tense, aspect and person of a verb are present.

• Verbs: all verbs in our training data with frequency >1.

• Verb Class: ten verb classes, obtained by clustering together all verbs
with a frequency >150 as in Guo et al. (2010). The verb classes can
be found in the Supplementary Material.

3A section is a block of sentences between two headings.
4www.lextek.com/manuals/onix/stopwords1.html reduced to 186 words

• Grammatical triples (GRs): dependency–head-dependent triples
(Briscoe and Carroll format) generated using C&C tools (Curran
et al., 2007). We used the model of the supertagger trained on
biomedical abstracts (Rimell and Clark, 2009) and applied self-
training on our papers according to Kummerfeld et al. (2010). We
considered dependencies subj, dobj, iobj and obj2 with frequency >3.
Examples of significant GRs can be found in the Supplementary
Material.

• Other GR: subjects (Subj), direct objects (Dobj), indirect objects
(Iobj) and second objects of ditransitive verbs (Obj2) with
frequency >1.

• Passive (P): whether any verbs are in passive voice.

3 RESULTS AND DISCUSSION
To test classification accuracy and establish feature contributions
to CoreSC recognition we performed a number of runs, including
multi-class (CRF, LibL and LibS) and binary classification using
9-fold cross-validation and a variety of feature configurations (All
features, Leave-out-one-feature (LOOF) and Single feature with and
without stop words). Our results (Table 2) show we can achieve
accuracy of >50% in classifying the 11 CoreSCs in full papers. This
is a promising result given the difficulty of the task. It is the first time
the automatic recognition of such a fine grained set of categories is
being attempted for full papers. F-score for the categories ranges
from 76% for EXP (Experiment) to 18% for the low frequency
category MOT (Motivation). The distribution of categories in papers
is shown in Table 1, with RES the most frequent category and MOT
and GOA the least frequent. Our feature analysis shows that the most
important role is played by n-grams (primarily bigrams), GRs and
verbs as well as global features such as history (sequence of labels)
and section headings. It is important to note that particular features
do not affect all categories in the same way. In the following, we
present our results in detail. Section 4 discusses various CoreSC-
based applications already implemented on the basis of current
results.

Classifiers and categories: Table 2 shows that LibS has the highest
accuracy at 51.6%, closely followed by CRF at 50.4% with LibL at
47.7%. All three classifiers outperform the simple baseline (Base)
by a large margin. The latter consists of multinomial trials, which
randomly label new instances according to the percentage of each
CoreSC in the training data. We have also considered an n-gram
baseline for both CRF and SVM and a history+n-gram baseline
for SVM (history is implicit for CRF), which are discussed in the
section on Feature Contribution. The best results overall are obtained
from multi-class classification using all the features we considered.
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Table 2. Micro precision, recall and F-measure for different system configurations, with highest value for each measure per category in bold

Acc BAC CON EXP GOA MET MOT OBS RES MOD OBJ HYP

Features Classifier P R F P R F P R F P R F P R F P R F P R F P R F P R F P R F P R F

Base Multinomial 14 19 19 19 9 9 9 10 10 10 1 1 1 11 11 11 1 1 1 13 14 14 21 22 21 9 9 9 3 3 3 2 2 2
ngrams CRFSuite 45.3 45 60 51 35 28 31 72 74 73 42 17 24 29 28 28 24 11 15 49 49 49 43 43 43 49 47 48 42 26 32 24 12 16

LibLinear 39.9 41 47 44 26 23 25 61 67 64 27 18 22 24 24 24 15 12 14 43 45 44 38 37 38 39 39 39 31 25 27 17 13 15
LibSVM 41.2 41 50 45 30 22 25 66 66 66 30 23 26 26 25 26 22 15 18 48 44 46 39 44 41 45 38 41 33 28 30 21 13 16

Hist+ngram LibLinear 41.2 44 52 47 29 27 28 68 70 69 32 19 24 26 26 26 15 12 13 44 45 45 40 38 39 43 42 42 31 23 26 17 12 14
LibSVM 44.9 45 62 52 36 27 30 74 66 70 39 12 19 28 31 29 26 05 08 49 43 46 42 49 45 52 42 46 39 19 26 23 09 13

All Binary CRFSuite 34.7 60 51 55 51 32 39 78 72 75 39 13 19 33 17 22 28 10 15 53 40 46 46 31 37 58 37 45 42 18 25 28 06 10
LibLinear 34.6 53 60 56 41 39 40 69 73 71 32 21 25 27 25 26 23 18 20 45 47 46 44 43 43 45 45 45 35 26 30 18 12 14

All Multi CRFSuite 50.4 56 65 60 46 42 44 74 78 76 41 21 28 31 29 30 29 13 18 50 52 51 46 49 47 53 52 52 42 28 34 26 14 18
LibLinear 47.7 54 60 57 43 40 41 69 73 71 35 20 25 29 28 28 22 16 18 47 49 48 45 44 45 49 49 49 38 28 32 21 15 18
Libsvm 51.6 56 68 62 50 41 45 72 78 75 37 20 26 33 25 29 25 06 10 53 47 50 46 57 51 54 52 53 43 29 34 32 13 19

Fig. 3. F-score versus κ for CoreSCs.

Interestingly the combination of binary classifiers (one for each
CoreSC category) gave the highest precision in most cases but recall
was significantly lower than in the multi-class scenario.

There is not a significant difference in performance between
LibS+all features and CRF: five categories seem to be predicted
better by LibS and for the other six CRF performs better. When
the history feature is absent, LibS and LiBL perform much lower
than CRF but hist+n-gram for LibS is comparable to the n-gram
performance of CRF. This highlights the importance of category
sequence information for the task. The performance of LibL lags
slightly behind both LiBS and CRF but this is to be expected since
it is an approximation for linear SVMs.

The highest performing categories for all three classifiers are EXP,
BAC and MOD with an F-score of 76%, 62% and 53%, respectively.
BAC is the second most frequent category (19%) in the corpus after
RES, so high recall is not surprising. EXP and MOD (experimental
and theoretical methods) are more interesting, as they are moderately
frequent (10 and 9%), respectively. Furthermore, EXP and MOD
are the only categories which have a higher F-score in automatic
recognition compared with κ-IAA (Liakata et al., 2010) as shown
in Figure 3. On the other hand categories with high κ such as
CON, MET and OBJ were more difficult to classify than expected.
While κ was measured on only 41 papers (5022 sentences) (Liakata
et al., 2010), which may not be representative of the entire corpus,
these results suggest that there is not necessarily a direct correlation

between annotator agreement and classifier performance. This is in
support of Beigman Klebanov and Beigman, 2009, which argues
that IAA is neither sufficient nor necessary for obtaining reliable
data from annotated material but rather it is important to focus on
non-noisy, ‘easy’ instances.

Beigman Klebanov and Beigman, 2009 suggest researchers
should report the level of noise in a corpus and only use non-
noisy (easy) instances for testing. They emphasize the importance of
requiring the agreement between more than two annotators, which
reduces both the chance of random agreements as well as hard
case bias, whereby a classifier tends to model the pattern of bias
of a particular annotator for instances which are hard to predict.
By having different phases of corpus development, with a varied
number of annotators for each phase and subset of the corpus as
well as a large number of classification categories, we believe that
we have minimized the chance of random agreements and hard
case bias.

Therefore, we can infer that when our machine learning
annotations agree with manual annotations, noise levels will be
usually low, instances will be easier to predict and thus classifier
confidence will be higher. Indeed this is confirmed both by a Pearson
moment correlation test between agreement and classifier confidence
and a Welch T -test for classifier confidence values in cases of
agreement and disagreement, both of which gave a p<2.2e-16 at
99%. They showed a direct correlation between classifier confidence
and agreement between manual annotation and classifiers. Details
are in the Supplementary Material. Classifier confidence for an
instance is a probability, where a high value indicates high classifier
confidence for the particular prediction. As an indication of the noise
for different categories in the corpus, we show the confidence of
the machine learning classifiers when both classifiers agree with
the manual annotation and when there is no agreement between
either the classifiers or the manual annotation (see Figs 4 and 5).
For the cases where LibSVM agrees with CRF and the manual
annotation, confidence scores are high, with over 75% of the data
having a confidence value of >0.6, and over 50% of the data
having a confidence score of over 0.7. This can be compared
against the situation of disagreement where only 25% of the data
have a confidence score of 0.6. For EXP, BAC and MOD the
confidence scores are especially high in cases of agreement, with
50% of the data having a confidence score of over 0.87. Therefore,
agreements for EXP and MOD consist mostly of non-noisy (easy)
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Fig. 4. Confidence value when LibS, CRFSuite and manual annotation
agree.

Fig. 5. Confidence value when there is no agreement on annotation.

Fig. 6. Confidence value scores per category for the entire corpus.

instances. Classifier confidence for the entire corpus is depicted in
Figure 6. Assuming that lack of noise correlates with high classifier
confidence, we can say that >50% of data in each category (and in
most well beyond 75%) is non-noisy.

Classifier performance for the CoreSC categories can be ranked
from highest to lowest F-score as follows: EXP > BAC > MOD
> RES > OBS > CON > OBJ > MET > GOA > HYP > MOT.

Fig. 7. Confusion matrix for CoreSC categories according to LibS.

OBJ performs well given its low frequency, suggesting that OBJ
sentences contain distinct features. The low scores for MET may be
due to noise introduced by our neglect of the distinction between
MET-Old and MET-New (Liakata et al., 2010). The low F-score for
MOT and HYP are due to their low frequency as the levels of noise
are similar to those of OBJ. We intend to boost performance for the
low frequency categories by using active learning.

These are promising results given the complexity of the task,
the number of the categories and their distribution in the corpus.
A confusion matrix (Fig. 7) gives an indication of which categories
have consistent overlaps. There is bias in favour of the BAC category
due to its high frequency and broad definition, which we will need
to counterbalance in the future. CON is often taken as RES whereas
RES is often confused with OBS and vice versa. GOA is often
assigned to OBJ and MET, the latter presumably because goals
and method are often expressed in the same sentence. MET is
confused with EXP and BAC, the latter because we have not yet
considered the second layer of CoreSC annotation at this stage,
which caters for MET-Old, methods mentioned in previous work.
OBJ is often confused with MET, since a method can be the object
of an investigation.5 Finally, HYP is often assigned to RES, CON
and BAC. This can be explained by the fact that a weak result or
conclusion is often expressed in the same language as a hypothesis,
while a hypothesis may also be expressed as an assumption arising
from background knowledge. For examples see the Supplementary
Material.

If we merge CoreSC categories so that we consider a coarser
grain layer of four categories, namely Prior (BAC), Approach
(MET+MOD+EXP), Outcome (OBS+RES+CON) and Objective
(MOT+GOA+HYP+OBJT) then our F-measures respectively
become: BAC: 59%, Approach: 72%, Outcome: 81%, Objective:
38%. A variant merge with seven categories, roughly corresponding
to the scheme proposed by de Waard et al., 2009, which considers
BAC, HYP, Problem(=MOT), GOA=(GOA+OBJT), MET=
(MET+EXP+MOD), RES=(OBS+RES), Implication(=CON),
gives us F1: BAC: 60%, CON: 44%, MET: 72%, GOA: 47%, MOT:
19%, HYP: 18% and RES: 72% This shows the flexibility of our
scheme for different applications, which may require different levels
of granularity.

Feature contribution: we examine feature contribution in LOOF
cross-validation and single feature runs, using CRF and LibL.
Tables 3 and 4 show how F-score is affected when each type of

5See definitions in Supplementary Material.
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Table 3. F-measures for CRFSuite LOOF, 9-fold cross-validation

Feat BAC CON EXP GOA MET MOT OBS RES MOD OBJ HYP

all 60 44 76 28 30 18 51 47 52 34 18
length 60 44 76 27 30 18 51 47 53 34 19
ref 58 44 76 26 30 18 51 47 52 34 17
absloc 60 44 76 28 29 18 51 47 52 34 18
struct1 60 43 76 27 30 18 51 47 52 33 17
secid 60 44 76 27 30 18 51 48 51 35 17
Struct-2 60 44 76 27 30 17 51 47 52 34 18
SecLoc 60 44 76 27 30 19 51 47 52 34 18
Struct-3 60 43 75 26 30 18 51 47 52 34 19

uni 60 44 76 24 29 17 50 47 51 33 15
bi 59 43 75 27 30 22 50 46 50 32 19
ngrams 58 42 74 25 29 17 47 45 48 29 14
gr 60 44 75 27 30 18 51 47 52 35 17
pos 60 44 76 26 29 18 51 47 53 34 16
subj 60 45 76 27 30 17 51 48 52 34 18
dobj 60 45 76 28 30 18 51 47 53 34 19
iobj 60 44 76 27 30 18 51 47 52 34 18
obj2 60 44 76 28 30 18 51 47 52 34 18
vclass 60 44 76 27 30 18 51 47 52 34 18
verb 60 44 76 27 30 17 51 47 52 34 17

Table 4. F-measures for LibLinear LOOF, 9-fold cross-validation

Feat BAC CON EXP GOA MET MOT OBS RES MOD OBJ HYP

all 57 41 71 25 28 18 48 45 49 32 18
history 55 41 71 28 27 20 48 43 46 32 17
length 57 42 71 24 28 19 48 45 48 31 17
ref 55 41 71 25 28 19 48 45 48 31 15
absloc 57 40 72 25 28 20 48 45 49 33 18
Struct-1 57 41 71 26 28 21 48 45 49 31 17
secid 57 41 71 26 28 19 48 44 48 32 17
Struct-2 57 41 71 25 28 19 48 45 49 32 17
SecLoc 57 41 71 26 28 18 48 45 48 32 18
Struct-3 56 40 70 25 27 19 48 44 47 30 19

uni 56 41 72 26 27 17 47 44 46 31 16
bi 54 40 70 25 27 20 46 43 45 27 17
ngrams 53 37 69 23 26 17 44 42 41 26 12
gr 56 40 71 23 29 19 47 44 49 31 17
pos 57 42 71 25 28 20 48 45 49 32 16
subj 57 41 71 25 29 21 47 45 48 31 17
dobj 57 42 71 25 28 20 48 45 49 32 19
iobj 57 41 71 26 28 19 48 45 48 32 17
obj2 57 41 71 25 28 18 48 45 49 32 18
vclass 57 41 71 26 28 19 48 45 49 33 17
verb 57 41 71 24 28 20 48 45 49 32 16

feature is omitted. For each CoreSC category we have highlighted
the lowest scores (bold), corresponding to the most important
features being left out, and the highest scores (italic), corresponding
to features whose omission has less impact on classification.
Performance for all categories drops when all n-grams are removed.
Since features are not independent, many of the important features of
other categories are covered in n-grams but this does not necessarily
work in both directions. Primarily, bigrams are more important than

unigrams, since many of the former contain the latter. Categories
affected most by the omission of unigrams are the low frequency
categories GOA, MOT and HYP for CRF and MOT, HYP for LibL.
Bigrams are not as important for these categories and removing
them improves performance in the case of MOT and HYP. This is
probably because they are not frequent enough for association with
bigrams. Removing the verb feature has a negative effect on MOT,
HYP and GOA in CRF and GOA and HYP in LibL. This agrees
with our observation of the importance of verbs in single feature
classification (Fig. 8). The high frequency categories are more robust
to omission of features, whereas the lower frequency categories are
dependent on all features.

Single feature classification is more meaningful with respect to
individual feature contributions and Figure 8 paints a clear picture
of which features are most important for which category. We believe
this to be the most interesting finding of our analysis. While Figure 8
shows the general trend whereby n-grams (D) (bigrams and GRs
are not actually shown in Figure 8, but they strongly correlate with
unigrams) followed by direct object (E) and verb (F) as accounting
for the overall F-measure of a category, this is not true for all
categories. For EXP, BAC and CON section headings (C) matter
more than n-grams and for BAC, CON and RES absolute location
(M) also plays a prominent role, meaning that the location of these
three categories tends to be fixed in a paper (presumably in the
beginning and the end). Citations (O) play an important role in
discriminating BAC and are also prominent for CON, RES and MET
to some extent. Verbs (F) are usually more important than subjects
(G) but slightly less important than direct objects (E), however verbs
(F) feature more prominently for categories such as RES, GOA, HYP
and OBJ suggesting that particular verbs are used in the context
of these categories. Perhaps more feature engineering involving
semantic categories of verbs would benefit the low frequency
categories. Verb tense (expressed by VPOS (I)) does not seem to
play a major role, though its contribution is higher for OBS and RES.
Looking at the feature profile of different categories, RES and MET
show the least variation between individual feature contribution but
it is clear that RES is more location specific than MET.

Table 5 shows the number of individual features considered for
each feature type. The vast majority of features are bigrams (42 438),
unigrams (10 515) and GR triples (11 854), which also explains their
importance for the classification. This makes the prominence of
citations and global structural features such as section headings all
the more important whenever we encounter them.

Variants of some of the above features have been used by Teufel
and Moens (2002), Mullen et al. (2005) and Merity et al. (2009) to
automate AZ. Merity et al., 2009 found that n-grams (unigrams and
bigrams) in combination with knowledge of the label of previous
sentences (history) constituted a very strong baseline for AZ. This
agrees with our findings in general, where n-grams are roughly
responsible for 40% of the system accuracy, the history category
contributes another 5% and a further 5–6% is due to all other
features.

In the future, we intend to consider more elaborate semantic
classes for features and also consider training individual classifiers
for each category which we would then combine using stacking or
ensemble techniques.

Comparison with related work: a direct comparison between our
results and earlier work is not possible, as the scope, schemes
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Fig. 8. Single feature classification with LibL, illustrating the contribution of 15 individual features.

Table 5. Numbers for each type of feature

Feat Uni Bi GR VPOS Subj Dobj Iobj Obj2 Verb VC P H Gl L C

No. 10 515 42 438 11 854 6 3843 7414 45 59 1543 10 1 12 53 9 3

Numbers for each type of feature were: L, length; H, history; C, citation; Gl, global
features, including absloc, sectionid, struct1-3, sectionloc

and experimental settings differ significantly. Earlier work on
automating discourse schemes with four categories (Hirohata et al.,
2008; Lin et al., 2006; McKnight and Srinivasan, 2003) has reported
F-measures in the 80s or 90s. However, in addition to having a
third of the number of categories, these schemes only concentrate on
abstracts, which are shown to have a very different structure from full
articles. Shatkay et al. (2008) annotate sentences from full articles
but they evaluate on a small scale and do not attempt to classify
an entire article. Their scheme has only three to four categories
per dimension, where each dimension is evaluated separately from
the rest. Our results are more comparable to Mullen et al. (2005)
and Teufel (2000), who have automated AZ for articles with six
and seven categories, respectively, reporting respective F-measures
0.44–0.87 and 0.26–0.86. Merity et al. (2009) replicated and
significantly improved on the results of Teufel (2000), reporting an
F-measure in the 90s for the same categories. However, Teufel et al.
(2009) introduced a new scheme, designed specifically for chemistry
papers (ChemAZ), containing 15 categories, which has not been yet
automated.

It has been shown that a small number of categories annotated
by a small number of experts will result in a less challenging
annotation task, leading to a higher F-measure. However, a more
expressive and thus more complex annotation scheme allows for

better representation of the discourse structure of the articles so as
to identify hypotheses and relevant evidence (see Section 1). This
will contribute to more advanced information extraction solutions
in the future.

4 APPLICATIONS AND FUTURE WORK
One of the applications stemming from our work is the use of
automatically generated CoreSC annotations for the production of
extractive summaries of full papers in chemistry and biochemistry.
Such summaries are different from abstracts as they are longer
(20 sentences) and represent the entire content of the paper,
from Background and Hypotheses to Experiments performed, main
Observations and Results obtained. The idea is that such summaries
could be read much faster than the paper but convey a lot more of
the key information than the abstract, which often acts as a selling
point of the paper.

We created summaries so that each contained 1–2 sentences
from each CoreSC category (Hypothesis, Background, etc.),
extracted from the original paper, following the distribution of
categories in the paper. These summaries were given to 12
experts divided into 4 groups, along with summaries created
using Microsoft Autosummarize and summaries written by humans.
The automatically generated summaries performed significantly
better than Miscrosoft autosummarize and achieved a 66% and
75% precision in answering complex content based questions.
In some cases they outperformed human summaries.6 Question-
based extractive summaries created using CoreSCs could be used

6The details of this experiment is the focus of a separate publication under
submission.

998



Copyedited by: TRJ MANUSCRIPT CATEGORY: ORIGINAL PAPER

[13:02 12/3/2012 Bioinformatics-bts071.tex] Page: 999 991–1000

Automatic recognition of conceptualization zones

to help speed up curation and we plan to explore this in the
future.

A different user based study, involved collaboration with experts
in CRA, who were presented with abstracts that contained CoreSC
annotations and abstracts with no annotations, or annotations
originating from simpler schemes (abstract sections or an AZ
variant) (Guo et al., 2011). Three experts were timed as they
answered questions about the main objectives and methods
described in abstracts and it was shown that experts responded
consistently faster when given abstracts annotated with CoreSCs
than in the rest of the cases, while no significant difference was
observed pertaining to the quality of the responses. In the future, we
plan to perform more question based user studies with CRA experts,
using full papers.

We also plan to use CoreSC annotated papers in biology to
guide information extraction and retrieval, characterize extracted
events and relations and also facilitate inference from hypotheses
to conclusions in scientific papers. Our web-based tool for the
automatic annotation of CoreSC categories in full biomedical papers
from Pubmed Central is available for biologists to download and use.

The ability to automatically identify and qualify discourse
structure from the scientific literature has far-reaching implications.
The original facts and results from a scientific publication
form the key information to be extracted in order to curate
biological resources and validate against resources such as
UnitProtKb, EntrezGene, Reactome and others. The different types
of conceptualization zones defined by CoreSCs (Background,
Hypothesis, Method, etc.) so far have been used to create extractive
summaries and more use cases of filtering text during information
extraction are in progress. Work in progress also involves the
application of CoreSC annotations to full papers involving CRA
and drug–drug interactions and preliminary results show that the
annotation scheme and categorization methods generalize well to
these new domains.
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