
© The Author(s) 2019. Published by Oxford University Press. Page 1 of 11
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits
unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

(page number not for citation purposes)

Database, 2019, 1–11

doi: 10.1093/database/baz077
Original article

Original article

Tripal v3: an ontology-based toolkit for

construction of FAIR biological community

databases

Shawna Spoor1, Chun-Huai Cheng1, Lacey-Anne Sanderson2, Bradford

Condon3, Abdullah Almsaeed3, Ming Chen3, Anthony Bretaudeau4,

Helena Rasche5, Sook Jung1, Dorrie Main1, Kirstin Bett2, Margaret

Staton 3, Jill L. Wegrzyn6,7, F. Alex Feltus8 and Stephen P. Ficklin1,*

1Department of Horticulture, Washington State University, Pullman, WA 99164, USA, 2Department of Plant
Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada, 3Department of Entomology and
Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA, 4INRA, UMR IGEPP, BIPAA/GenOuest,
INRIA/Irisa - Campus de Beaulieu, Rennes Cedex 35000, France, 5Bioinformatics Group, Department of
Computer Science, University of Freiburg, Freiburg im Breisgau 79110, Germany, 6Department of Ecology
and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA, 7Computational Biology Core,
Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA and 8Dept. of Genetics
and Biochemistry, Clemson University, Clemson 29634, USA

*Corresponding author: Phone: 509-335-4295; Fax: 509-335-8690; Email: stephen.ficklin@wsu.edu

Citation details: Spoor,S., Cheng,C.-H., Sanderson,L.-A. et al. Tripal v3: an ontology-based toolkit for construction of FAIR
biological community databases. Database (2019) Vol. 2019: article ID baz077; doi:10.1093/database/baz077

Received 8 February 2019; Revised 12 May 2019; Accepted 22 May 2019

Abstract

Community biological databases provide an important online resource for both pub-

lic and private data, analysis tools and community engagement. These sites house

genomic, transcriptomic, genetic, breeding and ancillary data for specific species, fami-

lies or clades. Due to the complexity and increasing quantities of these data, construction

of online resources is increasingly difficult especially with limited funding and access

to technical expertise. Furthermore, online repositories are expected to promote FAIR

data principles (findable, accessible, interoperable and reusable) that presents additional

challenges. The open-source Tripal database toolkit seeks to mitigate these challenges

by creating both the software and an interactive community of developers for construc-

tion of online community databases. Additionally, through coordinated, distributed co-

development, Tripal sites encourage community-wide sustainability. Here, we report the

release of Tripal version 3 that improves data accessibility and data sharing through

systematic use of controlled vocabularies (CVs). Tripal uses the community-developed

Chado database as a default data store, but now provides tools to support other data

stores, while ensuring that CVs remain the central organizational structure for the data.

A new site developer can use Tripal to develop a basic site with little to no programming,

with the ability to integrate other data types using extension modules and the Tripal

http://creativecommons.org/licenses/by/4.0/
https://academic.oup.com/
http://orcid.org/0000-0003-2971-9353

Page 2 of 11 Database, Vol. 2019, Article ID baz077

application programming interface. A thorough online User’s Guide and Developer’s

Handbook are available at http://tripal.info, providing download, installation and step-

by-step setup instructions.

Introduction

Online repositories for biological data serve as a valuable
resource for researchers as they provide a home for public
data and offer services such as tools for data analysis, web
services, or content for scientific community engagement. In
1988, the National Center for Biotechnology Information
(NCBI) was created with the goal to ‘design, develop, imple-
ment and manage automated systems for the collection,
storage, retrieval, analysis and dissemination of knowledge
concerning human molecular biology, biochemistry and
genetics’ (1). NCBI has served as a global repository for
genomic sequence data, gene transcriptome data, genetic
variance data and more for both human and non-human
species for three decades.

Online community databases play a similar role but
unlike large repositories such as NCBI, they serve a specific
group of researchers focused on one species or a group of
related species. In addition to housing data, these sites pro-
vide analyses, tools and outreach specific to their respective
communities. In 1992, the FlyBase project developed one
of the first community databases for genomic and genetic
resources for Drosophila melanogaster (2, 3). Dendrome
(now TreeGenes) initially begun in 1993 to house forest tree
genetic maps and markers (4); the Rat Genome Database
(RGD) (5, 6) in 1999 for rat research; The Arabidopsis
Information Portal (TAIR), also in 1999, for genomic and
genetic data for Arabidopsis thaliana, a model plant species
(7). Later examples include the Saccharomyces Genome
Database (SGD) in 2002 for the model species Saccha-
romyces cerevisiae (8); the Genome Database for Rosaceae
(GDR) in 2003 for Rosaceae species including agricultur-
ally important tree fruit and berry species (9); Knowpulse
began in 2010 for pulse crop breeding (10); and many
others.

In recognition of the commonalities among these com-
munity databases, the Genome Model Organism Database
(GMOD) project was created in the early 2000s to help
facilitate development of a common suite of software tools
and infrastructure for model organism databases. GMOD
provides outreach and training and is responsible for main-
tenance of Chado (11), an open-source relational database
schema, originally developed for FlyBase. Chado provides a
common data storage infrastructure, follows a normalized
design and is meant to serve as a data warehouse for
genomic, genetic and related biological and ancillary data.
Several bioinformatics tools, especially those adopted by

GMOD, are compatible with Chado and include InterMine,
which integrates disparate biological data for construction
of community data stores (12); GBrowse (13) and JBrowse
(14) for whole genome visualization; and Apollo (15) for
whole genome curation.

The advent of high-throughput sequencing technologies
increased access to genomic, transcriptomic and genetic
data and hence the desire for an increasing number
of community databases for traditionally non-model
species. However, three major difficulties confront non-
model databases. First, budgets for non-model groups
remain limited and do not support large development
teams. Second, FAIR data principles (findable, accessible,
interoperable and reusable) require metadata, cross-
database integration and curation (16). For groups new
to these principles, learning and implementing appropriate

technologies and expertise can take years. Ontologies, or

controlled vocabularies (CVs), serve a major role in FAIR

data principles by supporting data integration, access and
analysis. Unfortunately, use of ontologies to support data
exchange may not be feasible for smaller groups due to

limited curation time and tools or lack of expertise. Third,
funding for long-term support of all organism databases

has declined and sustainability for both model and non-
model community databases is increasingly problematic.
For instance, TAIR overcame funding challenges by offering

a paid subscription model for sustainability (17). The
model organism databases of FlyBase, the Mouse Genome

Database (MGD) (18), SGD, The Gene Ontology Consor-
tium (19), RGD, WormBase (20, 21) and the Zebrafish
Information Network (ZFIN) (22) are unifying efforts
under the Alliance of Genome Resources (https://www.
alliancegenome.org/) to reduce duplication of effort among
their member sites and to address challenges of sustainabil-
ity. Similarly, the AgBioData group, a collection of more
than 30 agricultural community databases work together

to improve cooperation among members and recently pub-
lished a set of recommendations (23). Without an improved

sustainability plan, community databases may stagnate or
disappear along with the valuable data they house.

Tripal (24, 25) is an open-source, freely available toolkit
for the construction of online community databases and is
meant to help address these challenges. Tripal is part of
the GMOD family of tools and, by default, uses Chado
as the primary data store. Tripal was first released in
2009 and was born from the need to create community

http://tripal.info
https://www.alliancegenome.org/
https://www.alliancegenome.org/

Database, Vol. 2019, Article ID baz077 Page 3 of 11

databases for non-model species as high-throughput tech-
nologies supported greater access to genomic, transcrip-
tomic and genetic data. The long-term goal was to provide a
platform by which less funded, non-model research groups
could create community databases of equivalent quality and
resources to that of model species databases. Download,
installation and setup instructions for Tripal can be found
at the Tripal website: http://tripal.info.

Often community databases provide user portals by
which researchers can log in, access data, submit content,
communicate with one-another, access data via web services
and interact with high-performance computing resources to
analyze data. In order to support this level of interaction
and to provide security standards, Tripal integrates with
Drupal (http://drupal.org), a popular content management
system (CMS). Drupal provides user authentication, secu-
rity, content creation tools and an application programming
interface (API) that allows a site developer to fully cus-
tomize and create new content types. Tripal bridges Chado
with Drupal and provides a variety of new tools and APIs
for creation of community databases. This API allows a
site developer to create their own extensions (or plugins)
and share those with other Tripal users, thus reducing
duplication of effort. By pooling resources towards the
development of a common platform (i.e. Tripal) all stake-
holder community databases improve the sustainability of
each other.

With the adoption of Tripal by multiple overlapping
communities, data federation using web services is increas-
ingly important and useful for users and developers. For
example, sites such as the GDR (9), TreeGenes (4), Hard-
wood Genomics Project (https://hardwoodgenomics.org/)
and the Citrus Genome Database (26) house genomic,
genetic and breeding data for their respective tree crop
communities using Tripal. Similarly, Knowpulse (10), Cool
Season Food Legume (27), PeanutBase (28) and the Legume
Information System (29) house legume data using Tripal.

Data exchange and federation among online databases
is challenging. Online databases each maintain their own
data storage backend with unique integrity and referential
constraints. Sites may refer to data entities (e.g. genes,
germplasms, publications, etc.) and their properties (e.g.
gene sequence, names, aliases, etc.) using different termi-
nology and provide different hierarchical structures to rep-
resent relationships between entities and properties. Web
services, which allow programmatic access to data in a site,
may not exist and if they do exist, are typically incompatible
for data exchange between sites. Therefore, sites that desire
to exchange data must coordinate efforts in data storage
and design of web services. This requires a substantial time
investment for coordination. Tripal-based sites were not
immune from these challenges. Despite a common data

store back-end (i.e. Chado), not all sites housed the same
data entities and especially, ancillary data (i.e. properties)
for entities were not consistent. This is a natural side effect
of the different data needs for different research commu-
nities and not a flaw with Chado or Tripal. For example,
community databases with whole-genome assemblies and
annotations store genes as data entities with properties
such as genomic coordinates, functional annotations, cross-
references, sequences and related publications. Sites without
a whole genome may have genes but not necessarily genome
coordinates or full sequences.

CVs and ontologies (CVs organized in hierarchies) offer
an approach to improve and ease data discovery and there-
fore support data exchange. Chado was designed such that
most data entities (e.g. genome features, stocks, genomic
libraries, phenotypes, contacts, publications, etc.) are asso-
ciated with a CV term that serves as a data ‘type’. Properties
of a given entity are also associated with CV terms. For
example, genomic feature entities are defined using the
Sequence Ontology (SO) (30). Chado excels at storing
genomic features and their ancillary data. It provides the
database tables and documents recommendations for hous-
ing this type of data using the SO and other ontologies such
as the Gene Ontology (GO).

Here, we report on the most recent version of Tripal
(version 3). This version represents a major overhaul from
previous versions, with the intent to aid site developers
in adhering to FAIR data principles. CV-defined meta-
data and semantic relationships enhance the findability and
accessibility of data stored in Tripal sites. This is further
improved through discoverable web services and consistent
data accessibility through both information pages and web
services. Interoperability of data is facilitated through cross-
site, heterogeneous data collections, consistent web services
and shared CVs. Reusability is promoted by data loaders
that require an existing analysis record prior to import
intended for providing provenance details. Additionally,
this version includes a new middle layer that allows interop-
erability between multiple storage methods facilitating stor-
age of data that is not appropriate for relational databases
such as Chado while ensuring a consistent user experience.
The time it takes to setup a new Tripal v3 site will depend
on the experience of the user, the quality of the input data
and how well the data is standardized. Genomics-based sites
are fastest to create as these data typically have standard
formats, and Tripal is prepared to support them using
existing data importers and a user-friendly web interface
to organize them. Sites housing less standardized data may
take longer to create as site developers may need to write
data loaders or custom extensions. In summary, Tripal v3 is
a powerful tool enabling non-model communities to create
high-quality, FAIR compliant databases.

http://tripal.info
http://drupal.org
https://hardwoodgenomics.org/

Page 4 of 11 Database, Vol. 2019, Article ID baz077

Implementation

An ontology-based redesign

Data are accessible from a community database via two
primary methods: first to researchers through a web page
organized for viewing, and second to programmers via
representational state transfer (REST) (i.e. RESTful) web
services, where computer programs connect to the database,
perform queries following a specific API and retrieve data.
Prior to Tripal v3, data were presented to the user in a
structure that was modeled after Chado tables. For exam-
ple, Figure 1 shows the feature table of Chado and some
ancillary-linked tables. The feature table is meant to house
genomic features (e.g. genes, mRNA, Single Nucleotide
Polymorphisms (SNPs), genetic markers, etc.) and has a
set of linking tables for ancillary data such as the type
of feature, the organism to which the feature belongs,
properties for a feature, the genomic location (if applicable),
etc. Prior to Tripal v3, a ‘feature’ page content type was
responsible for displaying any record housed in the feature
table of Chado. Thus, each gene page on a Tripal site
was an instance of a feature page and a record in the
feature table. While the researcher simply sees a ‘gene’
page, for instance, this approach is not conducive for data
accessibility via computational means because it forces

Figure 1. The entity–relationship (ER) diagram of the feature table of

Chado and some of its linked tables (some table columns removed).

The feature table stores genomic features and ancillary data is housed

in linked tables.

the consumer to understand data relationships using the
constraints of a relational database model rather than a
more natural semantic model. A semantic model is one in
which the relationships among data uses CV terms in a
subject-predicate format that links data together. It is more
natural for humans and computers.

Rather than add support for semantic data exchange
alongside the existing Chado-based human-designed page
view, Tripal v3 was redesigned such that all data accessed
either by a human or computer are provided via an
underlying semantic-based data framework. This approach
relies completely on CVs. This redesign models a distinct
data object as an entity. For Tripal v3, an entity represents
a single data object, such as a gene, germplasm, organism,
publication, etc. By default, every entity requires two
properties: a data type and a unique ID. The data type must
be a term from an ontology or CV, and the ID is formed
using the data type and a unique numeric ID. Thus, the
ID, when combined with the site URL, ensures that every
entity is uniquely identifiable on the world wide web. For
example, the ID for the gene transcript (mRNA) named
orange1.1g015632m at the Citrus Genome Database (and
used as an example gene in the Tripal User’s Guide) is
uniquely identifiable with mRNA/732219. Optionally, if
more is known about an entity it may have any number
of additional properties. The type of each property must
be defined with a CV term as well. In Tripal v3, properties
about an entity are referred to as fields. The value may
be a single scalar (e.g. text or number), an array of scalar
values, or an associative array of key/value pairs where
each key is also a CV term and each value is any of the
allowed value types. Figure 2 provides a visual model of
a Tripal entity using data from the orange1.1g015632m
transcript. Tripal v3 entities are grouped into content
types of the same type, and the combination of a content
type and its fields is referred to as a bundle. Thus, all
gene pages or organism pages, for example, are bundles.
In practice, the site administrator has complete control,
using a graphical interface, over the number and types
of optional fields that appear for each content type. This
allows sites to customize pages to match the needs of their
community without having to recode the various bundles
and fields.

Web services

RESTful web services are new to Tripal v3. A RESTful web
service is one which uses the HTTP protocol (the same
used by web browsers to deliver content) to query and
retrieve data in a format that is usable by a computer
program, most commonly, JavaScript Object Notation
(JSON) and eXtensible Markup Language (XML) formats.

Database, Vol. 2019, Article ID baz077 Page 5 of 11

Figure 2. A diagram representing an entity model in Tripal v3. Each

field consists of a key–value pair where the key must be defined using a

controlled vocabulary term. The ID and type fields are required while all

other are optional. Fields may have a single value or be a nested array

of key–value pairs where keys must also use controlled vocabulary

terms. This example includes real field data for the transcript named,

orange1.1g015632m from the Citrus Genome Database.

Tripal entities and their fields use CV terms. This supports
data accessibility and exchange by reducing ambiguity
about the meaning of an entity. It also supports the
concept of accessibility through Linked Data (31, 32),
a concept used with the Semantic Web (33) to improve
accessibility for data exchange. Linked data utilizes
CVs and web URIs (universal resource identifier) to
reference data objects (i.e. entities and field keys). By
qualifying all data with URIs, the meaning of data can
be resolved. For example, Figure 2 indicates that the
example entity is of type SO:0000234, a term from the
SO meaning: mRNA. A URL maintained by the SO
exists for this term and further details can be found
there. Likewise, each of the field keys are also defined
using CV terms. For example, the name field uses the
term ‘name’ from the Schema vocabulary (https://schema.
org/). A lookup of the term ‘schema:name’ will resolve its
meaning.

Tripal uses JSON-LD (34) (LD for linked data) to pro-
vide access to entities via its web services. JSON-LD is a
data format for exchanging linked data using JSON that
is a data-interchange format commonly used for RESTful
web services. The following JSON provides an example for
the orange1.1g015632m transcript. URLs have been short-
ened with an ellipsis for brevity (substitute ‘https://www.

citrusgenomedb.org/web-services/content/v0.1’ in place of
the ellipses):

{
"@context": ".../mrna.732219.json",
"@id": ".../mRNA/732219",
"@type": "mRNA",
"label": "orange1.1g015632m, PAC:18136217 (mRNA) Citrus sinensis",
"ItemPage": "https://www.citrusgenomedb.org/bio_data/732219",
"type": "mRNA",
"accession": "",
"organism": {

"label": "<i>Citrus sinensis</i>",
"genus": "Citrus",
"species": "sinensis"

},
"name": "orange1.1g015632m",
"identifier": "PAC:18136217",
"sequence": ".../mRNA/732219/Sequence",
"sequence_length": "2075",
"sequence_checksum": "6c75d1779e249a7f102e75c3218b39ad",
"is_analysis": false,
"is_obsolete": false,
"time_accessioned": "2011-03-22 09:22:42.725247",
"time_last_modified": "2011-03-22 09:22:42.725247",
"protein_sequence": ".../mRNA/732219/Protein_sequence",
"cds": ".../mRNA/732219/CDS",
"contact": null,
"database_cross_reference":".../mRNA/732219/database_cross_reference",
"sequence_coordinates": ".../mRNA/732219/Sequence_coordinates",
"location_on_map": null,
"annotation": ".../mRNA/732219/annotation",
"publication": null,
"relationship": ".../mRNA/732219/relationship",
"alternatename": null

}

As with all JSON returned by RESTful web services,
data are organized by key–value pairs. However, to support
linked data, this JSON contains three special keys: @con-
text, @id and @type. The meaning of the @id and @type
correspond directly with the ID and type of a Tripal entity.
However, with linked data, each @id must be a URL. Here
the @id is the unique URL for the entity on the site’s web
services and uniquely defines this data object. The @context
key contains a URL providing JSON that defines the linked
data information. The following is a snippet of the JSON
from that URL:

"mRNA":
"http://www.sequenceontology.org/browser/current_svn/term/SO:0000234",

"label": "rdfs:label",
"rdfs:label": "http://www.w3.org/2000/01/rdf-schema#label",
"ItemPage": "schema: ItemPage",
"schema: ItemPage": "https://schema.org/ItemPage",
"type": "rdfs:type",
"rdfs:type": "http://www.w3.org/2000/01/rdf-schema#type",
"data": "http://edamontology.org/data_",
"accession": "data:2091",
"data:2091": "http://edamontology.org/data_2091",

Using the JSON available via the @context link, the
meaning of the keys used in the initial JSON is understood.
For example, the meaning of the entity type "mRNA"
can be found by following the provided link to the SO
browser. The key "accession" resolves to the controlled
vocabulary term "data:2091" that resolves to a URL for a
term with the EDAM ontology. All keys in the JSON-LD

https://schema.org/
https://schema.org/
https://www.citrusgenomedb.org/web-services/content/v0.1
https://www.citrusgenomedb.org/web-services/content/v0.1
https://www.citrusgenomedb.org/bio_data/732219
http://www.sequenceontology.org/browser/current_svn/term/SO:0000234
http://
www.w3.org/2000/01/rdf-schema#label
https://schema.org/ItemPage
http://
www.w3.org/2000/01/rdf-schema#type
http://edamontology.org/data_
http://edamontology.org/data_2091

Page 6 of 11 Database, Vol. 2019, Article ID baz077

data are found via the @context. Computer programs that
support JSON-LD can use the context to reason about
content.

In addition to JSON-LD, Tripal v3 web services use the
World Wide Web Consortium (W3C) Hydra Core vocab-
ulary (35) to make the web service discoverable. An active
area of development for web services is the ability for a com-
puter program to understand the data and functions avail-
able to it without prior knowledge of the web service API.
A common bottleneck for data exchange is incompatible
APIs such that a site developer who wishes to programmat-
ically integrate data from multiple sources must learn the
APIs of each source and write custom programs for each. A
discoverable web services is fully traversable by a client pro-
gram simply by providing the web service root. The Hydra
core vocabulary was chosen for Tripal web services because
it provides CV terms for collections (e.g. a listing of similar
content types), the meaning of operations for an entity
(e.g. HTTP POST, PUT, DELETE, etc.) and pagination. Any
client that recognizes the Hydra vocabulary can traverse
the web services of any Tripal site. The HydraConsole
(https://www.markus-lanthaler.com/hydra/console/) is one
such client that makes for quick browsing. Users of Tripal
sites can learn to use the Tripal web services by following
the instructions in the Tripal v3 User’s Guide, available on
the http://tripal.info website.

By default, all entities are shared on a Tripal site’s web
services via the content resource available by adding ‘/web-
services/content/v0.1’ just after the base URL of the site.
However, Tripal v3 provides a web services API that allows
the site developer of a Tripal-based site to create new web
services that are in turn discoverable. This API consists
of a variety of PHP classes: TripalWebService, TripalWeb-
ServiceResource and TripalWebServiceCollection. Develop-
ers can create their own web services by implementing
instances of these classes.

Tripal sites which enable Tripal web services follow
FAIR data principles as data becomes ‘findable’ (i.e.
discoverable) by any client program recognizing the
Hydra core vocabulary. Furthermore, the JSON-LD linked
data structure ensures accessibility by fully defining all
metadata through CV terms. By redesigning Tripal with
a semantic focus, data presented to the researcher on a
typical information page matches what they would access
programmatically. This further enhances accessibility since
researchers can use the most suitable access model for
their question.

Storage API: Chado integration

Aside from the need to support data exchange, a long-term
challenge for Tripal-based sites is increasing quantities of

data, especially data not suitable for storage in traditional
relational databases such as Chado. Examples of such data
can include large-scale resequencing (as housed in BAM
files), variant-data (as currently housed in VCF files) or
large-scale network data that may be better suited for graph
databases. As Tripal-based sites explore new avenues for
data storage, Tripal needs to support those efforts. The
new Tripal Storage API is intended to meet these needs.
The Storage API allows Tripal to communicate with an
underlying data store using a common set of PHP classes
and functions. Figure 3 shows a diagram relating how the
Storage API sits between the Tripal entity data model and
the underlying data storage system. As shown in Figure 3,
access to each database requires a database-specific API.
Currently, only the Chado API has been written. However,
other future APIs (represented via connection with a dashed
line) can be developed and integrated into entities via the
Storage API. The Tripal Developer’s Handbook, available
at http://tripal.info, describes how developers can integrate
new storage backends.

One of the most important components of the Tripal
Storage API is the TripalField class. By default, Tripal
provides a multitude of fields with each entity. These fields
transmit the data stored in Chado for a given entity and are
implemented using the TripalField, TripalFieldWidget and
the TripalFieldFormatter classes. Almost all data housed in
the Chado database can be displayed using these classes
and Tripal provides user interfaces to allow a site developer
to add new fields, hide unwanted fields and rearrange the
display of fields on content type pages without the need for
programming. However, sometimes a site developer may
wish to add new fields that house data not supported by
the current field classes. In this case, developers need only
implement the three field classes. The instructions provided
on the Tripal v3 Developer’s Handbook help developers
implement their own fields. In addition, the Tripal Fields
Generator package (36), available at https://github.com/
tripal/fields_generator, will help automate initial setup of
these field classes.

Resources for site administrators

Tight integration of Tripal 3 entities and fields with Drupal
provides a feature rich administrative user interface for
managing the biological data pages. Through this interface,
an administrator can choose which content types to make
available on their site and customize the primary data
storage location, as well as the CV term defining each
type. Furthermore, for each content type the administra-
tor chooses the ancillary data that is made available, its
order and its format through a drag-and-drop interface.
These administrative interfaces facilitate customization of

https://www.markus-lanthaler.com/hydra/console/
http://tripal.info
http://tripal.info
https://github.com/tripal/fields_generator
https://github.com/tripal/fields_generator

Database, Vol. 2019, Article ID baz077 Page 7 of 11

Figure 3. A diagram representing the Tripal Storage API and its relationship to content on a Tripal website. The Storage API sits between the Tripal

Entity data model and the storage back-ends, allowing data to be integrated from multiple storage locations into a single entity.

Tripal-based sites to ensure they meet the specific needs of
each community while reducing the amount of program-
ming needed.

Documentation for Tripal site creation, management
and customization is available through ReadtheDocs:
https://tripal.readthedocs.io/en/latest/user_guide.html. In
addition to thorough installation documentation, the
documentation also demonstrates the flexibility and ease
of customization provided by Tripal. Specifically, there is a
tutorial-style guide demonstrating each step of setting up
a genomics-focused site with documentation for breeding-
focused sites in development. There are also guides for
learning Chado, searching, materialized views, user file
management, data loading and automated job execution.
This documentation is continually expanding as new
feature sets and community questions are voiced, ensuring
that it is maintained and accurately reflects the current
version of Tripal.

Using the Tripal API, a site developer can create reusable
extension modules that expand the functionality of their
Tripal sites and share those modules with the Tripal
community. This sharing of extensions encourages co-
development and reduces duplication of effort. A list
of Tripal v3 compatible modules is listed in Table 1.
The authors did not create all of the modules listed in

Table 1. They may be published elsewhere and some may
still be in development. An updated list of modules, as
they become available is housed in the online Tripal
documentation at https://tripal.readthedocs.io/en/latest/
extensions.html. This listing helps serve as a gathering
point for developers to collaborate on existing modules
and as a resource for a site developer looking for additional
functionality.

Regarding data exchange, here we provide some
additional details for the ElasticSearch extension module.
Tripal v3 was developed to encourage data accessibility
and sharing and the ElasticSearch module enhances
this ability. ElasticSearch (37) is a free, open-source,
highly customizable RESTful search engine. The Tripal
ElasticSearch module (38) handles much of the cus-
tomization necessary to enable indexing of Tripal entities.
This module makes it easy for a site administrator
to connect an ElasticSearch instance to their site and
manage content indexing. In addition, Tripal ElasticSearch
provides cross-site data exchange. Administrators need
only opt-in to sharing their data to expose site indexes
to other Tripal v3 sites to allow cross-site search on their
own site. This greatly enhances interoperability between
data and data re-use thus facilitating the FAIR data
principles.

https://tripal.readthedocs.io/en/latest/user_guide.html
https://tripal.readthedocs.io/en/latest/extensions.html
https://tripal.readthedocs.io/en/latest/extensions.html

Page 8 of 11 Database, Vol. 2019, Article ID baz077

Table 1. Tripal v3 compatible extension modules, listed by category∗

Administrative

Tripal Alchemist Transforms entities from one data type to another.
Tripal Curator Splits properties and mass reassign property CV terms.
Tripal Headquarters Supports admin approval of user submitted data.

Functional annotation

Tripal Analysis Expression Loads and visualizes NCBI Biomaterials and expression data.
Tripal Analysis Blast Loads and displays XML results from the NCBI blast program.
Tripal Analysis KEGG Loads and displays of KEGG ortholog assignments.
Tripal Analysis Interpro Loads and displays of XML results from the InterProScan program.
Tripal CV-Xray Maps content annotations onto browsable controlled vocabulary trees.

Other data loaders

Genotype Loader Loads genotype data housed in VCF files.
Mainlab Chado Loader Provides various data loaders for Excel-based template files.
Raw Phenotypes Loads phenotype data via Excel with validation, charts and downloads.
Tripal BibTeX A BibTeX importer for publications.
Tripal Plant PopGen Provides import of genotype, phenotype, environmental, etc. data.
Migrate Chado Imports biological data to Drupal/Chado from other sources.

Developer Tools

TripalDock Creates a development Tripal site using Docker.
Tripal Download API Provides an API for downloading Tripal/Chado data.
Tripal D3.js API Provides d3.js integration for Tripal.
Tripal Fields Generator Automates the generation of new Tripal fields.
Tripal Rapid Installer Provides rapid installation of a Tripal site.
Tripal Test Suite A framework for Unit Testing of Tripal modules.

Third-party Integration

BrAPI Implements the Breeding API for Tripal.
Tripal Blast Provides a web interface for execution of BLAST.
Tripal Sequence Similarity Provides a web interface for execution of BLAST and Diamond.
Tripal Galaxy Integrates analytical workflows from Galaxy with Tripal.
Tripal JBrowse Integrates JBrowse with Tripal.
VCF Filter Provides custom filters for VCF files.
Tripal Apollo Manages user accounts for your JBrowse Apollo instances.
Tripal Multi-Chado Supports use of multiple Chado databases within a single Tripal site.
CartograTree Provides a webapp to identify and visualize geo-referenced data.

Searching

Mainlab Chado Search Provides custom search forms for specific biological data.
Tripal ElasticSearch Provides fast site-wide and cross-site searching of Tripal sites.

Visualization/Display

Analayzed Phenotypes Visualization for large scale phenotypic data.
TripalMap Visualization of genetic maps.
CvitEmbed Integrates CViTjs to provide whole-genome visualizations.
Mainlab Data Display Provides custom displays for many biological data types.
ND Genotypes Visualization of genotypic data.
Tripal Fancy Fields Provides charts (e.g. pie, donut, or bar chart) and tables for data.

∗Listed modules are not necessarily created by the authors of this manuscript and may be published elsewhere. Please see https://tripal.readthedocs.io/en/latest/extensions.html for an updated
listing and links to source code repositories.

https://tripal.readthedocs.io/en/latest/extensions.html

Database, Vol. 2019, Article ID baz077 Page 9 of 11

Resources for site developers

Tripal extends the Drupal API to facilitate customization
and extension of Tripal sites. For example, developers can
use the API to create custom data storage solutions, ancil-
lary data fields and visualizations, access data in Chado,
develop custom data importers and generally customize
every aspect of a Tripal site. The API is well documented
with dedicated pages for each function and class (http://api.
tripal.info/api/tripal/3.x), as well as tutorial-style developer
examples (https://tripal.readthedocs.io/en/latest/dev_guide.
html). Additionally, best practices have been established
to help developers create extension modules that can be
shared with the community and contribute to the core
Tripal package (https://tripal.readthedocs.io/en/latest/dev_
guide/contributing/pull_requests.html). Community discus-
sions in the GitHub issue queue (https://github.com/tripal/
tripal/issues), Tripal Help Desk calls and monthly Tripal
Community meetings provide an inclusive environment for
collaboration.

To ensure robustness of code, PHPUnit has become the
testing framework of choice for Drupal. However, imple-
menting it in Drupal 7 has been historically difficult due
to the lack of core infrastructure. Tripal Test Suite (36)
bootstraps a Tripal site to use PHPUnit and lessen the
development time needed to add PHPUnit tests to any
Tripal extension module. Tripal v3 core package uses Tripal
Test Suite to provide core tests. Furthermore, Tripal Test
Suite also facilitates the development of unit tests for Tripal
extension modules and provides conveniences like name
spacing, database seeders, transactions and data factories.
This framework allows developers to confirm that their
extensions work as desired and to maintain quality.

To ease development and deployment, a set of docker
images were developed (https://github.com/galaxy-genome-
annotation/docker-tripal). These images are based on an
up-to-date PHP image and the latest Drupal 7 releases.
The image is compatible with the other docker images
built in the frame of the Galaxy Genome Annotation
project (https://galaxy-genome-annotation.github.io/). The
set of images can be instantiated using docker compose
and include a service for Tripal and Drupal, another
for PostgreSQL and Chado and a third containing
ElasticSearch. Tripal docker is designed for production
usage and is configured for advanced cache management
to improve performances. It is used on various public
resources including the insect genomic resources provided
by the BIPAA platform (https://bipaa.genouest.org).

While Tripal and Drupal are PHP applications, the
Python-tripal package (https://github.com/galaxy-genome-
annotation/python-tripal) provides access to Tripal via
a Python interface. It provides command-line interface
(CLI) access to Tripal using the web services provided

by Tripal and the tripal_rest_api module (https://github.
com/abretaud/tripal_rest_api). Python-tripal can import
various data (e.g. annotations in GFF format, sequences in
FASTA format, orthology or expression data) into a remote
Tripal server. It also allows users to explore the content of
a Tripal instance programmatically (e.g. entities export).
The Python-tripal tool is used with the Galaxy Tools
package (https://github.com/galaxy-genome-annotation/
galaxy-tools/tree/master/tools/tripal). The Python-tripal
library can be used to load data from Galaxy into a remote
Tripal server.

Challenges

Creation of an online genome database is relatively straight-
forward with Tripal v3 as step-by-step instructions are
provided in the online User’s Handbook, data file formats
are well defined (e.g. GFF, FASTA, etc.) and ontologies are
well defined (e.g. SO and GO). Tripal provides out-of-the-
box loaders for genomic data, and best practices for storing
genomic data in Chado are defined. Moreover, Tripal 3
provides an administrative interface that allows the site
administrator to organize content pages as desired, and
Drupal provides a variety of themes to change the look-
and-feel of the site.

Often, however, community databases desire to support
more than just genomic data. Chado provides a variety of
database tables to support these data including tables for
expression data, stocks, germplasm, genotypes, phenotypes,
analyses, projects and more. Tripal v3 supports all Chado
tables and supports custom tables as well. Yet, biological
data is complex and organizing that data in Chado can
be challenging. For example, the natural diversity tables of
Chado were added to version 1.2 to associate phenotype
and genotype data for natural diversity studies (39), yet
its adoption has been challenging due to the size and scale
of data. New users of Tripal who expect to move beyond
genomic data will need to learn the structure and expec-
tations of the Chado tables. In some cases, best practices
for storage of some data types are not well defined. Both
the Tripal and Chado communities actively discuss these
best practices and new site developers are encouraged to
participate.

In some cases, a site developer may want to create
new tools, visualizations or extensions for their Tripal sites
to support custom community needs. Tripal provides an
API that gives access to the underlying data and to the
various tools that Tripal provides. Drupal also provides an
API that developers will need to learn. Often, Tripal-sites
are housed in academic institutions where principal inves-
tigators have access to undergraduate computer science
students or bioinformaticists with primarily data analytics

http://api.tripal.info/api/tripal/3.x
http://api.tripal.info/api/tripal/3.x
https://tripal.readthedocs.io/en/latest/dev_guide.html
https://tripal.readthedocs.io/en/latest/dev_guide.html
https://tripal.readthedocs.io/en/latest/dev_guide/contributing/pull_requests.html
https://tripal.readthedocs.io/en/latest/dev_guide/contributing/pull_requests.html
https://github.com/tripal/tripal/issues
https://github.com/tripal/tripal/issues
https://github.com/galaxy-genome-annotation/docker-tripal
https://github.com/galaxy-genome-annotation/docker-tripal
https://galaxy-genome-annotation.github.io/
https://bipaa.genouest.org
https://github.com/galaxy-genome-annotation/python-tripal
https://github.com/galaxy-genome-annotation/python-tripal
https://github.com/abretaud/tripal_rest_api
https://github.com/abretaud/tripal_rest_api
https://github.com/galaxy-genome-annotation/galaxy-tools/tree/master/tools/tripal
https://github.com/galaxy-genome-annotation/galaxy-tools/tree/master/tools/tripal

Page 10 of 11 Database, Vol. 2019, Article ID baz077

experience. Both types of individuals may have difficulties
learning Drupal. Therefore, a site developer should have
programming experience prior to learning Drupal as the
Drupal API is complex, and the training period may take
several weeks.

Ontologies and CVs are critical to make data find-
able and interoperable. However, vocabularies are dynamic
(they change), they sometimes do not have all terms needed,
and some terms are in multiple ontologies. When a term is
missing, it is recommended that users communicate with
developers of the vocabulary to add needed terms. But in
the meantime, Tripal does support use of locally created
vocabularies, and each site may create temporary local
terms to share their data. However, these challenges limit
the ability of sites to recognize shared data. Unfortunately,
this is the problem all sites confront—including non-Tripal
sites. For inter-site data exchange, site developers may need
to communicate with each other to ensure compatibility of
terms. However, the entity and field organization of data
allows Tripal sites to recognize data when terms are in
common and provide default views when terms are not.

Finally, Drupal is a powerful open-source CMS and is
quite large. In order to stay at the forefront of new tech-
nology, Drupal is not backward compatible with previous
versions. This has required that a site developer rewrite por-
tions of their extension modules as major version releases
occur. This has proved challenging when Drupal upgraded
from version 6 to 7 and then from 7 to 8. Drupal core
developers have indicated, however, that the change from
8 to 9 and future updates are expected to be more seamless.

Despite these challenges, over 140 sites currently report
using Tripal for either development or production for a
variety of community databases. Sites whose developers
actively participate in Tripal community events house data
for over 4300 species from a diverse range of plants, fungi
and animals. Often these developers collaborate to provide
help for other developers. The Tripal community meets
monthly, provides online training and help desk sessions,
offers discussion forums for best practices and has yearly
face-to-face coding and planning meetings that are open to
all. A site developer who chooses to become involved can
draw on this collective experience, and in turn contribute
back to the larger community, contributing to the sustain-
ability of all Tripal sites.

Conclusion

Tripal is a powerful tool for non-model organism commu-
nities. Through Tripal, communities receive many features
aiding in the creation of high-quality, FAIR-compliant bio-
logical databases. The semantic focus of Tripal 3 enhances
the quality of data sets by ensuring data and metadata are

fully described using controlled vocabulary terms. Discov-
erable web services, cross-site data collections and consis-
tent access of data across storage models make disparate
data both interoperable and findable. Furthermore, Tri-
pal addresses the sustainability concerns many biological
databases face through shared development input and sup-
port of an open-source, community-developed maintenance
model. Tripal continues to respond to the needs of commu-
nity biological databases with a community-wide discussion
ongoing for Tripal version 4.

Funding
Tripal is developed by an international group of researchers and
programmers. Funded projects have contributed over $15M to the
development of Tripal over the last 10 years. Tripal v3 development
has been funded via the following sources: NSF DIBBs Award
#1443040, NSF PGRP Award #1444573, USDA NIFA NRSP10,
USDA NIFA SCRI Awards #2014-51181-2237 and 2009-51181-
0603, Saskatchewan Pulse Growers BRE060, Genome Canada
#8302, USDA-ARS, Cotton Incorporated, Washington Tree Fruit
Research Commission, U.S. Dry Pea and Lentil Council, and
Northern Pulse Growers.

Conflict of interest. None declared.

References

1. Congress, U.S. (1998) US Code: Title 42. The Public Health and
Welfare.

2. The FlyBase Consortium (1994) FlyBase—the Drosophila
database. Nucleic Acids Res., 22, 3456–3458.

3. The FlyBase Consortium, Thurmond,J., Goodman,J.L. et al.
(2018) FlyBase 2.0: the next generation. Nucleic Acids Res., 47,
D759–D765.

4. Falk,T., Herndon,N., Grau,E. et al. (2018) Growing and cultivat-
ing the forest genomics database, TreeGenes. Database, 2018,
bay084.

5. Shimoyama,M., Hayman,G.T., Laulederkind,S.J.F. et al. (2009)
The rat genome database curators: who, what, where, why.
PLoS Comput. Biol., 5, e1000582.

6. Hayman,G.T., De Pons,J., Smith,J.R. et al. (2014) The rat
genome database 2015: genomic, phenotypic and environmental
variations and disease. Nucleic Acids Res., 43, D743–D750.

7. Berardini,T.Z., Reiser,L., Li,D. et al. (2015) The arabidop-
sis information resource: making and mining the ‘gold
standard’ annotated reference plant genome. Genesis, 53,
474–485.

8. Cherry,J.M. (2015) The Saccharomyces Genome Database:
a tool for discovery. Cold Spring Harb. Protoc., 2015,
pdb.top083840-pdb.top083840.

9. Jung,S., Lee,T., Cheng,C.-H. et al. (2018) 15 years of GDR: new
data and functionality in the genome database for Rosaceae.
Nucleic Acids Res., 47, D1137–D1145.

10. Sanderson,L.A., Caron,C.T., Tan,R. et al. (2019) Knowpulse:
an evolving breeder-friendly web-portal for chickpea, common
bean, field pea and lentil. Plant and Animal Genome Conference
XXVII. San Diego, CA.

Database, Vol. 2019, Article ID baz077 Page 11 of 11

11. Mungall,C.J., Emmert,D.B. and The FlyBase, C (2007) A Chado
case study: an ontology-based modular schema for representing
genome-associated biological information. Bioinformatics, 23,
i337–i346.

12. Smith,R.N., Aleksic,J., Butano,D. et al. (2012) InterMine: a
flexible data warehouse system for the integration and anal-
ysis of heterogeneous biological data. Bioinformatics, 28,
3163–3165.

13. Stein,L.D. (2013) Using GBrowse 2.0 to visualize and share next-
generation sequence data. Brief. Bioinform., 14, 162–171.

14. Buels,R., Yao,E., Diesh,C.M. et al. (2016) JBrowse: a dynamic
web platform for genome visualization and analysis. Genome
Biol., 17, 66.

15. Dunn,N., Unni,D., Diesh,C. et al. (2019) Apollo: democratizing
genome annotation. PLoS Comput. Biol., 15, e1006790.

16. Wilkinson,M.D., Dumontier,M., Aalbersberg,I.J. et al. (2016)
The FAIR guiding principles for scientific data management and
stewardship. Sci. Data, 3, 160018.

17. Reiser,L., Berardini,T.Z., Li,D. et al. (2016) Sustainable funding
for biocuration: the Arabidopsis information resource (TAIR) as
a case study of a subscription-based funding model. Database,
2016, baw018.

18. Bult,C.J., Blake,J.A., Smith,C.L. et al. (2018) Mouse genome
database (MGD) 2019. Nucleic Acids Res., 47, D801–D806.

19. The Gene Ontology,C, Ashburner,M., Ball,C.A. et al. (2000)
Gene Ontology: tool for the unification of biology. Nat. Genet.,
25, 25–29.

20. Grove,C., Cain,S., Chen,W.J. et al. (2018) Using WormBase: a
genome biology resource for Caenorhabditis elegans and related
nematodes. In: Eukaryotic Genomic Databases. Humana Press,
New York, NY, pp. 399–470.

21. Lee,R.Y.N., Howe,K.L., Harris,T.W. et al. (2017) WormBase
2017: molting into a new stage. Nucleic Acids Res., 46,
D869–D874.

22. Howe,D.G., Bradford,Y.M., Conlin,T. et al. (2013) ZFIN,
the zebrafish model organism database: increased support
for mutants and transgenics. Nucleic Acids Res., 41,
D854–D860.

23. Harper,L., Campbell,J., Cannon,E.K.S. et al. (2018) AgBio-
Data consortium recommendations for sustainable genomics
and genetics databases for agriculture. Database, 2018,
bay088.

24. Sanderson,L.A., Ficklin,S.P., Cheng,C.H. et al. (2013) Tripal
v1.1: a standards-based toolkit for construction of online genetic
and genomic databases. Database (Oxford), 2013, bat075.

25. Ficklin,S.P., Sanderson,L.A., Cheng,C.H. et al. (2011) Tripal:
a construction toolkit for online genome databases. Database
(Oxford), 2011, bar044.

26. Humann, J., Frank, M., Jung, S. et al. (2019) Citrus genome
database resources for citrus genomics, genetics, and breeding
research. Plant and Animal Genome Conference XXVII. San
Diego, CA.

27. Humann,J., Jung,S., Cheng,C. et al. (2017) Cool season food
legume genome database: a resource for pea, lentil, faba bean
and chickpea genetics, genomics and breeding. Plant and Animal
Genome Conference XXV. San Diego, CA.

28. Dash,S., Cannon,E.K.S., Kalberer,S.R. et al. (2016) Chapter 8—
PeanutBase and other bioinformatic resources for peanut. In:
Stalker HT, Wilson RF (eds). Peanuts. AOCS Press, pp. 241–252.

29. Dash,S., Campbell,J.D., Cannon,E.K.S. et al. (2016) Legume
information system (LegumeInfo.org): a key component of a set
of federated data resources for the legume family. Nucleic Acids
Res., 44, D1181–D1188.

30. Eilbeck,K., Lewis,S.E., Mungall,C.J. et al. (2005) The sequence
ontology: a tool for the unification of genome annotations.
Genome Biol., 6, R44.

31. Heath,T. and Bizer,C. (2011) Linked Data: Evolving the Web
into a Global Data Space. Synthesis Lectures on the Semantic
Web: Theory and Technology, 1, 1–136.

32. Bizer,C., Heath,T. and Berners-Lee,T. (2011) Linked Data: The
Story so Far. Semantic Services, Interoperability and Web Appli-
cations: Emerging Concepts. IGI Global, pp. 205–227.

33. Berners-Lee,T., Hendler,J. and Lassila,O. (2001) The semantic
web. Sci. Am., 284, 34–43.

34. World Wide Web Consortium. (2014) JSON-LD 1.0: a JSON-
based serialization for linked data.

35. Lanthaler,M. and Gütl,C. (2013) Hydra: A Vocabulary for
Hypermedia-Driven Web APIs. LDOW, p. 996.

36. Condon,B., Almsaeed,A., Chen,M. et al. (2018) Tripal Developer
Toolkit. Database, 2018, bay099.

37. Gormley,C. and Tong,Z. (2015) Elasticsearch: The Definitive
Guide: A Distributed Real-Time Search and Analytics Engine.
O’Reilly Media Inc, Sebastopol, CA, USA.

38. Chen,M., Henry,N., Almsaeed,A. et al. (2017) New extension
software modules to enhance searching and display of transcrip-
tome data in Tripal databases. Database, 2017, bax052.

39. Jung,S., Menda,N., Redmond,S. et al. (2011) The Chado natural
diversity module: a new generic database schema for large-scale
phenotyping and genotyping data. Database (Oxford), 2011,
bar051.

	Tripal v3: an ontology-based toolkit for construction of FAIR biological community databases
	Introduction
	Implementation
	An ontology-based redesign
	Web services
	Storage API: Chado integration

	Resources for site administrators
	Resources for site developers
	Challenges
	Conclusion
	Funding

