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A B S T R A C T   

Highly transcribed noncoding elements (HTNEs) are critical noncoding elements with high levels of transcrip
tional capacity in particular cohorts involved in multiple cellular biological processes. Investigation of HTNEs 
with persistent aberrant expression in abnormal tissues could be of benefit in exploring their roles in disease 
occurrence and progression. Breast cancer is a highly heterogeneous disease for which early screening and 
prognosis are exceedingly crucial. In this study, we developed a HTNE identification framework to systematically 
investigate HTNE landscapes in breast cancer patients and identified over ten thousand HTNEs. The robustness 
and rationality of our framework were demonstrated via public datasets. We revealed that HTNEs had significant 
chromatin characteristics of enhancers and long noncoding RNAs (lncRNAs) and were significantly enriched with 
RNA-binding proteins as well as targeted by miRNAs. Further, HTNE-associated genes were significantly over
expressed and exhibited strong correlations with breast cancer. Ultimately, we explored the subtype-specific 
transcriptional processes associated with HTNEs and uncovered the HTNE signatures that could classify breast 
cancer subtypes based on the properties of hormone receptors. Our results highlight that the identified HTNEs as 
well as their associated genes play crucial roles in breast cancer progression and correlate with subtype-specific 
transcriptional processes of breast cancer.   

1. Introduction 

Breast cancer is the most common malignancy and its high morbidity 
and mortality rates make it the leading female cancer [1]. Despite 
tremendous advances in breast cancer research over the last decade, the 
diagnosis and treatment of this malignancy remain challenging [2]. 
Recently, numerous studies have highlighted the significance of non
coding elements in cancers [3,4], but a comprehensive knowledge of the 
molecular mechanisms and functions of noncoding elements in carci
nogenesis is still unclear. Therefore, the investigation of novel genomic 
elements (e.g., noncoding elements) associated with tumorigenesis, in
vasion and metastasis is of great importance for the understanding of the 
molecular mechanisms of oncogenesis. 

Prior studies have identified various functional noncoding elements, 

such as enhancer and promoter, that are found to be essential in the 
regulation of proto-oncogenes or tumor suppressor genes at the tran
scriptional and post-transcriptional levels [4]. And a category of these 
noncoding elements exhibits an extraordinary degree of conservation 
between two or more organisms, known as conserved noncoding 
element (CNE), which tend to cluster in the vicinity of key develop
mental regulatory target genes and disruption of them could contribute 
to cancer [5]. Interestingly, the vast majority of CNEs are found to be 
transcribed, and their transcripts, which could be aberrantly expressed, 
exhibit distinct profiles in various human cancers [5,6]. Intensive 
research into the transcripts of noncoding elements in our genome have 
revealed that the majority of the human genome is transcribed (at least 
76% in humans), yet only 1.2% of these RNAs actually encode proteins 
[7]. And transcription products tend to serve a certain function, 
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otherwise, the cost of transcription would be wasted [7]. These non
coding transcripts, which could be highly aberrantly expressed in tumor 
tissues, typically fulfill diverse biological functions and play different 
roles in the disease progression [8,9]. For example, enhancer RNA 
(eRNA) is a kind of functional noncoding transcripts that is transcribed 
from the active enhancer in a tissue-specific manner and interacts with 
transcriptional regulators to regulate tumour-promoting genes, ac
counting for the instability of the cancer genome [10]. A variety of 
studies have provided insights into intronic noncoding transcription 
[11–13]. Corces et al. revealed that genetic risk loci for cancer suscep
tibility are active transposase-accessible DNA elements in cancer, and 
they lead to gene regulatory interactions underlying cancer immune 
evasion and are associated with noncoding mutations that affect patient 
survival [14]. Concurrently, Dong et al. also identified a similar type of 
DNA regulatory element, named transcribed noncoding elements 
(TNEs), which was actively transcribed in a merged RNA signal set of 99 
human brain samples [15]. A fraction of TNEs was found to be putative 
enhancers specifically active in dopamine neurons in their study. It was 
also uncovered that TNEs actively transcribed overrepresented variants 
associated with diseases and are major cell-autonomous effectors of 
cis-acting genetic variants. However, their study only focused on TNEs 
associated with putative enhancers and did not investigate the biological 
implications of residual TNEs unaffiliated with enhancers. More 
importantly, RNA signal outliers in individual samples that could 
interfere with TNE detection posed a challenge to their method and 
could increase the incidence of false positives. It is conceivable that their 
approach may not apply to a large dataset of highly complex diseases (e. 
g., cancer). 

To ameliorate the limitations of TNE identification [15] and apply it 
to our large and heterogeneous breast cancer dataset, we have enhanced 
their methodology and identified a robust category of noncoding ele
ments that are highly transcribed and highly reliable, which are 
collectively defined as highly transcribed noncoding elements (HTNEs). 
It is foreseeable that HTNEs, similar to TNEs, could be closely associated 
with disease-related genes and function as potential markers and sig
nalling molecules for tumour diagnosis and targeted interventions, 
which are critical to reveal the cell biological processes of breast cancer 
development and progression. 

In this study, we employed a tailored identification pipeline to 
delineate the HTNE landscape in a specific cohort of breast cancer pa
tients. To elucidate the critical functions of HTNEs in breast cancer, we 
characterized the identified HTNEs and their putative target genes by 
integrative analysis of multi-omics data. And we also investigated the 
relationship between HTNEs and subtype-specific transcriptional pro
cesses, with the goal of revealing the potential biological implications 
and clinical relevance of HTNEs, which could be beneficial to further 
dissect the mechanisms of breast cancer progression and facilitate the 
prediction, diagnosis, treatment, and prognosis of this malignancy. 

2. Methods 

2.1. Sample collection and RNA sequencing data processing 

Frozen tumor tissues were collected from 199 breast cancer samples 
in the discovery cohort. In light of the manufacturer’s protocol, total 
RNA exclusive of ribosomal RNA (rRNA) was extracted from tumor 
tissues using the VAHTS Total RNA-seq (H/M/R) Library Prep Kit for 
Illumina and immediately frozen in liquid nitrogen and stored at −
80 ◦C. The Ovation Human FFPE RNA-seq Library System (NuGEN 
Technologies, San Carlos, CA, USA) was used to construct the RNA-seq 
library and sequenced using 150 bp paired-end runs on the Illumina 
HiSeq X Ten platform (Illumina, San Diego, CA, USA). Raw Illumina 
sequence reads in FASTQ format was processed in a customized pipeline 
(Supplementary Table 8). For each sample, FastQC v0.11.9 was first 
used to quality control the raw reads, and Trimmomatic v0.39 was 
employed to excise low-quality bases and splice sequences, allowing 

mismatches at two positions when comparing splice sequences. Then 
reads were mapped to the human genome (GENCODE GRCh37.p13) 
using STAR v2.7.1a. Reads mapped to ribosomal RNAs, mitochondrial 
genome or chromosome Y were excluded from downstream analysis. 
The Y chromosome was removed because the breast cancer samples 
were from females and removing mitochondrial genome can reduce 
interfering or confusing signals [16,17]. Gene expression levels were 
quantified using featureCounts v2.0.3. BAM files were sorted and 
formatted using samtools v1.14 and bamCoverage v3.5.1. 

2.2. The step-by-step framework for the identification of HTNEs 

We developed a HTNE identification framework (Fig. 1 and Sup
plementary Fig. 1) using the following steps: (1) Genomic domains with 
reads per million (RPM) higher than transcriptional background levels 
were screened in each sample. The transcriptional background level was 
defined as the average read density across the nuclear genome (i.e., the 
sum of all RPM in a sample divided by the whole number of base pairs 
constituting the nuclear genome). The boundaries of candidate HTNEs 
across the genome were defined by the first and last nucleotides that 
meet the cutoff values. (2) The summit RPM of candidate regions was 
reserved if achieved a significance level with a local detection P ≤ 0.05 
compared to transcriptional noise. Transcriptional noise was defined by 
randomly selecting 1,000,000 nucleotide positions without the blocklist 
and formulating the distribution of their RPM to normal distribution. 
The blocklist included annotated exons from GENCODE and UCSC with 
two 500 bp flanking intervals, UTR regions from GENCODE and UCSC, 
2000 bp upstream and 1000 bp downstream of the gene defined from 
GENCODE, FANTOM5 CAGE-defined TSS with two 500 bp flanking in
tervals, rRNA from UCSC, and genomic gap regions in UCSC 
Table Browser. Neighboring regions with genomic intervals within 
100 bp were merged into novel candidate regions. (3) The regions where 
candidate HTNEs were located excluded the blocklist mentioned above, 
and splice junctions were combined from the SJ.out.tab files of STAR 
outputs. (4) The minimum size of the regions needs to be at least 100 bp. 
(5) Statistically significant expressions were calculated for candidate 
regions across all samples. The mean RPM values were calculated for 
each candidate region and the significance levels were estimated 
compared to the transcriptional noise observed in the transcriptional 
background of the samples. P values were calculated by comparing 
transcript levels to the distribution of transcriptional background levels 
for each sample. Next, for each candidate region, the number of samples 
selected at P ≤ 0.05 among all samples was calculated, and the proba
bility that the sample was selected was calculated using a binomial 
distribution with the overall probability set to 0.05. Bonferroni correc
tion was applied to the regions that met the above criteria to ensure that 
were statistically significant. (6) Repetitive experiments were conduct
ed, and the regions acquired for each repeat were overlaid. HTNEs were 
achieved until the interleaved amount converged to a stable level. 

2.3. Validation datasets for HTNEs identification pipeline 

The public dataset including 14 paired breast tumor and adjacent 
samples were derived from NCBI under accession code PRJNA739366. 
RNA-seq signals were obtained from merged RNA-seq signals of 199 
samples of breast cancer. Peaks at high transcript levels in 13 different 
breast cancer cell lines representing the five major molecular subtypes of 
breast cancer detected by GRO-seq were from GEO under accession code 
GSE96859. CAGE-seq data of breast cancer cell line MCF-7 was obtained 
from GEO under accession code GSM979657. We assembled the align
ment results of the breast cancer data to capture potential full-length 
transcripts for each sample using StringTie v1.3.4d and used proActiv 
v1.8.0 for alternative promoter start site prediction for our breast cancer 
cohort. 
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Fig. 1. The overview of our study. The framework includes sample collection and sequencing data preprocessing, HTNE identification, and downstream analysis. The 
optimal repeat k in HTNE identification section stands for the change point which was described exhaustively in the Methods and Supplementary Figure 1. 
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2.4. Randomly shuffled sequences and control regions construction 
procedure 

The randomly shuffled sequences were generated using shuffleBed 
v2.30.0, and all identified HTNEs were used as input. The parameters 
were set to exclude the overlap of shuffled intervals and each shuffled 
sequence was on the same chromosome as the corresponding input 
sequence. For reproducibility of the experiment, the seed was chosen as 
123. In the selection of control regions, for each intronic HTNE, all in
trons within 10 kb upstream and downstream of it were obtained, in 
which the HTNEs and the blocklist regions mentioned in the identifi
cation pipeline of HTNE were excluded, and for HTNEs in intergenic 
regions, the control regions were restricted to intergenic regions of the 
same chromosome using the selection approach of randomly shuffled 
sequences described above. 

2.5. Regulatory annotations for validation of chromatin characteristics 

To explore the possible roles of HTNEs in gene regulation, we char
acterized HTNEs with various known regulatory data in human breast or 
cell lines. We used chromHMM enhancer states in any of the three 
human breast tissues in the Roadmap Epigenomics Project [18] for 
histone-defined putative enhancers. Putative enhancers are marked as 
the E6, E7, or E12 states from the 15-state chromHMM segmentation 
defined by five core marks. The three breast tissues are breast myoepi
thelial, breast vHMEC mammary epithelial and HMEC mammary 
epithelial. We used histone modifications peak called in the above three 
breast tissues of Roadmap Epigenomics Project [18]. Other regulatory 
data include CAGE-defined enhancers from FANTOM5 Project [19], 
global run-on sequencing (GRO-seq) detected enhancers from Enhancer 
Atlas [20], and transcriptional coactivator P300 binding sites from 
ENCODE [21]. We also merged ATAC-seq data of breast cancer from 
TCGA [22] to validate the chromatin accessibility of HTNEs. 

2.6. Motif enrichment analysis 

We performed motif enrichment using the AME program from the 
MEME suite [23]. The optimal enrichment of the motifs was performed 
using one-tailed Fisher’s exact test, and the P value was adjusted using 
the Bonferroni correction. RNA-binding motif enrichment analysis was 
performed using Ray2013 Homo sapiens, where 102 RNA-binding mo
tifs were derived from in vitro experiments using the RNAcompete 
method. And miRNA motif enrichment analysis was performed using 
miRbase v22 Homo sapiens miRNA. 

2.7. miRNA target genes collection 

The target genes for miRNAs were retrieved from the “Target 
Expression” in miRDB [24], with “Source” being “breast carcinoma” and 
“expression level”≥ 20. 

2.8. Gene enrichment analysis and gene set variation analysis 

For gene enrichment analysis, clusterProfiler [25] was used, while 
msigdbr was used to obtain hallmark gene sets and KEGG subset of 
curated gene sets from MSigDB [26]. The P values were adjusted using 
the Benjamini-Hochberg procedure. For gene set variation analysis, gene 
sets were downloaded from MSigDB [26] via keyword indexing. 
External gene counts for breast tumor and adjacent samples were 
extracted, filtered, and normalized using the R package TCGAbiolinks 
v2.24.3, and the scores for each sample were calculated using the R 
package GSVA v1.44.5. 

2.9. The formula for the expression score 

The formula for the expression score of each sample is 

Expression Score =

∑N

i=1
log2(TPMi + 1)

N  

where N denotes the number of total genes; i is to imply the order 
number of gene. 

2.10. Classification of breast cancer samples based on HTNEs signatures 

Integration of normalized counts of unique HTNEs in each subtype 
was conducted as signatures for clustering. Pooling of all breast cancer 
samples was performed using the t-distributed stochastic neighbor 
embedding (t-SNE) method, and k-medoid clustering was performed 
using the partitioning around medoids (PAM) algorithm. The coefficient 
of variation of normalized counts of all unique HTNEs in each sample 
was utilized to measure whether there was a significant difference be
tween classes. 

2.11. Statistical analysis 

Continuous variables were compared by using the Wilcoxon signed- 
rank test and Categorical variables were compared using the hyper
geometric test, permutation test or Fisher’s exact test. Overall Survival 
probabilities were estimated using the Kaplan-Meier method and 
compared with the Log-rank test. The statistical significance threshold 
was set at P < 0.05. The Bonferroni-Holm (BH) correction was used in 
multiple hypothesis testing to decrease false positive rates. Statistical 
analyses were performed with R v4.2.1. 

3. Results 

3.1. Definition of a landscape for HTNEs in breast cancer 

To genome-widely identify and characterize the landscapes of 
HTNEs in breast cancer, ribosomal RNA-depleted RNA sequencing was 
performed for 199 breast cancer patients. Beyond traditional mRNA 
sequencing, ribosomal RNA-depleted RNA sequencing could better 
capture noncoding RNAs without ploy A tails. Meanwhile, we estab
lished a sophisticated framework (see Fig. 1, Supplementary Fig. 1 and 
Methods for details) to genome-widely identify HTNEs based on ribo
somal RNA-depleted mRNA profiles, evolving from an earlier study 
[15]. 

10,372 HTNEs were detected in 199 breast cancer samples (Fig. 2A), 
and the size distribution of HTNEs peaked at 248 bp (Fig. 2B). The 
substantial majority of HTNEs (8976, accounting for 86.54%) were 
located in intronic regions, of which 23.73% (2461) were in the first 
intron of the host genes, and the residual HTNEs were positioned in 
intergenic regions (Fig. 2C and Supplementary Fig. 2 A). Intronic HTNEs 
tend to be more abundant in the first half of the host genes than in the 
second half, with a gradual decrease from the 5′ to the 3′ end (Supple
mentary Fig. 2B–2C), following a similar distribution pattern to that of 
intronic TNEs in dopamine neurons of human brain [15]. Dong et al. 
[15] state that this distribution pattern opposes to that of partial RNA 
degradation, which preferentially degrades 5′ end and it implies that 
HTNEs could not only influence the chromatin state and accessibility of 
target genes, but also determine the gene regulatory activity and 
expression level of different genes [27]. Additionally, we observed that 
the length distributions of intronic HTNE and intergenic HTNE were 
similar (Fig. 1D), and the expression levels of intronic HTNE were 
significantly higher than those of intergenic HTNE (P < 2.2× 10− 16, 
Wilcoxon signed-rank test, Fig. 1E). 

To further validate the reliability of our identified HTNEs in breast 
cancer samples, we verified the enrichment of HTNEs with separate 
transcriptional signals using cap analysis of gene expression and deep 
sequencing (CAGE-seq), which can be used to identify all transcription 
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start sites (TSS) in mRNA by identifying the cap site (Supplementary 
Fig. 2D), suggesting HTNEs are independent transcription units. Mean
while, we also explored the correlation of the expression level between 
intronic HTNEs and their host genes and found no significant correlation 
(r = 0.184, P < 2.2× 10− 16, Pearson correlation analysis, Supple
mentary Fig. 2E). Besides, global run-on sequencing (GRO-seq) is a 
straightforward transcriptional measure, offering advantages over 
traditional bulk RNA-seq, that can derive the location and orientation of 
all actively transcribing RNA polymerases across the genome, facili
tating the comprehensive identification of transcriptional functional 
elements in the transcriptomics of breast cancer cells [3]. Thus, we 
extracted GRO-seq data from 13 different breast cancer cell lines 
(GSE96859) which represent the five major molecular subtypes of breast 
cancer to validate the reliability of HTNEs. It was observed that up to 
7368 (71.04%) of HTNEs exhibited elevated transcription levels in these 
breast cancer cell lines by comparing HTNEs with the peaks that 

exceeded the average transcription levels (Supplementary Fig. 2H). 
Furthermore, we compared transcription levels of these HTNEs between 
cancer and normal states based on a public dataset, including 14 breast 
cancer and adjacent samples [28]. 7237 out of 1,0372 HTNEs were 
observed to be expressed significantly higher in breast cancer compared 
to adjacent tissues, accounting for 69.77% of the total and it was evident 
that the discrepancy between breast cancer and adjacent tissues in the 
identified regions was significant (P = 2.14× 10− 25, Wilcoxon 
signed-rank test, Supplementary Fig. 2 F). Additionally, HTNEs did not 
overlap with any structural RNAs such as ribosomal RNA (rRNA), 
transfer RNA (tRNA), and small nuclear RNA (snRNA), small nucleolar 
RNA (snoRNA) and miscellaneous RNA (miscRNA) which have been 
found to be enriched in RNA-induced silencing complexes [29]. We also 
found that all HTNEs were not overlapping with alternative promoters 
[30] in our breast cancer cohort and 10,072 (97.11%) HTNEs were 
located entirely within potential full-length transcripts without isoforms 

Fig. 2. Genome-wide identification of HTNEs in breast cancer. (A) Genome-wide overview of the location (blue) and the transcription levels of HTNEs (green) in 199 
breast cancer samples; (B) Size distribution of HTNEs, where the peak is marked with a blue dashed line and the expression level is depicted in green; (C) Distribution 
of distances from the HTNEs to the host gene TSS (for intronic HTNEs) or to the nearest gene TSS (for intergenic HTNEs). Distances are marked positive (red) for 
intronic HTNEs and negative for intergenic HTNEs (blue); (D) Distribution of length for intronic HTNEs and intergenic HTNEs; (E) Comparison of expression levels 
between intronic HTNEs and intergenic HTNEs; (F-G) RNA-seq signals of HTNEs in five breast cancer samples; (H) Distribution of the percentage of samples in which 
HTNE was detected to be expressed among our breast cancer cohort, and the x-axis indicated the percentage of samples in our dataset where each HTNE was detected 
as transcribed. 
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of protein-encoding genes. Ultimately, we also confirmed that HTNEs 
are indeed noncoding regions that are highly transcribed in our breast 
cancer samples (Fig. 2F-2 H and Supplementary Fig. 3A–3L). Taken 
together, these results validate our approach to identify HTNEs in breast 

cancer as independent highly reliable and highly expressed transcrip
tional regulatory elements. 

Fig. 3. Characterization of HTNEs based on epigenomic features. (A) Percentage of HTNEs that overlap with known putative enhancers and lncRNAs, and 1718 
HTNEs between the dashed lines were overlapping with / identified as both enhancer and lncRNA; (B) Chromatin states of HTNEs, and the shade of red represents the 
mark probabilities of the corresponding chromatin states; (C-I) Comparison of chromatin accessibility and different histone modification marks between HTNEs and 
control regions at a distance of 1000 bp each upstream and downstream; (J) An example of the HTNEs located within GRHL2. GRHL2-HTNE with high enrichment of 
RNA-seq signals, ATAC-seq signals, H3K4me1 and H3K27ac signals, and depleted enrichment of H3K4me3 signals; (K-L) Kaplan-Meier survival plots show the 
prognostic relevance of two HTNEs (chr2:40,563,150–40,563,400 and chr9:135,226,250–135,226,600), respectively. 
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3.2. Chromatin characterization of HTNEs in breast cancer 

To comprehensively characterize HTNEs in breast cancer, multi- 
omics profiles were employed to explore the regulatory roles that are 
attributed to HTNEs. 6839 (65.94%) of the 10,372 active HTNEs in 
breast cancer were coincided with preceding identified putative en
hancers or long noncoding RNAs (lncRNAs) defined by one or more 
epigenomic features (Fig. 3A). Validation by comparing HTNEs with 
randomly shuffled regions revealed that HTNEs superimposed on re
gions with putative enhancer or lncRNAs were significantly higher than 
expected by chance alone (P < 1 × 10− 9 by 1000,000,000 permutation 
test). Of the 10,372 identified HTNEs, 4583 (44.19%) were consistent 
with well-known characteristics of putative enhancers (Fig. 3A). These 
features incorporate genome-wide chromatin accessibility (such as 
ATAC-seq), characteristic histone modifications (such as H3K4me1, 
H3K27ac, and H3K4me3), CAGE defined putative enhancers, GRO-seq 
detected enhancers, transcription factor binding, and transcriptional 
coactivator P300 binding sites that were derived from Roadmap Epi
genomics Project [18], FANTOM5 Project [19], ENCODE [21] and 
Enhancer Atlas [20]. Simultaneously, all HTNEs were compared with 
lncRNAs emerging from the high confidence lncRNA set (putative 
protein-coding genes are excluded) of LNCipedia (version 5.2) and the 
human lncRNA set of NOCODE (version 6.0). Of the 10,372 active 
HTNEs in breast cancer, 3974 (38.31%) were associated with known 
lncRNAs (Fig. 3A). Overall, 1718 HTNEs were both overlapped with 
putative enhancers and associated with lncRNAs (Fig. 3A). 

We further explored the chromatin states of HTNEs and collected 
three histone modifications in three tissue and cell type groups 
mentioned above for the peaks of the imputed signal data. It is revealed 
that a large number of HTNEs overlapped with flanking TSS (Fig. 3B). 
Moreover, HTNEs overlapped with earlier identified putative enhancers 
were enriched with high levels of H3K4me1 and H3K27ac, as well as low 
levels of H3K4me3 (Fig. 3B). And ncRNAs can be identified and classi
fied based on chromatin features, e.g., eRNAs are transcribed from 
activated enhancers with H3K4me1/H3K27ac marks and most of the 
mRNA-like long intergenic noncoding RNAs (lincRNAs) are generated 
from genomic regions with H3K36me3 marks [29]. Hence, we inte
grated chromatin accessibility and multiple histone modification marks 
to compare HTNEs and control regions for exploration of the prominent 
functions of HTNEs (see Methods for selection of control regions). As 
expected, HTNEs were enriched with higher level of chromatin acces
sibility than control regions, indicating that HTNEs are in transcrip
tionally activated states (P < 2.2× 10− 16, Wilcoxon signed-rank test, 
Fig. 3C-3D). And HTNEs were enriched with the enhancer mark 
H3K4me1 and the active marker H3K27ac and exhibited low levels of 
H3K4me3, a mark of promoter, which were consistent with histone 
modifications in mammary epithelial cells from ENCODE (Fig. 3E-3 G). 
It was suggested that a group of HTNEs might be putative active en
hancers that were consistent with the chromatin states. Moreover, 
transcription activation mark H3K36me3 and suppressive mark 
H3K27me3, which were formerly reported to characterize lncRNA in 
breast cancer [29,31,32], were also represented in identified HTNEs, 
implying that a fraction of HTNEs could be putative lncRNAs 
(Fig. 3H-3I). Simultaneously, comparing HTNEs with randomly shuffled 
sequences that differ from the control regions (see Methods) for 
ATAC-seq signals as well as various histone modification signals showed 
similar results (Supplementary Fig. 4A–4F, see Methods for details). The 
above various signals between all HTNEs, intronic HTNEs and intergenic 
HTNEs also showed similar patterns, respectively (Supplementary 
Fig. 4G–4L). To further explore whether HTNEs are associated with 
lncRNAs that contribute to breast cancer, we screened 197 experimen
tally validated breast cancer-related lncRNAs from LncRNADisease 2.0 
[33] and found that nine HTNEs could overlap with functional domains 
of the lncRNA PVT1 which could promote breast cancer proliferation 
and metastasis [34]. 

To concretely clarify the function of HTNEs in breast cancer, five 

example regions were shown to highlight the chromatin characteriza
tion of HTNEs (Fig. 3J and Supplementary Fig. 5A–5D). For example, we 
spotlighted one of the HTNEs referred to as GRHL2-HTNE 
(chr8:102,513,451–102,514,150), located in the first intron of the 
human gene GRHL2 (Fig. 3) and its higher expression correlates posi
tively with poorer survival in breast cancer patients (P = 4.0× 10− 4, 
log-rank test) [35]. GRHL2-HTNE harbors high levels of H3K4me1 and 
H3K27ac signals, low levels of H3K4me3 signal, and was predicted as a 
putative enhancer in Roadmap Epigenomics Project. 

Since a part of HTNEs was formerly confirmed to be putative en
hancers, the transcripts of these HTNEs are expected to be eRNAs. 
Following the analysis of the ‘expression levels’ of identified typical 
enhancers (eRNA expression/transcription levels) that overlap with 
HTNEs and clinical information from breast cancer samples in the 
TCGA-BRCA cohort [36], it revealed that breast cancer patients with 
high expression of these putative enhancer related HTNEs have a worse 
overall survival rate than the group with low expression of HTNEs 
(Fig. 3K-3 L, Supplementary Table 1 and Supplementary Fig. 6A–6G). 
Additionally, one of the clinically relevant HTNEs (chr5:137,868, 
250–137,868,450) has a host gene ETF1 that is also survival associated 
(Supplementary Fig. 6H). It suggests that HTNEs are related to the 
progression of breast cancer and potentially associated with breast 
cancer tumorigenesis, proliferation and migration of cancer cells, which 
could be used as potential prognostic markers or even prospective 
therapeutic targets for breast cancer. 

3.3. Consensus motif analyses of HTNEs in breast cancer 

HTNE transcripts could serve as decoys for various RNA-binding 
proteins involved in the control of gene expression and participate in 
the construction of regulatory networks of organisms in cancer biology 
[37]. To further investigate the roles of HTNEs derived from breast 
cancer on gene regulation, the enrichment of known motifs in HTNE 
sequences was analyzed. Consequently, 34 RNA-binding motifs signifi
cantly enriched in HTNEs, corresponding to 25 RNA-binding proteins 
(Supplementary Table 2). Of the 10,372 HTNEs identified, 10,345 
(99.71%) were enriched with at least one RNA-binding motif and the 
majority were enriched up to 7 motifs (Fig. 4A). Among the 34 
RNA-binding motifs significantly enriched, the motif termed in Ray2013 
[38] as PCBP2 was ranking first with the most significant adjusted P 
value (P = 1.12× 10− 28, Fisher’s exact test) and enriched by 4822 
(46.49%) HTNEs. The survival analysis of PCBP2 expression status was 
performed using GEPIA2 [39] and a Kaplan-Meier survival curve was 
generated based on the data from TCGA and GTEx (Fig. 4B). It is shown 
that breast cancer patients with high PCBP2 expression have a worse 
overall survival rate than the low PCBP2 group (P = 1.3× 10− 2, 
log-rank test). And it was found that these 4822 HTNEs enriched by 
PCBP2 in our breast cancer cohort showed higher expression levels in 
high PCBP2 group than in low PCBP2 group (Fig. 4C, P = 3.67× 10− 3, 
Wilcoxon signed-rank test). Meanwhile, PTBP1 was enriched by the 
maximum number of HTNEs (4947, accounting for 47.70%), which 
were significantly upregulated in breast cancer samples compared to 
adjacent samples from TCGA (P = 1.09× 10− 34, Wilcoxon signed-rank 
test, Fig. 4D). It has been demonstrated that PTBP1 is a potential 
biomarker and molecular therapeutic target for breast cancer and 
overexpression of PTBP1 promotes the growth of breast cancer cells 
through the PTEN/Akt pathway and autophagy, thereby affecting the 
proliferation and migration of cancer cells [40,41]. 

Furthermore, noncoding elements could potentially function as 
competitive endogenous RNAs (ceRNAs) that regulate genes by 
competitively binding miRNAs [42]. ceRNAs can bind to miRNAs 
through miRNA response elements and thus affect miRNA-induced 
genes silencing, which play vital roles in pathological aspects associ
ated with abnormal transcriptome changes (e.g., tumors). Of the 2656 
motifs converted from Homo sapiens miRNAs in miRBase v22, the 
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identified HTNEs were enriched for a total of 375 miRNA-targeted 
motifs, corresponding to 375 miRNAs (Supplementary Table 3). Evalu
ation of the miRNA-targeted motif enrichment analysis indicated that 
each HTNE was enriched with at least one motif, and the maximum 
number of HTNEs reaching 23 motifs (Fig. 4E). Of all 375 
miRNA-targeted motifs enriched, the motif termed hsa-miR-6733-5p, a 
potential prognostic biomarker in breast cancer patients [43], was the 
most significant one (P = 1.27× 10− 18, Fisher’s exact test) and enriched 
by 1805 (17.40%) HTNEs. 146 genes were regulated by 
hsa-miR-6733-5p in breast cancer from miRDB [24] (Methods) and 
found to be aberrantly overexpressed in the breast cancer samples (P =
2.87× 10− 19, Wilcoxon signed-rank test, Fig. 4F). In addition, 
hsa-miR-1275 was attracted by the most (2396, accounting for 23.10%) 
HTNEs (P = 5.14× 10− 9, Fisher’s exact test). To demonstrate that 
HTNEs could potentially influence miRNA to regulate genes, we con
trasted the expression levels of gene sets regulated by miRNAs recruited 
by HTNEs between breast cancer and adjacent samples. Then, 155 genes 
regulated by hsa-miR-1275 in breast cancer were retrieved from miRDB 
[24] (Methods). In comparison of gene set variation analysis (GSVA) 
scores between TCGA breast cancer and adjacent samples, genes regu
lated by hsa-miR-1275 were also abnormally overexpressed in breast 
cancer samples (P = 5.39× 10− 43, Wilcoxon signed-rank test, Fig. 4G). 
And hsa-miR-1275 is a biomarker for breast cancer and downregulation 
of hsa-miR-1275 is intimately relevant to biological mechanisms of 
breast cancer, including proliferation, invasion and metastasis [44]. 

3.4. Assignment of HTNEs to associated genes in breast cancer 

To further investigate whether HTNEs are involved in the tran
scriptional regulation of genes in breast cancer, we assigned HTNEs to 
putative associated genes based on a baseline approach of target gene 
prediction using genomic distances. We procured 3734 HTNE-associated 
genes, including 3114 genes localized by intronic HTNEs and 620 genes 
nearest to intergenic HTNEs. And 1860 genes have more than one HTNE 
and each gene is mapped with approximately three HTNEs on average 
(Fig. 5A). And the expression scores of these genes were calculated for 
each sample (see Methods for details). Meanwhile, a group of 3734 
genes excluded HTNE-associated genes was randomly selected and the 
expression scores were also calculated for comparison. As shown in 
Fig. 5B, the expression scores of HTNEs-associated genes were signifi
cantly higher than randomly selected genes (P = 5.13× 10− 67, Wil
coxon signed-rank test). Furthermore, the expression levels of genes 
associated with intronic HTNEs might be biased due to high expression 
levels of HTNEs. For intergenic HTNE associated genes, expression 
scores were also significantly higher than those of the randomly selected 
genes (P = 1.09× 10− 62, Wilcoxon signed-rank test, Fig. 5C). Via 
analyzing gene expression of tumor and normal tissues and clinical in
formation of the samples from TCGA, there were 1420 genes associated 
with survival. Among them, 116 host genes were found to be associated 
with HTNEs (P < 2.2× 10− 16, Fisher’s exact test), of which 42 host 
genes could be considered as independent prognostic factors separately 
from other genes (Supplementary Table 4). 

eRNA is one of the markers of active enhancers, and it can also play a 

Fig. 4. Identification of consensus motifs in HTNEs. (A) Distribution of HTNEs enriched with the corresponding quantity of RNA-binding motifs. The maximum 
number of HTNEs enriched with 7 RNA-binding motifs is marked with a dashed line; (B) Kaplan-Meier survival plot of PCBP2 in TCGA breast cancer and adjacent 
samples; (C) Differences in expression level for high/low PCBP2 group; (D) Differences in normalized gene counts of PTBP1 between breast cancer and adjacent 
samples from TCGA breast cancer cohort; (E) Distribution of HTNEs enriched with the corresponding quantity of miRNA-targeted motifs. The maximum number of 
HTNEs enriched with 23 miRNA-targeted motifs is marked with a dashed line; (F-G) Differences in GSVA scores for the genes regulated by hsa-miR-6733-5p or hsa- 
miR-1275 in TCGA breast tumor and adjacent samples. 

W. Zhu et al.                                                                                                                                                                                                                                     



Computational and Structural Biotechnology Journal 21 (2023) 4432–4445

4440

role in regulating cellular processes with the similar effect as lncRNA 
[45]. As mentioned before, a group of HTNEs was considered as putative 
enhancers and exhibited the evident characteristics of enhancers. To 
further explore the roles of eRNAs in the transcription products of 
HTNEs, the eRNA expression profile as well as eRNA target genes of 
breast cancer were extracted from the eRic database [46] and further 
compared with HTNEs. Consequently, 3099 eRNA target genes were 
detected, where these eRNAs intersected with identified HTNEs. These 
HTNEs associated eRNA target genes showed higher expression scores 
compared to randomly selected genes of the same scale (P = 1.44×

10− 15, Wilcoxon signed-rank test, Fig. 5D), suggesting the cis-regulatory 
functions of HTNEs in gene transcription. Subsequently, functional 
enrichment analysis was performed on 3099 HTNE associated eRNA 
target genes. Among all the pathways enriched by these genes, seven of 
them were statistically significant (Fig. 5E) and extensive studies have 
suggested that the majority of these pathways are associated with breast 
cancer progression and metastasis, including Wnt signaling pathway, 
ubiquitin mediated proteolysis, hedgehog signaling pathway and path
ways in cancer [47–49] (Supplementary Table 5). For example, Wnt 
signaling pathway plays a principal role in controlling cancer progres
sion and aberrant activation of Wnt signaling is observed from the onset 
of breast tumors to distant metastases [48]. Hedgehog signaling 
pathway has been implicated in tumorigenesis and progression of many 
cancer types [49]. 

Single nucleotide polymorphisms (SNPs), known as potential 
markers of carcinogenesis, are important genetic markers for the 
research of breast cancer characteristics [50,51]. Through integrative 
analysis of the SNPs in GWAS Catalog and the identified HTNEs, 252 

diseases/traits associated SNPs localizing at HTNEs were obtained and 
147 SNPs were retrieved from these diseases/traits, which are collec
tively associated with 124 genes. To explore the functional relevance of 
these genes, we performed functional enrichment analysis and found 
that all pathways were associated with cancers, and a majority of them 
were intimately associated with breast cancer (Fig. 5F). In particular, the 
pathway termed breast cancer was ranked second (P = 2.16× 10− 3) and 
the most significant pathway was proteoglycans in cancer (P = 1.70×

10− 3). It has been revealed that proteoglycans could activate essential 
cellular signaling pathways and drive proliferation, invasion and 
metastasis of cancer [52]. 

3.5. Subtype-specific transcriptional processes associated with HTNEs 

PAM50 is a molecular typing criterion that is extensively applied to 
classify intrinsic subtypes of breast cancer based on gene expression of 
50 genes [53]. According to PAM50, breast cancer can be classified into 
five molecular intrinsic subtypes: Luminal A, Luminal B, human 
epidermal growth factor receptor 2 (HER2)-enriched, Basal-like, and 
Normal-like. Each of the five molecular subtypes varies depending on its 
biological characteristics and prognosis. To further determine if the 
HTNEs and their associated genes might be relevant to the biology of 
different subtypes of breast cancer, we employed PAM50 to classify 199 
breast cancer samples into five categories (Fig. 6A). Due to the relatively 
small number of breast cancer samples belonging to Normal-like sub
type, these 19 samples were excluded for downstream analysis to avoid 
excessive false positive results. The HTNE identification pipeline was 
re-performed on 180 retained samples covering four different subtypes. 

Fig. 5. Assigning HTNE associated genes in breast cancer. (A) Distribution of the number of HTNEs mapped per gene in breast cancer cohort; Comparison of 
expression scores between (B) all associated genes, (C) intergenic HTNE associated genes, (D) HTNE associated eRNA target genes and other randomly selected genes; 
(E) Enrichment analysis of HTNEs associated eRNAs targeted genes. (F) Enrichment analysis of HTNE associated genes set harbored SNPs in GWAS catalog. The red 
bars represent pathways associated with breast cancer, the blues for the potential pathways involved in breast cancer, and the greys for the pathways not yet 
documented as relevant to breast cancer to our best knowledge. 
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By comparing the identified HTNEs in each subtype, we detected 79 
common HTNEs shared by four subtypes, of which 76 (96.20%) were 
recorded in the HTNE identification results of 199 breast cancer samples 
(Fig. 6B). 

To evaluate the heterogeneity of HTNEs across four subtypes, the 
breast cancer samples were clustered based on the expression levels of 
2563 unique HTNEs as to investigate whether these unique HTNEs of 
each subtype were subtype specific. It is depicted that patient samples 
were roughly divided into two classes (Class I chiefly included Luminal 
A and Luminal B, Class II mostly included HER2-enriched and Basal-like) 
(P = 1.02× 10− 61 , Wilcoxon signed-rank test, Fig. 6C and Supple
mentary Fig. 7 A). To demonstrate that HTNEs are able to broadly 
distinguish the two classes mentioned above, we generated a ROC curve 
based on the expression pattern of unique HTNEs in both classes with an 

AUC equals to 0.7637 (Supplementary Fig. 7B), which indicated that 
HTNEs would be clinically relevant in distinguishing the various breast 
cancer subtypes. Information from preexisting researches suggested that 
Class I is a hormone receptor positive subtype of breast cancer (with 
positive estrogen receptor and progesterone receptor), whereas Class II 
is a hormone receptor negative subtype of breast cancer (with negative 
estrogen receptor and progesterone receptor) and associated with a high 
risk of metastasis and invasion [54,55]. 

Estrogen receptor alpha (ERα), also known as NR3A1, is one of the 
two main types of estrogen receptors, which are nuclear receptors 
activated by estrogen, and ERα is encoded by estrogen receptor 1 (ESR1) 
[56,57]. The gain and amplification of ESR1 correlate with ERα 
expression in breast cancer [58]. The comparison of the expression 
scores across the two classes revealed that ESR1 was significantly 

Fig. 6. Subtype specific transcriptional processes associated with HTNEs. (A) Number of samples for each subtype based on PAM50 typing criteria; (B) Comparison of 
HTNEs between four subtypes; (C) Classification of breast tumor tissues based on normalized counts of unique HTNEs for each subtype; (D-F) Differences of GSVA 
scores for the two classes in the estrogen-dependent gene set (M19439), the progestin-dependent gene set (M42918), and the poor prognosis gene set (M14693) from 
MSigDB database; (G) Enrichment analysis results for unique HTNEs associated eRNA target genes across two groups. The flanking pathways (purple) are specific to 
each group, and the middle pathways (red) are shared by both groups. 
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overexpressed at higher levels in Class I than Class II (P = 1.97× 10− 16, 
Wilcoxon signed-rank test, Supplementary Fig. 7 C). Furthermore, 
phosphoserine aminotransferase 1 (PSAT1) is a protein-coding gene that 
catalyzes the serine synthesis pathway and independent of estrogen or 
progesterone. It is overexpressed in aggressive tumor types and is clin
ically associated with inferior distant metastasis free survival and 
overall survival in breast cancer patients [59,60]. As compared to the 
expression scores in Class II, the hormone independent PSAT1 gene was 
significantly under-expressed in Class I (P = 1.13× 10− 10, Wilcoxon 
signed-rank test, Supplementary Fig. 7D). Furthermore, to verify the 
differences between the two classes from a comprehensive perspective, 
GSVA was performed on the gene expression of two classes. And 21 
pathways associated with breast cancer in MSigDB [26] were retrieved 
to compare whether the two classes were associated with hormone 
dependence or with cancer invasion and metastasis. It is evident that 
Class I is hormone-dependent, while Class II is associated with invasive 
and metastatic, where hormone-related genes are significantly down
regulated (Supplementary Table 6). For example, Class I has signifi
cantly higher GSVA scores in the estrogen receptor (P = 2.75× 10− 13, 
Wilcoxon signed-rank test, Fig. 6D) and progesterone receptor associ
ated pathways than Class II (P = 9.00× 10− 3, Wilcoxon signed-rank 
test, Fig. 6E). Comparatively, Class II has significantly higher GSVA 
scores than Class I in the poor prognosis related pathway (P = 3.21×

10− 7, Wilcoxon signed-rank test, Fig. 6F). 
Meanwhile, to further verify that the 2563 unique HTNEs exhibit 

subtype-specific features, we classified the samples into Group I 
(Luminal A and Luminal B) and Group II (HER2-enriched and Basal-like) 
based on PAM50 for comparison. Enrichment analysis of HTNE- 
associated genes unique in two groups revealed that Group I was 
significantly enriched in hormone dependent pathways, while Group II, 
in contrast, was absent from apparent hormone dependent pathways, 
consistent with PAM50 (Supplementary Fig. 7E). Moreover, KEGG 
enrichment analysis of unique HTNEs associated eRNA target genes in 
both groups (Fig. 6G, Supplementary Table 7) revealed that almost all 
pathways associated with breast cancer were observed in both groups. In 
addition, hormone dependent pathways were enriched in Group I (e.g., 
Th1 and Th2 cell differentiation) [61], whereas pathways in Group II 
were rarely relevant to hormone and preferred to be associated with 
cancer invasion and metastasis (e.g., hippo signaling pathway) [62,63]. 

4. Discussion 

DNA methylation and mutations are early indicators of molecular 
abnormalities during carcinogenesis and potential biological markers 
for the early diagnosis of tumors, which are significantly associated with 
high transcription levels of genomic regulatory elements [64,65]. As a 
group of transcribed genomic elements without the ability to encode 
proteins, HTNEs exhibit particularly high rates of transcription in 
certain individuals. The massive transcription of HTNEs is functional 
and beneficial, since the expenditures in terms of transcription being 
wasteful are unreasonable [7]. Genomic elements with high transcript 
abundance have been demonstrated to be consistently and aberrantly 
highly expressed in the assays of diseases [66–68]. 

In this study, we collected and sequenced 199 breast cancer samples 
and developed a systematic and comprehensive framework to be the 
first time to identify HTNEs genome-widely in cancer samples. Given the 
heterogeneity of cancer, the methodology of Dong et al. [15] didn’t 
consider that exception RNA-seq signals in a few samples could interfere 
with identifying TNEs, leading to an increase in false positives. In our 
study, the identification pipeline of HTNE will identify the candidate 
HTNEs multiple times and the intersection of candidate HTNEs will be 
defined as HTNEs, which could be considered as highly transcribed and 
highly reliable TNEs, as well as eliminating randomly transcribed re
gions (e.g., cryptic exons, uneven/noisy signals). The robustness and 
reasonability of the framework were validated, and it suggested that 

HTNEs are separate transcribed elements using CAGE-seq data, in 
particular that the expression levels of intronic HTNEs are weakly 
correlated with their host genes. Meanwhile, we discovered that more 
than seventy percent of the identified HTNEs overlapped with the peaks 
detected by GRO-seq of breast cancer cell lines, reflecting that a majority 
of the HTNEs we identified were truly transcribed elements, rather than 
introns that would be degraded in alternative splicing. And nearly sev
enty percent of the HTNEs we identified were significantly overex
pressed in breast cancer compared to adjacent tissues, suggesting that 
most of identified HTNEs exhibited high expression levels in indepen
dent datasets as well. Finally, to further validate the reliability of 
HTNEs, we also ascertained that HTNEs are indeed highly transcribed 
noncoding regions in our breast cancer samples by examining the 
expression of HTNEs in breast cancer samples. As we expected, our 
method is reliable despite the differences arising from the strong het
erogeneity of breast cancer. 

We delivered mechanistic evidence that above two-thirds of the 
identified HTNEs were discovered to function as putative enhancers or 
lncRNAs in breast cancer based on multiple evidence tracks. We 
discovered that the identified HTNEs had obvious chromatin accessi
bility and exhibited the chromatin characteristics of activated enhancers 
(high H3K4me1 and H3K27ac signals, and low H3K4me3 signal). 
Furthermore, transcription activation signal H3K36me3 and suppressive 
signal H3K27me3, which were previously reported to characterize 
lncRNA in breast cancer [29,31,32], were also distinctly observed in the 
identified HTNEs. GRHL2-HTNE, one of the HTNEs, was distinctly 
marked as an active enhancer and has been demonstrated to be over
expressed in breast cancer and correlated with metastasis and poor 
prognosis in patients [69]. Following analysis of the expression levels of 
identified typical enhancers that overlap with HTNEs, it showed that the 
expression of HTNEs associated with putative enhancers was positively 
correlated with overall survival in breast cancer patients. These 
corroborate the view that a majority of HTNEs are either acting as pu
tative enhancers or designated as lncRNAs that are specifically activated 
in breast cancer and may play valuable roles in the progression of breast 
cancer. 

The transcript of HTNEs could recruit RNA-binding proteins which 
involved in the control of gene expression to participate in the formation 
of regulatory networks in organisms [37]. In our study, the sequences of 
HTNEs were discovered to be significantly enriched with 34 RNA 
binding motifs compared to shuffled sequences. More specifically, the 
top ranked motif in terms of significance was PCBP2 and the most 
frequently enriched motif was PTBP1. Clinical relevance analysis 
revealed that there is a negative correlation between high expression 
levels of RNA-binding motifs and poor overall survival. Earlier in
vestigations have illustrated that these RNA-binding motifs are overex
pressed in breast cancer and are associated with progression and worse 
prognosis [40,70]. More interestingly, we found HTNEs could poten
tially function as ceRNAs that regulate genes by competitively binding 
miRNAs. We discovered 375 miRNA-targeted motifs were enriched in 
the identified HTNEs, all HTNEs were enriched for at least one motif and 
most HTNEs were enriched for up to 23 miRNA-targeted motifs. In this 
regard, hsa-miR-6733-5p targeted motif was the most significant one of 
all motifs and hsa-miR-1275 targeted motif was the most frequently 
enriched one. By comparing gene expression levels of breast cancer and 
adjacent samples in the TCGA cohort, genes regulated by 
hsa-miR-6733-5p or hsa-miR-1275 were also aberrantly overexpressed 
in breast cancer samples. Antecedent studies have revealed that in terms 
of cell biological mechanisms down-regulation of hsa-miR-1275 leads to 
proliferation, invasion and metastasis of breast cancer [71,72]. Our 
findings suggested that HTNEs could competitively bind these miRNAs 
and inhibit their binding to target mRNAs, resulting in overexpression of 
miRNA-targeted genes relevant to the progression of breast cancer. 

We found that there was a significant association between HTNEs 
and aberrant expression of oncogenes or tumor suppressors in breast 
cancer. Further, to exclude the case where high expression of intronic 
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HTNEs could influence expression levels of associated genes, we delib
erately selected intergenic HTNE-associated genes, and as expected, 
those genes remained highly expressed. Moreover, as a subset of HTNE 
transcripts, eRNAs are the transcriptional products of active enhancers 
and can be used as markers of enhancer activity in particular cell types 
[73]. It is foreseen that target genes of eRNAs originating from HTNEs 
could also have statistically significant overall elevated expression 
levels. In the functional enrichment analysis, all pathways enriched by 
HTNE associated eRNA target genes were closely relevant to breast 
cancer tumorigenesis and metastasis. Wnt signaling pathway plays a 
principal role in controlling cancer progression and aberrant activation 
of Wnt signaling is observed from the onset of breast tumors to distant 
metastases [48]. Another enriched pathway, the hedgehog signaling 
pathway, has been implicated in tumorigenesis and progression of many 
cancer types [49]. We also integrated GWAS data to investigate the roles 
of genes regulated by HTNEs localized with SNPs relevant to the dis
eases/traits. In the functional enrichment analysis, the pathway breast 
cancer was ranked second in the enrichment analysis based on GWAS 
data, after the pathway termed proteoglycans in cancer. Prior studies 
have revealed that proteoglycans are heterogeneous glycoproteins and 
as a part of the extracellular matrix and cell surface, proteoglycans are 
simultaneously expressed in cells of the tumor microenvironment and on 
tumor cells [52,74]. Owing to interactions with other extracellular 
matrix proteins, growth factors and receptors, proteoglycans can acti
vate essential cell signaling pathways (such as MAPK, Wnt, Hedgehog, 
TNF, TGF-β, etc.) and their targets are related to proliferation, angio
genesis and cell motility [52,74]. Specifically, as described in earlier 
studies, aberrant proteoglycans expression affects signaling pathways in 
breast cancer cells that drive proliferation and growth, insensitivity to 
anti-growth signals, evasion of apoptotic processes, unlimited replica
tive potential, tissue invasion, and metastasis [71,72]. 

Functional genomic elements tend to manifest strong heterogeneity 
across tumors and specificity in individual tumor subtypes, little is 
known about HTNEs in breast cancer [75,76]. In our study, HTNEs were 
also associated with breast cancer subtype-specific transcriptional pro
cesses and could cluster breast cancer samples significantly into two 
classes aggregated each with statistical biological significance, which 
could be used to stratify breast cancer patients into various clinical 
subtypes. Class I with positive hormone receptor principally comprises 
Luminal A and Luminal B samples, and the corresponding Class II, which 
is hormone receptor negative, chiefly contains HER2-enriched and 
Basal-like samples. We found that there were significant differences 
between these two classes in either individual gene or multiple path
ways that were positively or negatively correlated with hormones re
ceptor of breast cancer. Complementary to this, we also discovered that 
HTNEs could reflect breast cancer subtype-specific transcriptional pro
cesses consistent with PAM50 when we performed functional enrich
ment analysis of HTNE-associated genes in Luminal A and Luminal B 
samples as well as HER2-enriched and Basal-like samples based on 
PAM50. We discovered distinct pathways in the functional enrichment 
results of the two classes, including Th1 and Th2 cell differentiation 
pathway unique to Class I and hippo signaling pathway specific in Class 
II. Numerous clinical reports have indicated that estrogen induces the 
shift between Th1 and Th2 in the pathway named Th1 and Th2 cell 
differentiation [61]. Correspondingly, accumulating evidence suggests 
that the hippo signaling pathway could regulate the growth, metastasis, 
and drug resistance of breast tumor [62,63] and has not been reported as 
hormone dependent. In addition, we also found that the two classes 
shared a large number of pathways that are highly relevant to breast 
cancer, such as breast cancer, pathways in cancer, transcriptional mis
regulation in cancer and Wnt signaling pathway. 

Although we performed bioinformatics analyses as comprehensively 
as possible, further experiments are still needed in the future to validate 
our conclusions. For example, to assign the target genes of HTNEs with 
more accuracy, further integration of Hi-C, HiChIP or Capture Hi-C is 
required to capture regions interacting with HTNEs. Additionally, there 

were 3533 (34.06%) HTNEs that did not intersect with known putative 
enhancers or lncRNAs, requiring more experiments to explore their 
potential biological implications. Moreover, the collected cohort was 
entirely Chinese breast cancer samples, lacking a large quantity of 
samples from other countries or regions for further supplementation. 
The small number of samples and the lack of control adjacent samples 
are also among the factors limiting the analysis in this study. 

5. Conclusions 

In conclusion, this study clarified that HTNEs identified in breast 
cancer samples are critical regulators in breast cancer progression. 
HTNEs are noncoding elements that are separately transcribed with 
highly reliable and highly transcribed features. Most HTNEs intersect 
with putative enhancers or lncRNAs with significant chromatin acces
sibility as well as histone modification characteristics. Besides, HTNEs 
can recruit RNA binding proteins or competitively bind miRNAs to 
participate in the control of gene expression and the formation of 
organismal regulatory networks, and they have a significant correlation 
with the aberrant expression of breast cancer oncogenes or tumor sup
pressors. HTNEs also showed clinical relevance in distinguishing be
tween various breast cancer subtypes owing to their association with 
cancer subtype-specific transcriptional processes. Therefore, the inves
tigation of HTNEs, a functional element with significantly high abun
dance in specific cohorts, will facilitate the dissection of mechanisms of 
breast cancer development, further facilitating the prediction, diagnosis 
and treatment of breast cancer. It is clear to foresee that its application in 
molecular diagnosis, disease phenotypic analysis and prognostic 
assessment would benefit breast cancer patients worldwide. 
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