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Highly transcribed noncoding elements (HTNEs) are critical noncoding elements with high levels of transcrip-
tional capacity in particular cohorts involved in multiple cellular biological processes. Investigation of HTNEs
with persistent aberrant expression in abnormal tissues could be of benefit in exploring their roles in disease
occurrence and progression. Breast cancer is a highly heterogeneous disease for which early screening and
prognosis are exceedingly crucial. In this study, we developed a HTNE identification framework to systematically
investigate HTNE landscapes in breast cancer patients and identified over ten thousand HTNEs. The robustness
and rationality of our framework were demonstrated via public datasets. We revealed that HTNEs had significant
chromatin characteristics of enhancers and long noncoding RNAs (IncRNAs) and were significantly enriched with
RNA-binding proteins as well as targeted by miRNAs. Further, HTNE-associated genes were significantly over-
expressed and exhibited strong correlations with breast cancer. Ultimately, we explored the subtype-specific
transcriptional processes associated with HTNEs and uncovered the HTNE signatures that could classify breast
cancer subtypes based on the properties of hormone receptors. Our results highlight that the identified HTNEs as
well as their associated genes play crucial roles in breast cancer progression and correlate with subtype-specific
transcriptional processes of breast cancer.

1. Introduction such as enhancer and promoter, that are found to be essential in the

regulation of proto-oncogenes or tumor suppressor genes at the tran-

Breast cancer is the most common malignancy and its high morbidity
and mortality rates make it the leading female cancer [1]. Despite
tremendous advances in breast cancer research over the last decade, the
diagnosis and treatment of this malignancy remain challenging [2].
Recently, numerous studies have highlighted the significance of non-
coding elements in cancers [3,4], but a comprehensive knowledge of the
molecular mechanisms and functions of noncoding elements in carci-
nogenesis is still unclear. Therefore, the investigation of novel genomic
elements (e.g., noncoding elements) associated with tumorigenesis, in-
vasion and metastasis is of great importance for the understanding of the
molecular mechanisms of oncogenesis.

Prior studies have identified various functional noncoding elements,
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scriptional and post-transcriptional levels [4]. And a category of these
noncoding elements exhibits an extraordinary degree of conservation
between two or more organisms, known as conserved noncoding
element (CNE), which tend to cluster in the vicinity of key develop-
mental regulatory target genes and disruption of them could contribute
to cancer [5]. Interestingly, the vast majority of CNEs are found to be
transcribed, and their transcripts, which could be aberrantly expressed,
exhibit distinct profiles in various human cancers [5,6]. Intensive
research into the transcripts of noncoding elements in our genome have
revealed that the majority of the human genome is transcribed (at least
76% in humans), yet only 1.2% of these RNAs actually encode proteins
[7]. And transcription products tend to serve a certain function,
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otherwise, the cost of transcription would be wasted [7]. These non-
coding transcripts, which could be highly aberrantly expressed in tumor
tissues, typically fulfill diverse biological functions and play different
roles in the disease progression [8,9]. For example, enhancer RNA
(eRNA) is a kind of functional noncoding transcripts that is transcribed
from the active enhancer in a tissue-specific manner and interacts with
transcriptional regulators to regulate tumour-promoting genes, ac-
counting for the instability of the cancer genome [10]. A variety of
studies have provided insights into intronic noncoding transcription
[11-13]. Corces et al. revealed that genetic risk loci for cancer suscep-
tibility are active transposase-accessible DNA elements in cancer, and
they lead to gene regulatory interactions underlying cancer immune
evasion and are associated with noncoding mutations that affect patient
survival [14]. Concurrently, Dong et al. also identified a similar type of
DNA regulatory element, named transcribed noncoding elements
(TNEs), which was actively transcribed in a merged RNA signal set of 99
human brain samples [15]. A fraction of TNEs was found to be putative
enhancers specifically active in dopamine neurons in their study. It was
also uncovered that TNEs actively transcribed overrepresented variants
associated with diseases and are major cell-autonomous effectors of
cis-acting genetic variants. However, their study only focused on TNEs
associated with putative enhancers and did not investigate the biological
implications of residual TNEs unaffiliated with enhancers. More
importantly, RNA signal outliers in individual samples that could
interfere with TNE detection posed a challenge to their method and
could increase the incidence of false positives. It is conceivable that their
approach may not apply to a large dataset of highly complex diseases (e.
g., cancer).

To ameliorate the limitations of TNE identification [15] and apply it
to our large and heterogeneous breast cancer dataset, we have enhanced
their methodology and identified a robust category of noncoding ele-
ments that are highly transcribed and highly reliable, which are
collectively defined as highly transcribed noncoding elements (HTNES).
It is foreseeable that HTNEs, similar to TNEs, could be closely associated
with disease-related genes and function as potential markers and sig-
nalling molecules for tumour diagnosis and targeted interventions,
which are critical to reveal the cell biological processes of breast cancer
development and progression.

In this study, we employed a tailored identification pipeline to
delineate the HTNE landscape in a specific cohort of breast cancer pa-
tients. To elucidate the critical functions of HTNEs in breast cancer, we
characterized the identified HTNEs and their putative target genes by
integrative analysis of multi-omics data. And we also investigated the
relationship between HTNEs and subtype-specific transcriptional pro-
cesses, with the goal of revealing the potential biological implications
and clinical relevance of HTNEs, which could be beneficial to further
dissect the mechanisms of breast cancer progression and facilitate the
prediction, diagnosis, treatment, and prognosis of this malignancy.

2. Methods
2.1. Sample collection and RNA sequencing data processing

Frozen tumor tissues were collected from 199 breast cancer samples
in the discovery cohort. In light of the manufacturer’s protocol, total
RNA exclusive of ribosomal RNA (rRNA) was extracted from tumor
tissues using the VAHTS Total RNA-seq (H/M/R) Library Prep Kit for
Mlumina and immediately frozen in liquid nitrogen and stored at —
80 °C. The Ovation Human FFPE RNA-seq Library System (NuGEN
Technologies, San Carlos, CA, USA) was used to construct the RNA-seq
library and sequenced using 150 bp paired-end runs on the Illumina
HiSeq X Ten platform (Illumina, San Diego, CA, USA). Raw Illumina
sequence reads in FASTQ format was processed in a customized pipeline
(Supplementary Table 8). For each sample, FastQC v0.11.9 was first
used to quality control the raw reads, and Trimmomatic v0.39 was
employed to excise low-quality bases and splice sequences, allowing
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mismatches at two positions when comparing splice sequences. Then
reads were mapped to the human genome (GENCODE GRCh37.p13)
using STAR v2.7.1a. Reads mapped to ribosomal RNAs, mitochondrial
genome or chromosome Y were excluded from downstream analysis.
The Y chromosome was removed because the breast cancer samples
were from females and removing mitochondrial genome can reduce
interfering or confusing signals [16,17]. Gene expression levels were
quantified using featureCounts v2.0.3. BAM files were sorted and
formatted using samtools v1.14 and bamCoverage v3.5.1.

2.2. The step-by-step framework for the identification of HTNEs

We developed a HTNE identification framework (Fig. 1 and Sup-
plementary Fig. 1) using the following steps: (1) Genomic domains with
reads per million (RPM) higher than transcriptional background levels
were screened in each sample. The transcriptional background level was
defined as the average read density across the nuclear genome (i.e., the
sum of all RPM in a sample divided by the whole number of base pairs
constituting the nuclear genome). The boundaries of candidate HTNEs
across the genome were defined by the first and last nucleotides that
meet the cutoff values. (2) The summit RPM of candidate regions was
reserved if achieved a significance level with a local detection P < 0.05
compared to transcriptional noise. Transcriptional noise was defined by
randomly selecting 1,000,000 nucleotide positions without the blocklist
and formulating the distribution of their RPM to normal distribution.
The blocklist included annotated exons from GENCODE and UCSC with
two 500 bp flanking intervals, UTR regions from GENCODE and UCSC,
2000 bp upstream and 1000 bp downstream of the gene defined from
GENCODE, FANTOM5 CAGE-defined TSS with two 500 bp flanking in-
tervals, rRNA from UCSC, and genomic gap regions in UCSC
Table Browser. Neighboring regions with genomic intervals within
100 bp were merged into novel candidate regions. (3) The regions where
candidate HTNEs were located excluded the blocklist mentioned above,
and splice junctions were combined from the SJ.out.tab files of STAR
outputs. (4) The minimum size of the regions needs to be at least 100 bp.
(5) Statistically significant expressions were calculated for candidate
regions across all samples. The mean RPM values were calculated for
each candidate region and the significance levels were estimated
compared to the transcriptional noise observed in the transcriptional
background of the samples. P values were calculated by comparing
transcript levels to the distribution of transcriptional background levels
for each sample. Next, for each candidate region, the number of samples
selected at P < 0.05 among all samples was calculated, and the proba-
bility that the sample was selected was calculated using a binomial
distribution with the overall probability set to 0.05. Bonferroni correc-
tion was applied to the regions that met the above criteria to ensure that
were statistically significant. (6) Repetitive experiments were conduct-
ed, and the regions acquired for each repeat were overlaid. HTNEs were
achieved until the interleaved amount converged to a stable level.

2.3. Validation datasets for HTNE:s identification pipeline

The public dataset including 14 paired breast tumor and adjacent
samples were derived from NCBI under accession code PRINA739366.
RNA-seq signals were obtained from merged RNA-seq signals of 199
samples of breast cancer. Peaks at high transcript levels in 13 different
breast cancer cell lines representing the five major molecular subtypes of
breast cancer detected by GRO-seq were from GEO under accession code
GSE96859. CAGE-seq data of breast cancer cell line MCF-7 was obtained
from GEO under accession code GSM979657. We assembled the align-
ment results of the breast cancer data to capture potential full-length
transcripts for each sample using StringTie v1.3.4d and used proActiv
v1.8.0 for alternative promoter start site prediction for our breast cancer
cohort.
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Fig. 1. The overview of our study. The framework includes sample collection and sequencing data preprocessing, HTNE identification, and downstream analysis. The

optimal repeat k in HTNE identification section stands for the change point which was described exhaustively in the Methods and Supplementary Figure 1.
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2.4. Randomly shuffled sequences and control regions construction
procedure

The randomly shuffled sequences were generated using shuffleBed
v2.30.0, and all identified HTNEs were used as input. The parameters
were set to exclude the overlap of shuffled intervals and each shuffled
sequence was on the same chromosome as the corresponding input
sequence. For reproducibility of the experiment, the seed was chosen as
123. In the selection of control regions, for each intronic HTNE, all in-
trons within 10 kb upstream and downstream of it were obtained, in
which the HTNEs and the blocklist regions mentioned in the identifi-
cation pipeline of HTNE were excluded, and for HTNEs in intergenic
regions, the control regions were restricted to intergenic regions of the
same chromosome using the selection approach of randomly shuffled
sequences described above.

2.5. Regulatory annotations for validation of chromatin characteristics

To explore the possible roles of HTNEs in gene regulation, we char-
acterized HTNEs with various known regulatory data in human breast or
cell lines. We used chromHMM enhancer states in any of the three
human breast tissues in the Roadmap Epigenomics Project [18] for
histone-defined putative enhancers. Putative enhancers are marked as
the E6, E7, or E12 states from the 15-state chromHMM segmentation
defined by five core marks. The three breast tissues are breast myoepi-
thelial, breast vHMEC mammary epithelial and HMEC mammary
epithelial. We used histone modifications peak called in the above three
breast tissues of Roadmap Epigenomics Project [18]. Other regulatory
data include CAGE-defined enhancers from FANTOMS5 Project [19],
global run-on sequencing (GRO-seq) detected enhancers from Enhancer
Atlas [20], and transcriptional coactivator P300 binding sites from
ENCODE [21]. We also merged ATAC-seq data of breast cancer from
TCGA [22] to validate the chromatin accessibility of HTNEs.

2.6. Motif enrichment analysis

We performed motif enrichment using the AME program from the
MEME suite [23]. The optimal enrichment of the motifs was performed
using one-tailed Fisher’s exact test, and the P value was adjusted using
the Bonferroni correction. RNA-binding motif enrichment analysis was
performed using Ray2013 Homo sapiens, where 102 RNA-binding mo-
tifs were derived from in vitro experiments using the RNAcompete
method. And miRNA motif enrichment analysis was performed using
miRbase v22 Homo sapiens miRNA.

2.7. miRNA target genes collection

The target genes for miRNAs were retrieved from the “Target
Expression” in miRDB [24], with “Source” being “breast carcinoma” and
“expression level”> 20.

2.8. Gene enrichment analysis and gene set variation analysis

For gene enrichment analysis, clusterProfiler [25] was used, while
msigdbr was used to obtain hallmark gene sets and KEGG subset of
curated gene sets from MSigDB [26]. The P values were adjusted using
the Benjamini-Hochberg procedure. For gene set variation analysis, gene
sets were downloaded from MSigDB [26] via keyword indexing.
External gene counts for breast tumor and adjacent samples were
extracted, filtered, and normalized using the R package TCGAbiolinks
v2.24.3, and the scores for each sample were calculated using the R
package GSVA v1.44.5.

2.9. The formula for the expression score

The formula for the expression score of each sample is
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N
> log,(TPM; + 1)

. i=1
Expression Score = - N

where N denotes the number of total genes; i is to imply the order
number of gene.

2.10. Classification of breast cancer samples based on HTNEs signatures

Integration of normalized counts of unique HTNEs in each subtype
was conducted as signatures for clustering. Pooling of all breast cancer
samples was performed using the t-distributed stochastic neighbor
embedding (-SNE) method, and k-medoid clustering was performed
using the partitioning around medoids (PAM) algorithm. The coefficient
of variation of normalized counts of all unique HTNEs in each sample
was utilized to measure whether there was a significant difference be-
tween classes.

2.11. Statistical analysis

Continuous variables were compared by using the Wilcoxon signed-
rank test and Categorical variables were compared using the hyper-
geometric test, permutation test or Fisher’s exact test. Overall Survival
probabilities were estimated using the Kaplan-Meier method and
compared with the Log-rank test. The statistical significance threshold
was set at P < 0.05. The Bonferroni-Holm (BH) correction was used in
multiple hypothesis testing to decrease false positive rates. Statistical
analyses were performed with R v4.2.1.

3. Results
3.1. Definition of a landscape for HTNEs in breast cancer

To genome-widely identify and characterize the landscapes of
HTNE:s in breast cancer, ribosomal RNA-depleted RNA sequencing was
performed for 199 breast cancer patients. Beyond traditional mRNA
sequencing, ribosomal RNA-depleted RNA sequencing could better
capture noncoding RNAs without ploy A tails. Meanwhile, we estab-
lished a sophisticated framework (see Fig. 1, Supplementary Fig. 1 and
Methods for details) to genome-widely identify HTNEs based on ribo-
somal RNA-depleted mRNA profiles, evolving from an earlier study
[15].

10,372 HTNEs were detected in 199 breast cancer samples (Fig. 2A),
and the size distribution of HTNEs peaked at 248 bp (Fig. 2B). The
substantial majority of HTNEs (8976, accounting for 86.54%) were
located in intronic regions, of which 23.73% (2461) were in the first
intron of the host genes, and the residual HTNEs were positioned in
intergenic regions (Fig. 2C and Supplementary Fig. 2 A). Intronic HTNEs
tend to be more abundant in the first half of the host genes than in the
second half, with a gradual decrease from the 5' to the 3' end (Supple-
mentary Fig. 2B-2C), following a similar distribution pattern to that of
intronic TNEs in dopamine neurons of human brain [15]. Dong et al.
[15] state that this distribution pattern opposes to that of partial RNA
degradation, which preferentially degrades 5 end and it implies that
HTNEs could not only influence the chromatin state and accessibility of
target genes, but also determine the gene regulatory activity and
expression level of different genes [27]. Additionally, we observed that
the length distributions of intronic HTNE and intergenic HTNE were
similar (Fig. 1D), and the expression levels of intronic HTNE were
significantly higher than those of intergenic HTNE (P < 2.2 x 1071,
Wilcoxon signed-rank test, Fig. 1E).

To further validate the reliability of our identified HTNEs in breast
cancer samples, we verified the enrichment of HTNEs with separate
transcriptional signals using cap analysis of gene expression and deep
sequencing (CAGE-seq), which can be used to identify all transcription
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Fig. 2. Genome-wide identification of HTNEs in breast cancer. (A) Genome-wide overview of the location (blue) and the transcription levels of HTNEs (green) in 199
breast cancer samples; (B) Size distribution of HTNEs, where the peak is marked with a blue dashed line and the expression level is depicted in green; (C) Distribution
of distances from the HTNEs to the host gene TSS (for intronic HTNESs) or to the nearest gene TSS (for intergenic HTNEs). Distances are marked positive (red) for
intronic HTNEs and negative for intergenic HTNEs (blue); (D) Distribution of length for intronic HTNEs and intergenic HTNEs; (E) Comparison of expression levels
between intronic HTNEs and intergenic HTNEs; (F-G) RNA-seq signals of HTNEs in five breast cancer samples; (H) Distribution of the percentage of samples in which
HTNE was detected to be expressed among our breast cancer cohort, and the x-axis indicated the percentage of samples in our dataset where each HTNE was detected

as transcribed.

start sites (TSS) in mRNA by identifying the cap site (Supplementary
Fig. 2D), suggesting HTNEs are independent transcription units. Mean-
while, we also explored the correlation of the expression level between
intronic HTNEs and their host genes and found no significant correlation
(r = 0.184, P<22x 107'6, Pearson correlation analysis, Supple-
mentary Fig. 2E). Besides, global run-on sequencing (GRO-seq) is a
straightforward transcriptional measure, offering advantages over
traditional bulk RNA-seq, that can derive the location and orientation of
all actively transcribing RNA polymerases across the genome, facili-
tating the comprehensive identification of transcriptional functional
elements in the transcriptomics of breast cancer cells [3]. Thus, we
extracted GRO-seq data from 13 different breast cancer cell lines
(GSE96859) which represent the five major molecular subtypes of breast
cancer to validate the reliability of HTNEs. It was observed that up to
7368 (71.04%) of HTNEs exhibited elevated transcription levels in these
breast cancer cell lines by comparing HTNEs with the peaks that
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exceeded the average transcription levels (Supplementary Fig. 2H).
Furthermore, we compared transcription levels of these HTNEs between
cancer and normal states based on a public dataset, including 14 breast
cancer and adjacent samples [28]. 7237 out of 1,0372 HTNEs were
observed to be expressed significantly higher in breast cancer compared
to adjacent tissues, accounting for 69.77% of the total and it was evident
that the discrepancy between breast cancer and adjacent tissues in the
identified regions was significant (P = 2.14x 1072, Wilcoxon
signed-rank test, Supplementary Fig. 2 F). Additionally, HTNEs did not
overlap with any structural RNAs such as ribosomal RNA (rRNA),
transfer RNA (tRNA), and small nuclear RNA (snRNA), small nucleolar
RNA (snoRNA) and miscellaneous RNA (miscRNA) which have been
found to be enriched in RNA-induced silencing complexes [29]. We also
found that all HTNEs were not overlapping with alternative promoters
[30] in our breast cancer cohort and 10,072 (97.11%) HTNEs were
located entirely within potential full-length transcripts without isoforms
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of protein-encoding genes. Ultimately, we also confirmed that HTNEs cancer as independent highly reliable and highly expressed transcrip-
are indeed noncoding regions that are highly transcribed in our breast tional regulatory elements.

cancer samples (Fig. 2F-2 H and Supplementary Fig. 3A-3L). Taken

together, these results validate our approach to identify HTNEs in breast
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3.2. Chromatin characterization of HTNEs in breast cancer

To comprehensively characterize HTNEs in breast cancer, multi-
omics profiles were employed to explore the regulatory roles that are
attributed to HTNEs. 6839 (65.94%) of the 10,372 active HTNEs in
breast cancer were coincided with preceding identified putative en-
hancers or long noncoding RNAs (IncRNAs) defined by one or more
epigenomic features (Fig. 3A). Validation by comparing HTNEs with
randomly shuffled regions revealed that HTNEs superimposed on re-
gions with putative enhancer or IncRNAs were significantly higher than
expected by chance alone (P < 1 x 10~° by 1000,000,000 permutation
test). Of the 10,372 identified HTNEs, 4583 (44.19%) were consistent
with well-known characteristics of putative enhancers (Fig. 3A). These
features incorporate genome-wide chromatin accessibility (such as
ATAC-seq), characteristic histone modifications (such as H3K4mel,
H3K27ac, and H3K4me3), CAGE defined putative enhancers, GRO-seq
detected enhancers, transcription factor binding, and transcriptional
coactivator P300 binding sites that were derived from Roadmap Epi-
genomics Project [18], FANTOM5 Project [19], ENCODE [21] and
Enhancer Atlas [20]. Simultaneously, all HTNEs were compared with
IncRNAs emerging from the high confidence IncRNA set (putative
protein-coding genes are excluded) of LNCipedia (version 5.2) and the
human IncRNA set of NOCODE (version 6.0). Of the 10,372 active
HTNESs in breast cancer, 3974 (38.31%) were associated with known
IncRNAs (Fig. 3A). Overall, 1718 HTNEs were both overlapped with
putative enhancers and associated with IncRNAs (Fig. 3A).

We further explored the chromatin states of HTNEs and collected
three histone modifications in three tissue and cell type groups
mentioned above for the peaks of the imputed signal data. It is revealed
that a large number of HTNEs overlapped with flanking TSS (Fig. 3B).
Moreover, HTNEs overlapped with earlier identified putative enhancers
were enriched with high levels of H3K4mel and H3K27ac, as well as low
levels of H3K4me3 (Fig. 3B). And ncRNAs can be identified and classi-
fied based on chromatin features, e.g., eRNAs are transcribed from
activated enhancers with H3K4mel/H3K27ac marks and most of the
mRNA-like long intergenic noncoding RNAs (lincRNAs) are generated
from genomic regions with H3K36me3 marks [29]. Hence, we inte-
grated chromatin accessibility and multiple histone modification marks
to compare HTNEs and control regions for exploration of the prominent
functions of HTNEs (see Methods for selection of control regions). As
expected, HTNEs were enriched with higher level of chromatin acces-
sibility than control regions, indicating that HTNEs are in transcrip-
tionally activated states (P < 2.2 x 1071®, Wilcoxon signed-rank test,
Fig. 3C-3D). And HTNEs were enriched with the enhancer mark
H3K4mel and the active marker H3K27ac and exhibited low levels of
H3K4me3, a mark of promoter, which were consistent with histone
modifications in mammary epithelial cells from ENCODE (Fig. 3E-3 G).
It was suggested that a group of HTNEs might be putative active en-
hancers that were consistent with the chromatin states. Moreover,
transcription activation mark H3K36me3 and suppressive mark
H3K27me3, which were formerly reported to characterize IncRNA in
breast cancer [29,31,32], were also represented in identified HTNEs,
implying that a fraction of HTNEs could be putative IncRNAs
(Fig. 3H-3I). Simultaneously, comparing HTNEs with randomly shuffled
sequences that differ from the control regions (see Methods) for
ATAC-seq signals as well as various histone modification signals showed
similar results (Supplementary Fig. 4A-4F, see Methods for details). The
above various signals between all HTNEs, intronic HTNEs and intergenic
HTNEs also showed similar patterns, respectively (Supplementary
Fig. “G-"L). To further explore whether HTNEs are associated with
IncRNAs that contribute to breast cancer, we screened 197 experimen-
tally validated breast cancer-related IncRNAs from LncRNADisease 2.0
[33] and found that nine HTNEs could overlap with functional domains
of the IncRNA PVT1 which could promote breast cancer proliferation
and metastasis [34].

To concretely clarify the function of HTNEs in breast cancer, five
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example regions were shown to highlight the chromatin characteriza-
tion of HTNEs (Fig. 3J and Supplementary Fig. 5A-5D). For example, we
spotlighted one of the HTNEs referred to as GRHL2-HTNE
(chr8:102,513,451-102,514,150), located in the first intron of the
human gene GRHL2 (Fig. 3) and its higher expression correlates posi-
tively with poorer survival in breast cancer patients (P = 4.0 x 1074,
log-rank test) [35]. GRHL2-HTNE harbors high levels of H3K4mel and
H3K27ac signals, low levels of H3K4me3 signal, and was predicted as a
putative enhancer in Roadmap Epigenomics Project.

Since a part of HTNEs was formerly confirmed to be putative en-
hancers, the transcripts of these HTNEs are expected to be eRNAs.
Following the analysis of the ‘expression levels’ of identified typical
enhancers (eRNA expression/transcription levels) that overlap with
HTNEs and clinical information from breast cancer samples in the
TCGA-BRCA cohort [36], it revealed that breast cancer patients with
high expression of these putative enhancer related HTNEs have a worse
overall survival rate than the group with low expression of HTNEs
(Fig. 3K-3 L, Supplementary Table 1 and Supplementary Fig. 6A-6G).
Additionally, one of the clinically relevant HTNEs (chr5:137,868,
250-137,868,450) has a host gene ETF1 that is also survival associated
(Supplementary Fig. 6H). It suggests that HTNEs are related to the
progression of breast cancer and potentially associated with breast
cancer tumorigenesis, proliferation and migration of cancer cells, which
could be used as potential prognostic markers or even prospective
therapeutic targets for breast cancer.

3.3. Consensus motif analyses of HTNEs in breast cancer

HTNE transcripts could serve as decoys for various RNA-binding
proteins involved in the control of gene expression and participate in
the construction of regulatory networks of organisms in cancer biology
[37]. To further investigate the roles of HTNEs derived from breast
cancer on gene regulation, the enrichment of known motifs in HTNE
sequences was analyzed. Consequently, 34 RNA-binding motifs signifi-
cantly enriched in HTNEs, corresponding to 25 RNA-binding proteins
(Supplementary Table 2). Of the 10,372 HTNEs identified, 10,345
(99.71%) were enriched with at least one RNA-binding motif and the
majority were enriched up to 7 motifs (Fig. 4A). Among the 34
RNA-binding motifs significantly enriched, the motif termed in Ray2013
[38] as PCBP2 was ranking first with the most significant adjusted P
value (P = 1.12x 10728, Fisher’s exact test) and enriched by 4822
(46.49%) HTNEs. The survival analysis of PCBP2 expression status was
performed using GEPIA2 [39] and a Kaplan-Meier survival curve was
generated based on the data from TCGA and GTEx (Fig. 4B). It is shown
that breast cancer patients with high PCBP2 expression have a worse
overall survival rate than the low PCBP2 group (P = 1.3x 1072,
log-rank test). And it was found that these 4822 HTNEs enriched by
PCBP2 in our breast cancer cohort showed higher expression levels in
high PCBP2 group than in low PCBP2 group (Fig. 4C, P = 3.67 x 1073,
Wilcoxon signed-rank test). Meanwhile, PTBP1 was enriched by the
maximum number of HTNEs (4947, accounting for 47.70%), which
were significantly upregulated in breast cancer samples compared to
adjacent samples from TCGA (P = 1.09 x 1034, Wilcoxon signed-rank
test, Fig. 4D). It has been demonstrated that PTBP1 is a potential
biomarker and molecular therapeutic target for breast cancer and
overexpression of PTBP1 promotes the growth of breast cancer cells
through the PTEN/Akt pathway and autophagy, thereby affecting the
proliferation and migration of cancer cells [40,41].

Furthermore, noncoding elements could potentially function as
competitive endogenous RNAs (ceRNAs) that regulate genes by
competitively binding miRNAs [42]. ceRNAs can bind to miRNAs
through miRNA response elements and thus affect miRNA-induced
genes silencing, which play vital roles in pathological aspects associ-
ated with abnormal transcriptome changes (e.g., tumors). Of the 2656
motifs converted from Homo sapiens miRNAs in miRBase v22, the
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identified HTNEs were enriched for a total of 375 miRNA-targeted
motifs, corresponding to 375 miRNAs (Supplementary Table 3). Evalu-
ation of the miRNA-targeted motif enrichment analysis indicated that
each HTNE was enriched with at least one motif, and the maximum
number of HTNEs reaching 23 motifs (Fig. 4E). Of all 375
miRNA-targeted motifs enriched, the motif termed hsa-miR-6733-5p, a
potential prognostic biomarker in breast cancer patients [43], was the
most significant one (P = 1.27 x 1078, Fisher’s exact test) and enriched
by 1805 (17.40%) HTNEs. 146 genes were regulated by
hsa-miR-6733-5p in breast cancer from miRDB [24] (Methods) and
found to be aberrantly overexpressed in the breast cancer samples (P =
2.87 x 1071°, Wilcoxon signed-rank test, Fig. 4F). In addition,
hsa-miR-1275 was attracted by the most (2396, accounting for 23.10%)
HTNEs (P = 5.14 x 1079, Fisher’s exact test). To demonstrate that
HTNEs could potentially influence miRNA to regulate genes, we con-
trasted the expression levels of gene sets regulated by miRNAs recruited
by HTNEs between breast cancer and adjacent samples. Then, 155 genes
regulated by hsa-miR-1275 in breast cancer were retrieved from miRDB
[24] (Methods). In comparison of gene set variation analysis (GSVA)
scores between TCGA breast cancer and adjacent samples, genes regu-
lated by hsa-miR-1275 were also abnormally overexpressed in breast
cancer samples (P = 5.39 x 10~*3, Wilcoxon signed-rank test, Fig. 4G).
And hsa-miR-1275 is a biomarker for breast cancer and downregulation
of hsa-miR-1275 is intimately relevant to biological mechanisms of
breast cancer, including proliferation, invasion and metastasis [44].
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3.4. Assignment of HTNEs to associated genes in breast cancer

To further investigate whether HTNEs are involved in the tran-
scriptional regulation of genes in breast cancer, we assigned HTNEs to
putative associated genes based on a baseline approach of target gene
prediction using genomic distances. We procured 3734 HTNE-associated
genes, including 3114 genes localized by intronic HTNEs and 620 genes
nearest to intergenic HTNEs. And 1860 genes have more than one HTNE
and each gene is mapped with approximately three HTNEs on average
(Fig. 5A). And the expression scores of these genes were calculated for
each sample (see Methods for details). Meanwhile, a group of 3734
genes excluded HTNE-associated genes was randomly selected and the
expression scores were also calculated for comparison. As shown in
Fig. 5B, the expression scores of HTNEs-associated genes were signifi-
cantly higher than randomly selected genes (P = 5.13 x 107%7, Wil-
coxon signed-rank test). Furthermore, the expression levels of genes
associated with intronic HTNEs might be biased due to high expression
levels of HTNEs. For intergenic HTNE associated genes, expression
scores were also significantly higher than those of the randomly selected
genes (P = 1.09 x 107%2, Wilcoxon signed-rank test, Fig. 5C). Via
analyzing gene expression of tumor and normal tissues and clinical in-
formation of the samples from TCGA, there were 1420 genes associated
with survival. Among them, 116 host genes were found to be associated
with HTNEs (P < 2.2 x 10716, Fisher’s exact test), of which 42 host
genes could be considered as independent prognostic factors separately
from other genes (Supplementary Table 4).

eRNA is one of the markers of active enhancers, and it can also play a
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role in regulating cellular processes with the similar effect as IncRNA
[45]. As mentioned before, a group of HTNEs was considered as putative
enhancers and exhibited the evident characteristics of enhancers. To
further explore the roles of eRNAs in the transcription products of
HTNEs, the eRNA expression profile as well as eRNA target genes of
breast cancer were extracted from the eRic database [46] and further
compared with HTNEs. Consequently, 3099 eRNA target genes were
detected, where these eRNAs intersected with identified HTNEs. These
HTNEs associated eRNA target genes showed higher expression scores
compared to randomly selected genes of the same scale (P = 1.44 x
1015, Wilcoxon signed-rank test, Fig. 5D), suggesting the cis-regulatory
functions of HTNEs in gene transcription. Subsequently, functional
enrichment analysis was performed on 3099 HTNE associated eRNA
target genes. Among all the pathways enriched by these genes, seven of
them were statistically significant (Fig. 5E) and extensive studies have
suggested that the majority of these pathways are associated with breast
cancer progression and metastasis, including Wnt signaling pathway,
ubiquitin mediated proteolysis, hedgehog signaling pathway and path-
ways in cancer [47-49] (Supplementary Table 5). For example, Wnt
signaling pathway plays a principal role in controlling cancer progres-
sion and aberrant activation of Wnt signaling is observed from the onset
of breast tumors to distant metastases [48]. Hedgehog signaling
pathway has been implicated in tumorigenesis and progression of many
cancer types [49].

Single nucleotide polymorphisms (SNPs), known as potential
markers of carcinogenesis, are important genetic markers for the
research of breast cancer characteristics [50,51]. Through integrative
analysis of the SNPs in GWAS Catalog and the identified HTNEs, 252
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diseases/traits associated SNPs localizing at HTNEs were obtained and
147 SNPs were retrieved from these diseases/traits, which are collec-
tively associated with 124 genes. To explore the functional relevance of
these genes, we performed functional enrichment analysis and found
that all pathways were associated with cancers, and a majority of them
were intimately associated with breast cancer (Fig. 5F). In particular, the
pathway termed breast cancer was ranked second (P = 2.16 x 1073) and
the most significant pathway was proteoglycans in cancer (P = 1.70 x
1073). It has been revealed that proteoglycans could activate essential
cellular signaling pathways and drive proliferation, invasion and
metastasis of cancer [52].

3.5. Subtype-specific transcriptional processes associated with HTNEs

PAMS50 is a molecular typing criterion that is extensively applied to
classify intrinsic subtypes of breast cancer based on gene expression of
50 genes [53]. According to PAM50, breast cancer can be classified into
five molecular intrinsic subtypes: Luminal A, Luminal B, human
epidermal growth factor receptor 2 (HER2)-enriched, Basal-like, and
Normal-like. Each of the five molecular subtypes varies depending on its
biological characteristics and prognosis. To further determine if the
HTNEs and their associated genes might be relevant to the biology of
different subtypes of breast cancer, we employed PAMS50 to classify 199
breast cancer samples into five categories (Fig. 6A). Due to the relatively
small number of breast cancer samples belonging to Normal-like sub-
type, these 19 samples were excluded for downstream analysis to avoid
excessive false positive results. The HTNE identification pipeline was
re-performed on 180 retained samples covering four different subtypes.
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