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Abstract: Nuclear factor-κB (NF-κB) is a transcription factor that regulates the expression of various
genes involved in inflammation and the immune response. The activation of NF-κB occurs via
two pathways: inflammatory cytokines, such as TNF-α and IL-1β, activate the “classical pathway”,
and cytokines involved in lymph node formation, such as CD40L, activate the “alternative pathway”.
NF-κB1 (p50) and NF-κB2 (p52) double-knockout mice exhibited severe osteopetrosis due to the
total lack of osteoclasts, suggesting that NF-κB activation is required for osteoclast differentiation.
These results indicate that NF-κB may be a therapeutic target for inflammatory bone diseases, such as
rheumatoid arthritis and periodontal disease. On the other hand, mice that express the dominant
negative form of IκB kinase (IKK)-β specifically in osteoblasts exhibited increased bone mass, but there
was no change in osteoclast numbers. Therefore, inhibition of NF-κB is thought to promote bone
formation. Taken together, the inhibition of NF-κB leads to “killing two birds with one stone”:
it suppresses bone resorption and promotes bone formation. This review describes the role of NF-κB
in physiological bone metabolism, pathologic bone destruction, and bone regeneration.
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1. Introduction

As well as supporting and protecting the body, bones support movement in coordination with
muscles, host hematopoiesis, and store minerals such as calcium [1,2]. Although bone appears to be
a static tissue, it is, in fact, a dynamic tissue that is resorbed and formed constantly and repeatedly.
This is called “bone remodeling” [1,2]. Osteoclasts that differentiate from hematopoietic stem cells
are responsible for bone resorption, and osteoblasts that differentiate from mesenchymal cells are
responsible for bone formation [1–5]. The differentiation and function of these cells are tightly regulated
by hormones and local cytokines. In normal bone, the balance between bone resorption and bone
formation is maintained, and the bone mass is kept constant; however, in inflammatory bone diseases,
such as osteoporosis, rheumatoid arthritis (RA), and periodontitis, bone resorption exceeds bone
formation, and then the balance is lost [1–5].
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Excessive immune and inflammatory responses enhance bone resorption by osteoclasts and
cause bone destruction by impairing osteoblastic bone formation [6]. RA, a typical inflammatory
bone disease, is characterized by chronic polysynovitis accompanied with bone destruction by
systemic autoimmunity [6]. During the RA activity period, the pannus, which is an abnormal layer
of fibrovascular or granulation tissue, infiltrates into the destroyed joint by osteoclasts. At this time,
the T-cell immune reaction in the RA synovium causes an excessive biological reaction, and the signal
in the synovial cells is continually activated. As a result, synovial cells produce inflammatory cytokines,
such as interleukin (IL)-1, IL-6, and tumor necrosis factor (TNF)-α, and matrix-degrading enzymes,
such as matrix metalloproteases (MMPs) [7,8].

Nuclear factor-κB (NF-κB) is a collective term for five transcription factors: p50/p105, p52/p100,
p65 (relA), c-Rel, and RelB, which together form homo- or heterodimers [9,10]. NF-κB binds to the
inhibitory molecules IκBs, IκBα, IκBβ, IκBγ, and IκBε, and they remain as a complex sequestered
in the cytoplasm. When cells are stimulated by inflammatory cytokines such as TNF-α and IL-1,
IκB is phosphorylated by the IκB kinase complex (IKKα, IKKβ, NEMO: NF-κB essential modulator),
ubiquitinated, and then degraded by the ubiquitin-proteasome system [9–11]. Then, free NF-κB
translocates into the nucleus, recognizes specific DNA sequences, and binds to them to regulate the
expression of target genes. This is called “the classical NF-κB pathway”. However, there is also
an NF-κB activation mechanism that is independent of IκB degradation. In the unstimulated state,
p100 remains in the cytoplasm by associating with RelB. When activated, the C-terminal end of p100,
which has the same function as IκBs, is degraded, and then a heterodimer of RelB/p52 is formed and
translocates into the nucleus. This activation pathway is referred to as “the alternative NF-κB pathway”
(Figure 1) [9–11]. Since these two pathways play different roles, the p50/p65, p50/c-Rel, and p52/RelB
heterodimers are expected to bind to their specific DNA sequences. However, the sequence to which the
p52/RelB heterodimer specifically binds and its target genes have not been identified [11,12] (Figure 1).
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pathway (right) is activated by a limited number of agonists, which are involved in secondary 
lymphoid organogenesis, mature B cell function, and adaptive immunity. This pathway requires 
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Figure 1. Two different NF-κB signaling pathways. The classical (canonical) pathway (left) is activated by
a large number of agonists, such as TNF-α, IL-1, lipopolysaccharide, and T cell receptors. The activation
of this pathway depends on the IκB kinase (IKK) complex (IKKEMO), which phosphorylates IκBα
(Ser32, 36) to induce rapid degradation. This pathway is essential for immune responses, inflammation,
tumorigenesis, and cell survival. The alternative (noncanonical) pathway (right) is activated by a limited
number of agonists, which are involved in secondary lymphoid organogenesis, mature B cell function,
and adaptive immunity. This pathway requires NIK and IKKα, which induce the slow processing of
p100 to generate p52, resulting in the dimerization and activation of the p52/RelB heterodimer. Receptor
activator of NF-κB ligand (RANKL) activates both classical and alternative pathways.
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NF-κB is a transcription factor regulated by genes that control immune and inflammatory responses,
but NF-κB1 (p50) and NF-κB2 (p52) double-knockout (dKO) mice exhibited severe osteopetrosis and
lacked osteoclasts, suggesting that NF-κB also directly controls osteoclast differentiation [13,14]. Recent
findings also showed that NF-κB controls osteoblast differentiation directly or indirectly [15,16]. In this
review, we will mainly explain the physiological and pathological roles of NF-κB in bone development
and disease, focusing on osteoclasts and osteoblasts.

2. The Role of NF-κB on Bone Metabolism

2.1. The Functions of NF-κB Signaling in Physiological Osteoclastic Bone Resorption

Osteoclasts differentiate from hematopoietic stem cells into osteoclasts via macrophage and
monocyte pathways [3–5,17]. During differentiation, osteoclast progenitor cells proliferate and
differentiate into mono- and binucleated osteoclasts that fuse to become multinucleated osteoclasts.
Multinucleated osteoclasts recognize the bone matrix, form a sealing zone to separate the resorption
surface from the outside, form a ruffled border, and secrete acid and proteolytic enzymes into the
resorption lacunae [3–5,17].

Osteoclast differentiation is controlled by two cytokines: macrophage colony-stimulating factor
(M-CSF) and receptor activator of NF-κB ligand (RANKL). M-CSF is essential for differentiation into
osteoclast progenitors, and it induces the expression of the RANKL receptor RANK. Transcription
factors PU.1 and MITF induce the expression of M-CSF receptor (c-fms), and individuals lacking these
transcription factors have impaired osteoclast differentiation and present with marble bone disease.
In addition, op/op mice and c-fms-deficient mice that cannot produce functional M-CSF exhibit marble
bone disease and lack osteoclasts [3–5,17].

RANKL is produced by various cells, such as osteoblasts, osteocytes, T cells and B cells [3–5,17].
Mice that lack RANKL and its receptor RANK have severe osteopetrosis caused by a total lack of
osteoclasts [18,19]. On the other hand, the number of osteoclasts increases in mice that lack the RANKL
decoy receptor, osteoprotegerin (OPG), resulting in osteoporosis [20,21]. In human hereditary bone
disease, mutations in RANKL, RANK, and OPG have been found, and these three molecules have
been shown to be important for osteoclast formation, which maintains bone mass [22].

RANK belongs to the TNF receptor family, and various adapter molecules can interact with
the intracellular domain of RANK [23]. Among TNF receptor-activating factor (TRAF) members,
TRAF6-deficient mice exhibit an osteopetrosis phenotype that is similar to RANKL- or RANK-deficient
mice [24]. Of the downstream molecules of TRAF6, c-Fos and c-Jun regulate the transcription
factor AP-1. c-Fos-deficient mice also exhibited osteopetrosis [25]. Another downstream molecule,
the transcription factor NF-κB, is composed of five family members. In mice with both NF-κB1 and
NF-κB2 knocked out, there is also osteopetrosis due to the total lack of osteoclasts, but deletion of either
NF-κB1 or NF-κB2 alone causes no detectable bone phenotype [13,14]. The molecular mechanism by
which osteoclasts cannot form in NF-κB1 and NF-κB2 dKO mice is still unknown, but it is certain that
NF-κB signaling is important for osteoclast formation.

Among the molecules involved in the signal transduction of NF-κB, p65 (RelA), IKKβ and
NEMO could not be analyzed regarding a bone phenotype because these molecules are embryonic
lethal [26–31]. Thus, to make IKKβ specifically deficient (IKKβcKO) in myeloid cells, IKKβflox/flox mice
were crossed with Mx1 or CD11b-Cre transgenic mice to generate conditional knockout mice in which
IKKβ is specifically deficient (IKKβcKO) in myeloid cells [32,33]. IKKβcKO mice showed an increase
in the trabecular bone volume due to a decrease in the number of osteoclasts. Furthermore, the number
of osteoclast precursor cells (F4/80 positive cells) was also significantly reduced. When IKKβcKO mice
were crossed with tumor necrosis factor receptor 1(TNFR1)–/– mice to generate IKKβcKO/TNFR1KO
dKO mice, osteoclast precursor cells were resistant to apoptosis; further, IκBα was not degraded
by RANKL stimulation, and osteoclast differentiation was still suppressed. By contrast, in IKKα
knock-in (IKKαA/A) mice in which the serine residue necessary for IKKα kinase activity was substituted
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with alanine, osteoclast formation by RANKL stimulation was suppressed in vitro but not in vivo.
The trabecular bone volume in IKKαA/A mice was comparable to that of wild-type (WT) mice [30].
Furthermore, IKKβ-deficient osteoclasts resulted in RANKL-induced apoptosis by the activation of
c-Jun N-terminal kinase (JNK), and the addition of JNK inhibitor restored RANKL-induced apoptosis
derived from IKKβcKO mice in vitro [33]. Thus, IKKβ, but not IKKα, is important as a RANK
downstream signal in osteoclast differentiation. Consistent with these results, treatment with specific
inhibitors of IKKβ activity suppressed RANKL-induced osteoclastogenesis in vitro and in vivo [34–37].

Since p65-deficient (p65–/–) mice are also embryonic lethal, p65–/– fetal liver cells were studied;
the cells were transplanted into irradiated mice to reconstitute bone marrow cells. Fewer osteoclasts were
observed in p65–/– chimera mice. When p65–/– chimera mice were crossed with TNFR1–/– mice, p65–/–

precursors were found to be sensitive to RANKL-induced apoptosis even on the TNFR1–/– background.
ZVAD, a caspase inhibitor, restored RANKL-induced osteoclastogenesis in p65–/– precursors in vitro,
suggesting that p65 induces proapoptotic gene expression in osteoclastogenesis [38].

Several lines of evidence have shown that the alternative NF-κB pathway also involves
RANKL-induced osteoclastogenesis. When RANKL is administered to NIK-deficient (NIK–/–) mice,
osteoclast formation is more inhibited than it is when RANKL is administered to wild-type mice.
Osteoclast progenitor cells derived from NIK–/– mice did not induce processing of p100 to p52 by
RANKL stimulation due to IκB-like function of the C-terminus of p100 [39,40]. In addition, mice lacking
IKKα, which is a molecule that is downstream of NIK, contain osteoclasts but are small in size and have
reduced bone resorbing activity. As with NIK–/– mice, processing of p100 to p52 by RANKL stimulation
does not occur in IKKα-deficient mice [32,41]. The role of RelB in osteoclastic bone resorption is
still unclear. Although the number of osteoclasts was normal, the bone mass was slightly increased.
However, overexpression of RelB restored RANKL-induced osteoclastogenesis in NIK–/– mice [42].
Recently, NIK-deficient and RelB-deficient female mice, but not male mice, revealed a 2-fold increase in
trabecular bone mass, suggesting that the alternative NF-κB pathway involves gender difference in bone
metabolism [43]. Alymphoplasia (aly/aly) mice do not undergo p100 to p52 processing because NIK is
inactive. Aly/aly mice showed mild osteopetrosis and had a greatly reduced osteoclast count [44,45].
RANKL-induced osteoclast formation from the bone marrow cells of aly/aly mice was also suppressed.
RANKL still induced IκBα degradation and activated classical NF-κB, but p100 to p52 processing was
abolished by the aly/aly mutations. Overexpression of NFATc1 and constitutive activation of IKKα or
p52 restored RANKL-induced osteoclastogenesis in aly/aly cells. The overexpression of RelB in aly/aly
cells restored RANKL-induced osteoclastogenesis by inducing cancer Osaka thyroid (Cot) expression,
which induces the processing of p52 from p100 in place of NIK [46]. Taken together, the balance
between p52 and p100 determines RANKL-induced osteoclastogenesis.

2.2. NF-κB Inhibition Suppresses Inflammatory Bone Diseases

2.2.1. Rheumatoid Arthritis (RA)

Rheumatoid arthritis (RA) is a chronic inflammatory disease with progressive joint destruction
over time [6–8]. Biologics such as anti-TNF-α antibodies have been shown to be effective in cases where
existing drugs have not been effective [47]. The characteristic feature of RA is the proliferation and
infiltration of synovial cells and angiogenesis of the joint area [6–8]. In the joint area, the overproduction
of inflammatory cytokines such as IL-1, TNF-α, IL-6, and IL-17, adhesion molecules, and MMPs and
the induction of osteoclasts are involved in bone and cartilage destruction in RA [6–8]. Recently,
biological products, such as anti-TNF-α neutralized antibody (etanercept, infliximab, and adalimumab,
etc.,) and anti-IL-6 neutralized antibody (tocilizumab), which are drugs created by biotechnology,
have been used for rheumatoid arthritis. Compared to conventional antirheumatic drugs, the cost
is high, but it is known to be particularly effective in suppressing joint destruction. Treatment
guidelines exist to prevent the destruction of joints by introducing biologics as soon as possible when
treatments centered on rheumatox are not enough to control the disease. These guidelines are widely
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accepted internationally [47]. Anti-TNF-α neutralized antibodies directly inhibit the binding of TNF-α
to its receptor and suppress excessive inflammation that induces RANKL expression in synovial
cells. IL-6 is required for the differentiation of Th17 cells that promote osteoclast differentiation,
and these neutralizing antibodies are thought to not only sink local inflammation but also suppress
RANKL induction and osteoclast differentiation. However, these biologics cause serious side effects,
such as triggering an autoimmune anti-antibody response or weakening the body’s immune defenses.
Therefore, alternative small-molecule-based therapies for inhibition of these cytokines’ effects is a hot
topic both in academia and industry [47,48].

Since NF-κB is a transcription factor that regulates the expression of inflammatory cytokines,
including TNF-α and IL-6, and serves as mediator for RANK signaling, selective inhibition of the
classical NF-κB pathway appears to be a target for RA bone destruction [9–11]. Thus, to suppress
the classical NF-κB pathway, experiments have been conducted [34,35,49–54] on the treatment of
arthritis models with NF-κB inhibitors, such as decoy oligonucleotides, NEMO-binding domain (NBD)
peptide, TAT-IκBα-super repressor, the dominant negative form of IKKβ, or IKKβ inhibitors such as
N-(6-chloro-7-methoxy-9H-beta-carbolin-8-yl)-2-methylnicotinamide (ML120B), 4(2′-aminoethyl)amino-
1,8-dimethylimidazo(1,2-a)quinoxaline (BMS-345541), 2-methoxy-N-((6-(1-methyl-4-(methylamino)-1,6-
dihydroimidazo[4,5-d]pyrrolo[2–b]pyridin-7-yl)pyridin-2-yl)methyl)acetamide (BMS-066), or (7-[2-
(cyclopropyl-methoxy)-6-hydroxyphenyl]-5-[(3S)-3-piperidinyl]-1,4-dihydro-2H-pyrido[2–d][1,3]
oxazin-2-one hydrochloride (CHPD). These inhibitors can suppress bone destruction by suppressing
local inflammation and osteoclast formation (Figure 2).
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Figure 2. Schematic representation of a healthy joint and rheumatoid arthritis. Rheumatoid arthritis
(RA) is a characterized by extensive synovitis, cartilage erosion, and bone destruction by excessive
immune and inflammatory responses. Synovial cells and immune cells produce inflammatory cytokines,
such as IL-1, IL-6, and TNFα, and matrix metalloproteases (MMPs). NF-κB inhibitors, such as decoy
oligonucleotides, NBD peptide, TAT-IκBα-super repressor, or IKKβ inhibitor, suppress bone destruction
by suppressing local inflammation.
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Iguratimod (IGU), a methanesulfonanilide, is a novel disease-modifying antirheumatic drug
(DMARD) that inhibits the production of immunoglobulins without affecting B cell proliferation,
various inflammatory cytokines (IL-1, -6 and -8 and TNF-α), and osteoclastogenesis by inhibiting
NF-κB [55]. IGU is orally bioavailable and easily absorbed from the gastrointestinal tract, and food
does not affect its pharmacokinetics. Several clinical studies have shown that IGU has immediate and
long-lasting effects on RA treatment [55,56]. Thus, IGU has been acceptable as an alternative where
other DMARDs are less effective or conventional RA treatment does not work well. However, some
side effects, including nausea, dizziness, headaches, and itching, have been reported [55]. A recent
study identified that patients carrying the ABCG2 rs2231142 allele were highly responsive to IGU, while
those carrying NAT rs1495742G had the lowest response. Furthermore, patients carrying CYP2C19*2
rs4244285 had a higher risk of IGU toxicity [57]. This report may useful to predict the patient’s response
to IGU and to avoid the potential toxicity.

It has been reported that not only these inhibitors but also components contained in plant
extracts, such as turmeric supplements, Trachelospermi caulis, Moutan cortex radicis, or Saposhnikovia
divaricata, can suppress the activation of the classical NF-κB pathway, which mediates excessive
immune responses and inflammation followed by cartilage destruction in arthritis [58–66]. The dietary
ω-3 polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid
(DHA), originating from fish oils, also reduce pain and inflammation in RA by suppressing IL-1 or
TNF-α production via NF-κB activation. A recent clinical trial indicated that when fish oil was used as
an adjunctive therapy in drug treatment for recent onset RA, rates of remission increased and drug
use decreased [67]. Moreover, a daily diet of extra-virgin olive oil significantly reduced joint edema
and cartilage destruction, preventing arthritis development in a mouse CIA model by suppressing
inflammatory cytokines and MMP3 production induced by the Janus kinase signal transducer and
activator of transcription (JAK/STAT), mitogen-activated protein kinases (MAPKs), and the NF-κB
pathway [68]. These ingredients are safe because they can be taken into the body as foods and
supplements, but they are less effective as therapeutic agents for rheumatism, and may be synergistic
when used as an aid to therapeutic agents.

Recent findings showed the involvement of the alternative NF-κB pathway on the development
of RA [69,70]. NIK is highly expressed in synovial endothelial cells of RA patients [69]. NIK promotes
pathogenic angiogenesis and synovial inflammation via CXCL12 production from endothelial cells [70].
Furthermore, NIK–/– mice have been found to be resistant to antigen-induced arthritis resulting from T
cell responses [40,71]. So far, there is no suggestion that the specific inhibitor of NIK suppresses bone
destruction on an RA model. However, for the B cell activating factor belonging to the tumor necrosis
factor family (BAFF), which activates the alternative NF-κB pathway [10], antagonists improved the
arthritis score of collagen-induced arthritis [72]. Taken together, these findings show that the alternative
pathway is involved in the development of RA.

2.2.2. Ankylosing Spondylitis (AS)

Ankylosing spondylitis (AS) is a chronic arthritis accompanied by inflammation of bone at the
cartilage–bone interface [73,74]. AS develops with time via chronic inflammation mainly in the spine,
and extra bone is formed in the spine, followed by the fusion of vertebrae. The disease’s most prominent
onset starts from the ages of 20 to 30 and is most prominent in males; men and women are affected
at a ratio of approximately 3:1. Although the etiology of AS is unknown, HLA-B27 belongs to the
class-1 surface antigens present on the interface of “MHC” antigenic peptides of T-cells, and is mainly
involved in the pathogenesis of AS. The functions of HLA-B27 regulate its ability to misfold, to induce
an endoplasmic reticulum stress response, and to promote autophagy/unfolded protein responses
(UPR). The expression of UPR genes induces inflammatory cytokine production, such as TNF-α and
IL-17 from Th17 cells [73,74]. Since AS is an HLA-B27-linked inflammatory disease, AS has been treated
with anti-inflammatory or immunosuppressive drugs [73]. Recent data suggested a role for TNF-α in
the pathophysiology of AS and showed that TNF-αmRNA is upregulated in the sacroiliac joints of AS
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patients. Therefore, if a patient continues to suffer high AS disease symptoms and the conventional
treatments are not effective, then anti-TNF-α or anti-TNF receptor antibodies (such as adalimumab,
etanercept, certolizumab pegol, infliximab, and golimumab) can be an option [75]. Anti-TNF antibodies
not only effectively treat AS but they also suppress inflammation and improve spine mobility with
sustained effects. In general, suppressing TNF not only suppresses bone resorption but also enhances
bone formation [76]. AS is a disease in which excessive bone formation occurs, but an improvement
in symptoms is considered to be an anti-inflammatory effect that is stronger than the promotion of
bone formation. However, it is necessary to select alternative DMARDs, including selective NF-κB
inhibitor, for patients who do not respond well to TNF-α inhibition, or when considering the costs and
side effects of anti-TNF-α treatments.

2.2.3. Periodontal Disease

Periodontal disease is a chronic inflammation caused by a bacterial infection [77,78]. Bacterial
plaques induce host inflammation, and the ongoing inflammatory response induces periodontal tissue
destruction. Periodontal disease is characterized by the formation of periodontal pockets, the resorption
of alveolar bone, and the movement of the tip barrier of the epithelium, which destroys periodontal
tissue. It is also well known that multiple risk factors accelerate periodontitis. Periodontal disease
is mainly treated by the mechanical removal of causative substances such as bacteria and plaque;
pharmacotherapy is not very effective. This difficulty in treatment may be because of the anatomical
complexity of the periodontal tissue and its constant contact with the external environment [77,78]. Since
NF-κB is involved in the onset and progression of various inflammatory diseases, pharmacotherapies
targeting NF-κB have been attempted. Similarly, in periodontal disease, the administration of IMD-0354,
a novel NF-κB inhibitor that suppresses IKKβ activity, has been used in ligation-induced periodontitis
models, and it significantly suppresses RANKL, IL-1β, and TNF-α expression in gingival tissues.
Furthermore, the number of osteoclasts also decreased following treatment, and bone resorption was
suppressed [79]. The application of NF-κB inhibitors may represent new pharmacotherapy options for
periodontal patients.

2.3. The Activation of NF-κB Suppresses Bone Formation

Bone is composed of hydroxyapatite crystals and various extracellular matrix proteins, including
type I collagen, osteocalcin, osteopontin, bone sialoprotein, and proteoglycan. Most of these bone
matrix proteins are secreted and deposited by mature osteoblasts that are aligned on the bone surface.
The formation of hydroxyapatite crystals in osteoid is also regulated by osteoblasts. The expression of
numerous bone-related extracellular matrix proteins and the activity of alkaline phosphatase (ALP) are
key features of osteoblasts [1,2].

Osteoblasts differentiate from mesenchymal stem cells, and their differentiation stage is cooperatively
and dynamically controlled by specific signal transduction pathways, directly or indirectly. Osteoblasts
differentiate from mesenchymal stem cells through various intracellular signaling mechanisms by various
cytokines and hormones, such as bone morphogenetic proteins (BMPs), transforming growth factor
(TGF)-β, Wnt, hedgehog, fibroblast growth factor, and estrogen. This intracellular signal transduction
is activated by phosphorylation, ubiquitination, protein–protein interactions and structural changes
following the binding of ligands to receptors. Since mice with either Runx2 or Osterix transcription factors
knocked out exhibited impaired bone formation, these two transcription factors have been reported to be
important for osteoblast differentiation [1,2,80].

It is known that bone formation is suppressed in an inflammatory state, and, in particular,
TNF-α is known to suppress osteoblast differentiation in various culture systems [76,81–84]. TNF-α
activates various signals in the cell, but a specific IKK inhibitor, BAY11-7082, restores the suppression
of osteoblast differentiation induced by TNF-α [85]. Recently, it has been reported that the inhibition
of NF-κB by the dominant negative form of IKKβ enhances bone formation [13]. The administration
of an inhibitor of IKK, S1627, promoted bone formation in ovariectomized (OVX) mice [14]. Mice
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expressing the dominant negative form of IKKβ in mature osteoblasts showed increased bone mass,
bone mineral density, and osteoblast activity without exhibiting any changes to osteoclast activity.
Furthermore, expressing the dominant negative form of IKKβ maintained the bone mass of OVX
mice by increasing the expression of Fos-related antigen-1 (Fra1), which is an essential transcription
factor involved in bone matrix formation [13]. There are also reports supporting these findings that
show that estrogen receptors inhibit the activation of the classical NF-κB pathway by interacting with
NF-κB [86]. As another possibility, TNF-α, IL-1β, IL-6, and IL-17 produced by T cells and other cells
during osteoporosis have been reported to activate the classical NF-κB pathway [87].

Bone morphogenetic proteins (BMPs) belong to the TGF-β superfamily and were originally
identified by their ability to induce ectopic bone formation when implanted into muscle tissue [88,89].
Since BMP signaling and the classical NF-κB pathway have opposing biological activities, crosstalk
between the two is possible. A cell-permeable inhibitor of the classical NF-κB pathway restored the
inhibitory effects of TNF-α on BMP2-induced Runx2 expression and osteoblast differentiation [90].
Zinc inhibits the classical NF-κB pathway by TNF-α and promotes BMP2-induced osteoblast
differentiation [91]. Pyrrolidine dithiocarbamate (PDTC), which inhibits the classical NF-κB pathway,
partially blocked the TNF-α-induced suppression of osteoblast differentiation. These results indicate
that inhibition of the classical NF-κB pathway by BMP [92] reverses osteoblast differentiation in a
mechanism dependent on TNF-α. Thus, the implantation of collagen sponges containing BAY11-7082,
a selective inhibitor of the classical NF-κB pathway, with BMP2 under the fascia resulted in the
formation of larger amounts of ectopic bone than what was seen following treatment with only
BMP2 [93]. These results suggest that selective inhibitors of the classical NF-κB pathway have the
effect of promoting bone formation by BMP. However, the side effects of its administration must be
considered, since inhibition of the classical NF-κB pathway activity might induce cell death [26–31].
Therefore, to enhance the effect of BMP without impairing the function of the classical NF-κB pathway,
the suppression mechanism of the BMP/Smad signal of the classical NF-κB pathway was examined.
There are various stages of BMP/Smad signaling, but the classical NF-κB pathway does not affect the
phosphorylation of Smad1/5 or the formation of the Smad1–Smad4 complex; however, the classical
NF-κB pathway does interfere with the DNA binding complex. Furthermore, we found that the p65
subunit of the classical NF-κB pathway associates with Smad4 but not Smad1 [64]. Therefore, when
the association sites of p65 and Smad4 were examined, the transactivation domain 2 (TA2) of p65
and the mad homology (MH) 1 region of Smad1 were directly associated. We further narrowed the
association site to the amino acid level and found that the 16 amino acid sites on the N-terminal side
of the TA domain of p65 were critical for binding to Smad4; we named the site the Smad binding
domain (SBD) [94]. We synthesized the SBD peptide to compete with the interaction of p65 with Smad4.
The SBD peptide promoted ALP activity and calcification induced by BMP2 in vitro. Furthermore,
administration of SBD peptide together with BMP2 induced ectopic thick cortical bone formation
in vivo. The SBD peptide did not affect the activation of the classical NF-κB pathway by TNF-α
stimulation [94]. Based on these results, it is possible that peptides targeting the association site of
NF-κB, p65 and Smad4 may be useful for promoting bone formation by BMP with few side effects
(Figure 3).
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Figure 3. A peptide that blocks the interaction of NF-κB p65 subunit with Smad4 enhances
BMP2-induced bone formation. Inhibitors of the classical NF-κB pathway have been reported
to promote bone formation, but mice deficient in p65, the main subunit of NF-κB, are embryonic lethal
and must be considered for possible side effects. Therefore, we investigated the molecular mechanism
by which NF-κB suppresses BMP signaling and revealed that p65 and the BMP-signaling molecule
Smad4 are associated. We suggested the possibility of enhancing the effect of BMP without impairing
the function of NF-κB by using a peptide that specifically inhibits the association site.

Recently, a heterozygous de novo missense mutation (c.1534_1535delinsAG, p.Asp512Ser) in exon
11 of RELA encoding Rela/p65 was found in a neonate who had died suddenly and unexpectedly with
high bone mass (HBM) that was judged radiographically and by skeletal histopathology [95]. Numerous
morphologically normal osteoclasts in the neonate were observed in bone histology, suggesting that
the missense change was associated with neonatal osteosclerosis from increased osteoblastic bone
formation in utero rather than failed osteoclastic bone resorption. Moreover, LPS stimulation failed to
activate the classical NF-κB pathway in fibroblasts derived from the neonate. This is the first report that
demonstrates the importance of the Rela/p65 subunit within the classical NF-κB pathway for human
skeletal homeostasis and represents a new genetic cause of HBM [95].

Bone histomorphometric data from aly/aly mice show an increase in trabecular bone volume
caused by both the suppression of bone resorption and increased bone formation, suggesting that
the alternative NF-κB pathway also regulates osteoblastic bone formation [96]. ALP activity and the
expression of osteoblastic markers (including osteocalcin, Id1, Osterix, and Runx2) induced by either
β-glycerophosphate and ascorbic acid or BMPs were increased in primary osteoblasts (POB) derived
from aly/aly mice compared with WT mice. The ectopic bone formation in vivo induced by BMP2 was
enhanced in aly/aly mice compared with WT mice, due to enhancement of BMP2 signaling [96]. Thus,
the alternative NF-κB pathway via the processing of p52 from p100 negatively regulates osteoblastic
differentiation and bone formation by modifying BMP activity. Mice that have RelB, a main subunit
of the alternative NF-κB pathway, knocked out develop age-related increased trabecular bone mass
associated with increased bone formation [97]. RelB–/– bone marrow stromal cells enhanced osteoblastic
differentiation by increasing Runx2 expression. RelB directly bound to the Runx2 promoter to inhibit
its activation. Moreover, RelB–/– bone-derived mesenchymal progenitor cells (MPCs) formed bone
more rapidly than WT cells after they were injected into a murine bone defect model [97].

Notch is a family of evolutionarily conserved receptors that regulate cell fate, and its signaling
plays various important roles in bone metabolism [98]. Notch signaling and the alternative NF-κB
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pathway were identified as signaling pathways responsible for the inhibitory effects of TNF-α on
osteoblastic differentiation. This was done by RNA sequencing and pathway analysis of mesenchymal
stem cells using WT and TNF-α transgenic (Tg) mice, a model of RA [99]. Notch inhibitors restored
bone loss and osteoblast inhibition in TNF-α Tg mice. The transplantation of fibroblasts from TNF-α
Tg mice treated with Notch inhibitors formed more new bone in recipient mice with bone defects.
The activation of the alternative NF-κB pathway in a murine pluripotent stem cell line induced RPBjκ
and HES1 in a Notch intracellular domain dependent manner (NICD-dependent). TNF-α enhanced
the binding of p52/RelB heterodimer to NICD, which induced binding at the RBPjκ site within the
Hes1 promoter. Elevated levels of HES1, p52, and RelB were observed in mesenchymal stem cells from
RA patients [99]. These results indicate that the inhibition of the alternative NF-κB pathway could
reduce age-related bone loss and enhance bone repair as well as inflammation-mediated bone loss.

3. Conclusions

The balance between bone resorption and bone formation is important in maintaining bone
mass. Bone resorption is enhanced in a state of inflammation, and bone mass is reduced when bone
formation is inhibited. Although the molecular mechanisms of osteoclast differentiation, osteoclast
activation, osteoblast differentiation, and bone formation have been analyzed in detail, NF-κB is
commonly associated with key terms such as “inflammation”, “bone resorption”, and “suppression
of bone formation” [9–11]. The inhibitors of NF-κB have been reported to promote bone formation
in addition to anti-inflammatory action and osteoclast formation inhibition. Iguratimod (IGU) is a
low molecular weight compound that inhibits the classical NF-κB pathway. It is currently used as one
of the therapeutic agents for RA and has been reported to be effective [56]. Thus, targeting NF-κB is
effective at maintaining bone mass during inflammation [13–15,34–37,49–56,58–69,85,91–94], and there
is a possibility for “killing two birds with one stone”. However, embryonic lethality has been reported
in mice where molecules involved in the NF-κB signaling have been knocked out [26–31], and it is
necessary to consider the possibility of causing serious side effects simply by inhibiting NF-κB. In fact,
there are reports of RA patients who are less responsive to IGU and patients who experience adverse
side effects. To find practical applications of other NF-κB inhibitors, translational research not only
for animal experiments, but also for human applications, will become necessary. It is important to
continue to work on basic and clinical research regarding the molecular mechanism of inflammatory
bone disease to provide more options to patients.
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