e-ISSN 1643-3750 © Med Sci Monit, 2015; 21: 2986-2996 DOI: 10.12659/MSM.894010

META-ANALYSIS

MONITOR					DOI: 10.12659/MSM.89401
Received: 2015.03.04 Accepted: 2015.05.15 Published: 2015.10.04	-	Association Bet P325P Polymor Susceptibility:	tween ESI phisms ai A Meta-A	R1 Pvull, Xbal, nd Breast Canc nalysis	and er
Authors' Contribution: Study Design A Data Collection B Statistical Analysis C Data Interpretation D Manuscript Preparation E Literature Search F Funds Collection G	EF 1 EF 1 BC 1 CE 2 B 3 D 1 D 1 AG 1	Yiming Zhang* Ming Zhang* Xiaosong Yuan* Zhichen Zhang* Ping Zhang Haojie Chao Lixia Jiang Jian Jiang		 Department of Clinical Laboratory, Chang Hospital Affiliated to Nanjing Medical Ur Jing Jiang College Affiliated to Jiang Su U Department of Clinical Laboratory, Chang Nanjing Medical University, Changzhou, J 	gzhou Maternal and Child Health Care niversity, Changzhou, Jiangsu, P.R. China Iniversity, Zhengjiang, Jiangsu, P.R. China gzhou No. 2 People's Hospital Affiliated to liangsu, P.R. China
Corresponding Source of	g Author: f support:	* These authors contributed equally to Jian Jiang, e-mail: jiangjianchzh@163.co Self financing	this work om		
Back Material/M	ground: Nethods: Results:	Breast cancer is one of the leading that single-nucleotide polymorphi and conclusions are inconsistent a To investigate the association bet phisms of ESR1 gene with the ris multiple databases for data collec Three different comparison model were applied to evaluate the asso Our results indicated that people cer than those with CC genotype i nificance was found using any of groups according to the ethnicity and separate analyses were condu- that the higher risk of breast cance Asian people, but not in white people	g causes of cancer-rel isms (SNPs) on the ES and controversial. ween Pvull (rs223469 k of breast cancer un tion, and performed ls – dominant model, ociation. with TT+TC or TT ger in the Pvull polymorp the 3 models. Furthe (white or Asian) and s ucted to assess the a er for TT genotype of pulations.	ated deaths for women. Numero SR1 gene are associated to this P3), Xbal (rs9340799) and P3251 order different population categor the meta-analysis on a total of recessive model, and homozygor notype were at a greater risk of hism. While for Xbal and P325P rmore, the data were also strat ource of controls (hospital-base ssociation. The ethnicity subgro Pvull polymorphism than CC ge	bus studies have shown disease. However, data P (rs1801132) polymor- orizations, we searched 25 case-control studies. ote comparison model – developing breast can- polymorphisms, no sig- ified into different sub- d or population-based), up assessment showed notype only occurred in
Conc	lusions:	suggested that people with TT + with CC genotype in the hospital- Thus, this meta-analysis clarified the entire population as well as fo has the potential to help provide	TC genotype were at based subgroup. the inconsistent cond r different subgroups a personalized risk es	a greater risk of developing br clusions from previous studies, using diverse population catego stimate for breast cancer suscep	conducted analyses for prization strategies, and ptibility.
MeSH Key	ywords:	Estrogen Receptor Modulators	• Meta-Analysis • Po	lymorphism, Genetic	
Full-to	ext PDF:	http://www.medscimonit.com/ab	ostract/index/idArt/8	94010	
		₽ 2607 ⊞ 5		44	

MEDICAL SCIENCE

Background

Breast cancer (BC) is the most common malignant tumor for women worldwide [1]. Similar to other cancer types, genetic factors play a central role in the development and progression of breast cancer [2]. Studies show that excessive estrogen from the exogenous source can have pathological consequences in human cell, and result in the alteration of tumors, including the occurrence of breast cancer [3]. Two major types of estrogen receptors (ESRs), named as ESR1 and ESR2, act as the key regulators in controlling the actions of estrogen. The ESR1 gene encodes a transcription factor with an estrogen-binding domain, an activation domain, and an estrogen response element (ERE) DNAbinding domain. By regulating the cell proliferation and differentiation via paracrine mechanism, ESR1 is believed to be tightly associated with breast cancer [4]. Therefore, genetic variations in the ESR1 gene, which can lead to disordered estrogen activity, become a potential risk for breast cancer. Single-nucleotide polymorphisms (SNPs) of ESR1 have been studied in numerous clinical studies. Many association studies on this gene have been confined to 2 SNPs (originally detected with the restriction enzymes Pvull and Xbal [5]), which are located in the first intron of ESR1. The ESR1 Pvull and Xbal polymorphisms have been associated to tumorigenesis and many other diseases [6], involving heterogeneous conclusions. The meta-analysis conducted by Li et al. concluded that the Pvull polymorphism of ESR1 was a risk factor for prostate cancer development [7], while the metaanalysis conducted by Gu et al. found no association between frequencies of the Pvull (C>T) polymorphism and prostate cancer susceptibility, but found a positive correlation between Xbal (A>G) polymorphism and the risk of prostate cancer [8]. A recent study showed that the ESR1 Pvull CC/CT and Xbal GG/GA genotypes could increase susceptibility to systemic lupus erythematosus (SLE) [9]. Several other meta-analyses suggested that the Pvull variant, instead of Xbal, was negatively associated with Alzheimer's disease (AD) in white populations, especially in southern European people, but not in Asian populations [7,10]. The risk of idiopathic scoliosis was not obviously associated with the ESR1 Pvull or Xbal polymorphism [11]. It has been also frequently reported that the Pvull and Xbal polymorphisms of the ESR1 gene are related to breast cancer [12,13]. Li and Xu reported that ESR1 Pvull (C>T) polymorphism placed pre-menopausal women at risk for breast cancer, but XbaI (A>G) polymorphism is not associated with the risk of breast cancer [14]. P325P polymorphism in the exon 4 of ESR1 gene has been found to be associated with bone mineral density in post-menopausal women [15]. Korean women carrying both the ESR1 P325P CC and CDK7 Ex2-28C>T (rs2972388) TT genotypes have been shown to be at increased breast cancer risk [16]. However, because of the heterogeneous of data sources and analysis methods, the conclusions in many of these studies were inconsistent and controversial. Although 2 studies have been conducted on this issue, both of them have some drawbacks. Specifically, Li et al. narrowed the population to Asian women [14]. Hu et al. focused on some of SNPs in ESR1, but SNPs like P325P, which is also associated with the risk of breast cancer, was not included in their articles [17]. In this study, we performed an updated meta-analysis by involving as many data as possible from published studies, to provide a more precise estimation of the potential association between ESR1 Pvull, Xbal, and P325P polymorphisms and the risk of breast cancer. We collected all related studies from online databases to assess the association between 3 SNPs on ESR1 and breast cancer susceptibility. In addition, the analyses were conducted for the entire population, as well as for different subgroups using diverse population categorization strategies.

Material and Methods

Search strategy

We performed an online search of PubMed, Elsevier, Science Direct, Karger, Web of Science, Wiley Online Library, and Springer databases for eligible studies on the association between ESR1 Pvull, Xbal, and P325P polymorphisms with breast cancer susceptibility. The related terms, including"ESR1", "rs234693", "rs9340799", "rs1801132", "polymorphism", "breast cancer" and "BC" were used for searching. The literature search was updated on September 2014.

Data collection

A total of 91 results were found in the literature search. Among these studies, only ones which meet the following criteria were included in our meta-analysis: (i) case-control study that focused on breast cancer and ESR1 gene polymorphisms; (ii) ethnicity and source information was available for case and control; (iii) the diagnosis of breast cancer was confirmed by pathological or histological examination; (v) were published in English language. Studies were excluded when they were: (i) irrelevant articles, duplicated articles; (ii) not case-control study; (iii) genotype frequency information was not accessible; and (iv) meta-analysis, letters, reviews, or editorial articles. As a result, 25 articles were eventually included in the meta-analysis. In our data collection procedure we restricted the time frame from Jan. 2000 to Sept. 2014. Since there was no eligible study prior to 2003, all included studies were published later than 2003. For each article, the following data were collected: the first author's last name, year of publication, country of origin, ethnicity, source of controls, and the number and frequency of ESR1 Pvull, Xbal, and P325P polymorphisms of cases or controls.

Statistical methods

We used STATA software (version 12.0) for all analyses. The strength of the association between ESR1 polymorphisms and

Figure 1. Flow diagram of studies included in the meta-analysis.

breast cancer susceptibility was assessed using all databases by pooled odds ratios (ORs) with 95% confidence intervals (CIs). Three models were used to evaluate the association: dominant model, recessive model, and homozygote comparison model. We also performed subgroup analyses by ethnicity (white or Asian) and source of controls (hospital-based or populationbased). The heterogeneity assumption was assessed by I² index. Higher I² indicates more significant heterogeneity. I²=50% represents the dividing point between low and high heterogeneity. When I²≤50%, we assumed that there was no significant heterogeneity between pooled data. Correspondingly, I2>50 was treated as significant heterogeneity. Moreover, based on the I² index, we chose a different model in analysis: Mantel-Haenszel (M-H) fixed-effects model was used to analyze datasets without significant heterogeneity and DerSimonian and Laird (D-L) random-effects model was used to analyze datasets showing obvious heterogeneity. In our meta-analysis, we used M-H fixedeffects model to test the heterogeneity first, and then chose different models based on the testing results. ORs were calculated with each model within 95% confidence intervals. Forest plots were generated to summarize the results. Potential publication bias was assessed by the Begg's funnel plots and the Egger's test. All reported P values were for a two-tailed test.

Results

We performed an online search of multiple databases for eligible studies on the association between ESR1 polymorphisms and breast cancer susceptibility. The procedure of article collection is shown in Figure 1. By excluding irrelevant articles, duplicated articles, and articles not focused on ESR1 polymorphisms and breast cancer, we found a total of 25 case-control studies covering 24 740 cases, and 38 866 controls were eligible [12,13,16–38], main characteristics of which are shown in Table 1. For the ethnicity distribution, there were 8 studies of Asians and 15 studies of whites. For the source of controls, 14 studies used population-based controls and 11 studies used hospital-based controls. To choose a proper model for the study, we first used the I² indexes to evaluate the heterogeneity of the data for all 3 SNPs. As shown in Table 2, for Pvull, the I² indexes ranged from 36% to 48%, and for XbaI and P325P, the I² values were mostly equal to 0% in all 3 tested genetic models. Statistically significant heterogeneities were only observed for Pvull in dominant model TT vs. (TC+CC) and homozygote model (TT vs. CC). The Pvull polymorphism showed a relative higher I² index than the other 2 SNPs mainly because more studies were included in the Pvull analysis. Nevertheless, all of the I² indexes were smaller than 50%, which can be still considered as non-significant heterogeneity. Therefore, the statistical power was still acceptable in our study. Since the I² indexes were smaller than 50%, M-H fixed-effects models were used for all of the 3 SNPs. The forest plots for Pvull, Xbal, and P325P are shown in Figures 2-4, respectively. Overall, we found significant associations between ESR1 Pvull polymorphism and breast cancer susceptibility in both recessive model ((TT+TC) vs. CC: OR=1.08, 95% CI (1.02-1.14), p=0.01, Figure 2B) and homozygote model (TT vs. CC: OR=1.10, 95% CI (1.03-1.18), p=0.03, Figure 2C), but not in dominant model (TT vs. (TC+CC): OR=1.05, 95% CI (1.00-1.10), p=0.05, Figure 2A). These results indicated that the people with TT or TC genotype were at a greater risk of developing breast cancer than those with CC genotype in the ESR1 Pvull polymorphism. On the other hand, for Xbal and P325P, no significance was found for all 3 models (GG vs. GA+AA: OR=1.05, 95% CI (0.94-1.18), p=0.37, Figure 3A; GG+GA vs. AA: OR=1.05, 95% CI (0.98-1.12), p=0.15, Figure 3B; GG vs. AA: OR=1.08, 95% CI (0.96–1.21), p=0.22, Figure 3C; CC vs. CG+GG: OR=1.01, 95% CI (0.91-1.11), p=0.90, Figure 4A; CC+CG vs. GG: OR=0.97, 95% CI (0.86-1.09), p=0.60, Figure 4B; CC vs. GG: OR=0.96, 95% CI (0.84-1.10), p=0.56, Figure 4C). We found that there was no significant publication bias based on funnel plot for all 3 SNPs (Figures 5-7). Egger's and Begg's tests also indicated that there was no obvious bias for publications investigating the relationship of ESR1 polymorphisms with breast cancer risk, as shown in Table 2.

Author	Year		Ca	ise			Cor	itrol		Country	Ethnicity S	ource*	Age	Genotyping method	Premeno- pausal proportion
Pvull		сс	СТ	TT	Total	сс	СТ	TT	Total						
Madeira	2014	9	49	6	64	8	39	25	72	Brazil	Caucasian	HB	Median: 55	PCR-RFLP	Mixed
Chattpoad- hyay	2014	39	164	157	360	62	162	136	360	India	Caucasian	PB	<50: 44%	PCR-RFLP	49%
Tang	2013	127	374	293	875	136	375	334	886	China	Asian	HB	Mean: 49	MALDI-TOF	50%
Lu	2013	57	228	227	542	137	454	425	1016	China	Asian	PB	Mean: 49	PCR-RFLP	N/A
Sakoda	2011	93	290	229	612	120	427	327	874	China	Asian	PB	<50: 51.7%	SNaPshot assays	55%
Han	2011	107	399	353	859	151	402	324	877	China	Asian	HB	Mean: 51	TaqMan	48%
Sonestedt	2009	108	273	158	539	218	539	316	1073	Sweden	Caucasian	PB	Mean: 57	SEQUENOM	N/A
Dunning	2009	938	2164	1260	4362	934	2296	1318	4548	UK	Caucasian	PB		PCR-RFLP	
Ladd	2008	24	94	72	190	453	1648	1602	3703	Nether- lands	Caucasian	PB	Mean: 70	N/A	0%
Gonzalez- Mancha	2008	82	209	153	444	150	361	193	704	Spain	Caucasian	HB	Mean: 58	PCR-RFLP	
Wang	2007	87	188	117	392	176	393	214	783	USA	Caucasian	РВ		PCR-MPLA	
Kjaergaard	2007	245	613	398	1256	537	1225	727	2489	Denmark	Caucasian	HB		TaqMan	25%
Hu	2007	16	58	39	113	19	45	49	113	China	Asian	HB	<50: 73%	PCR-RFLP	72%
Shen	2006	29	120	98	247	43	124	107	274	China	Asian	PB	<50: 79%	PCR-RFLP	
Onland- Moret	2005	69	150	89	308	96	153	88	337	Nether- lands	Caucasian	PB	Mean: 57	PCR-RFLP	
Modugno	2005	80	115	53	248	1272	1810	819	3901	USA	Caucasian	PB	Mean: 71	PCR-MPLA	
Wedren	2004	268	634	390	1292	313	651	384	1348	Sweden	Caucasian	PB	50-74	PCR-RFLP	0%
Shin	2003	35	91	75	201	26	103	61	190	Korea	Asian	HB		PCR-RFLP	
Cai	2003	138	516	415	1069	190	546	430	1166	China	Asian	РВ	Mean: 47	PCR-RFLP	64%
Xbal		GG	GA	AA	Total	GG	GA	AA	Total						
Madeira	2014	12	47	5	64	14	58	0	72	Brazil	Caucasian	HB	Median: 55	PCR-RFLP	Mixed
Sakoda	2011	22	197	395	614	30	277	569	876	China	Asian	PB	<50: 51.7%	SNaPshot assays	55%
Dunning	2009	521	1967	1682	4170	526	2048	1873	4447	UK	Caucasian	РВ		PCR-RFLP	
Wang	2007	19	137	237	393	29	299	461	789	USA	Caucasian	РВ		PCR-MPLA	
Slattery	2007	52	235	287	574	61	313	351	725	USA	Caucasian	РВ		PCR-RFLP	

Table 1. Characteristics of literatures included in the meta-analysis.

Author	Year		Ca	se			Con	trol		Country	Ethnicity	Source*	Age	Genotyping method	Premeno- pausal proportion
Shen	2006	14	84	149	247	21	87	168	276	China	Asian	РВ	<50: 79%	PCR-RFLP	
Cai	2003	36	497	536	1069	49	507	610	1166	China	Asian	PB	Mean: 47	PCR-RFLP	64%
P325P		СС	CG	GG	Total	СС	CG	GG	Total						
Han	2011	208	441	216	865	232	452	201	885	China	Asian	HB	Mean: 51	TaqMan	48%
Ding	2010	241	468	225	934	402	751	391	1544	China	Asian	HB		Taqman	
Jeon	2009	218	311	217	746	182	288	185	655	Korea	Asian	HB	Mean: 47	MALDI-TOF	
Sidding	2008	55	23	1	79	56	27	2	85	Sudan	Caucasian	HB	Mean: 46	PCR-SSCP	67%
Wang	2007	237	137	19	393	461	299	29	789	USA	Caucasian	PB		PCR-MPLA	
Gallicchio	2006	52	31	7	90	794	440	64	1298	USA	Caucasian	РВ	Mean: 54	TaqMan	26.2%
Fernandez	2006	355	156	18	529	356	167	22	545	Spain	Caucasian	НВ	<50: 27%	Taqman	15%

Table 1 continued. Characteristics of literatures included in the meta-analysis.

* HB - hospital-based; PB - population-based.

Table 2. Meta-analysis for all population with Dominant model, Recessive model and homozygote comparison.

Analysis	Analysis	Hetero	geneity		0	R		Publication bias		
model	method	l² (%)	p-value	Overall	Lower	Upper	p-value	Begg	Egger	
Pvull										
TT vs. TC+CC	Fixed	43.6	0.02	1.05	1.00	1.10	0.05	0.48	0.47	
TT+TC vs. CC	Fixed	36.8	0.06	1.08	1.02	1.14	0.01	0.94	0.15	
TT vs. CC	Fixed	48.1	0.01	1.10	1.03	1.18	0.03	0.68	0.62	
Xbal										
GG vs. GA+AA	Fixed	3.5	0.40	1.05	0.94	1.18	0.37	0.76	0.73	
GG+GA <i>vs</i> . AA	Fixed	0.0	0.86	1.05	0.98	1.12	0.15	0.55	0.19	
GG <i>vs</i> . AA	Fixed	0.0	0.51	1.08	0.96	1.21	0.22	0.76	0.87	
P325P										
CC vs. CG+GG	Fixed	0.0	0.82	1.01	0.91	1.11	0.90	0.76	0.74	
CC+CG vs. GG	Fixed	0.0	0.63	0.97	0.86	1.09	0.60	0.76	0.68	
CC vs. GG	Fixed	0.0	0.64	0.96	0.84	1.10	0.56	1.00	0.83	

Furthermore, we performed subgroup analysis, and results are shown in Tables 3–5. For the subgroup analysis by ethnicity, the I² indexes for Pvull were larger than 50% in both dominant model and homozygote model for white subgroups, indicating a high heterogeneity in these 2 genetic models (Table 3). Correspondingly, we used the random-effects model for assessing the association in these high-heterogeneity cases, and used the fixed-effects model in other cases. Although the above analysis showed that TT genotype of Pvull had higher risk of breast cancer than CC genotype in all populations, further subgroup assessment demonstrated that only Asians followed this trend (TT vs. CC: OR=1.18, 95% CI (1.04–1.33), p=0.01), while whites did not (TT vs. CC: OR=1.13, 95% CI (0.98–1.29), p=0.09). For the source-stratified subgroup analysis, significant

Α	Study ID	OR (95% CI)	% Weight
	Madeira (2014) 🛛 🗲 💶 🚽	0.19 (0.07, 0.51)	0.65
	Chattpoadhyay (2014)	1.27 (0.95, 1.72)	2.33
	Sakoda (2013)	0.89 (0.73, 1.09)	0.19 5.11
	Han (2011)	1.19 (0.96, 1.44)	5.73
	Lu (2011)	1.11 (0.89, 1.37)	4.81
	Sonestedt (2009)	0.99 (0.79, 1.25)	4.53
	Ladd (2008)	0.80 (0.59, 1.08)	2.95
	Gonzalez-Mancha (2008)	1.39 (1.08, 1.80)	2.97
	Wang (2007)	1.13 (0.87, 1.48)	3.04
	Hu (2007)	0.69 (0.40, 1.18)	0.97
	Shen (2006)	1.03 (0.72, 1.46)	1.86
	Onland-Moret (2005)	1.15 (0.81, 1.63)	1.51
	Wedren (2004)	1.02 (0.73, 1.40)	7.96
	Shin (2003)	1.26 (0.83, 1.91)	1.19
	Cai (2003)	1.09 (0.92, 1.29)	7.63
	overall (I-squareu=45.0%, p=0.025)	1.05, 1.00, 1.10)	100.0
D	.0737 1	13.6	
D	Study ID	OR (95% CI)	% Weight
	Madeira (2014)	0.76 (0.28, 2.11)	0.37
	Chattpoadhyay (2014)	- 1.71 (1.11, 2.63)	1.41
	Tang (2013)	1.01 (0.77, 1.31)	4.79
	Han (2011)	1.46 (1.12, 1.91)	3.90
	Lu (2011)	1.24 (0.90, 1.73)	2.88
	Sonestedt (2009)	1.02 (0.79, 1.32)	5.00
	Ladd (2008)	0.96 (0.62, 1.50)	1.75
	Gonzalez-Mancha (2008)	1.20 (0.89, 1.61)	3.45
	Kiaergaard (2007)	1.02 (0.76, 1.36) 1.14 (0.96, 1.34)	3.92 11 14
	Hu (2007)	- 1.23 (0.59, 2.53)	0.58
	Shen (2006)	1.40 (0.84, 2.32)	1.12
		1.02 (0.77, 1.34)	4.42
	Wedren (2004)	1.16 (0.96, 1.39)	9.17
	Shin (2003)	0.75 (0.43, 1.31)	1.28
	Overall (I-squared=36.8%, p=0.055)	1.08 (1.02, 1.14)	100.0
	······		
-	.276 1	3.62	
C			
	Study ID	OR (95% CI)	% Weight
	Madeira (2014)	0.21 (0.96, 0.79)	0.54
	Chattpoadhyay (2014)	1.84 (1.16, 2.91)	1.56
	Sakoda (2011)	0.90 (0.66, 1.24)	4.58
	Han (2011)	1.54 (1.15, 2.05)	4.29
	Lu (2011)	1.28 (0.91, 1.82) 1.01 (0.75, 1.36)	3.32 4 94
	Dunning (2009)	0.95 (0.85, 1.07)	32.17
	Ladd (2008)	0.85 (0.53, 1.36)	2.07
	Wang (2007)	1.45 (1.03, 2.04)	3.17
	Kjaergaard (2007)	1.20 (0.99, 1.46)	10.81
	Hu (2007)	0.95 (0.43, 2.08)	0.74
	Onland-Moret (2005)	1.30 (0.79, 2.34)	2.06
	Modugno (2005)	1.03 (0.72, 1.47)	3.41
	Wedren (2004)	1.19 (0.95, 1.47)	8.79
	Cai (2003)	1.33 (1.03, 1.72)	5.86
	Overall (I-squared=48.1%, p=0.010)	1.10 (1.03, 1.18)	100.0
	.0579 1	17.3	

Figure 2. Forest plot of the association between breast cancer risk and ESR1 Pvull polymorphism in all population with respect to (A) dominant model (TT vs. TC+CC), (B) recessive model (TT+TC vs. CC), and (C) homozygote model (TT vs. CC).

Α	Study ID	OR (95% CI)	% Weight
	(ai (2003)	0 79 (0 51 1 23)	7 53
	Slattery (2006)	1.08 (0.74, 1.60)	8.16
	Shen (2006)	0.73 (0.36.1.47)	3.11
	Wang (2007)	1.33 (0.74, 2.41)	3.05
	Dunning (2009)	1.06 (0.94, 1.21)	74.11
	Sakoda (2011)	1.05 (0.60, 1.83)	3.97
	Madeira (2014)		0.07
	Overall (I-squared=3.5%, p=0.399)	1.05 (0.94, 1.18)	100.0
	.00404 1	13.6	
B	Study ID	OR (95% CI)	% Weight
	Cai (2003)	1.09 (0.92, 1.29)	14.79
	Slattery (2006)	0.94 (0.75, 1.17)	9.17
	Shen (2006)	1.02 (0.72, 1.45)	3.41
	Wang (2007)	0.93 (0.72, 1.18)	7.30
	Dunning (2009)	1.06 (0.99, 1.17)	55.74
	Sakoda (2011)	1.03 (0.83, 1.27)	9.03
	Madeira (2014)	1.05 (0.44, 2.46)	0.57
	Overall (I-squared=0.0%, p=0.857)	1.05 (0.98, 1.12)	100.0
	.406 1	2.46	
С	Study ID	OR (95% CI)	% Weight
	(ai (2003)	0.84 (0.54, 1.31	00.8 (1
	Slattery (2006)	1.04 (0.70, 1.5	5) 8.74
	Shen (2006)	0.75 (0.37, 1.53	3.33
	Wang (2007)	1.27 (0.70, 2.32	2) 3.45
	Dunning (2009)	1.10 (0.96, 1.27	7) 72.04
	Sakoda (2011) 🕂	1.06 (0.60, 1.86	5) 4.37
	Madeira (2014)	12.76 (0.64, 254.31) 0.07
	Overall (I-squared=0.0%, p=0.507)	1.08 (0.96, 1.21	Í) 100.0
		254	

Figure 3. Forest plot of the association between breast cancer risk and ESR1 Xbal polymorphism in all population with respect to (A) dominant model (GG vs. GA+AA), (B) recessive model (GG+GA vs. AA) and (C) homozygote model (GG vs. AA).

association was observed in the recessive model of hospitalbased subgroup (TT+TC vs. CC: OR=1.15, 95% CI (1.03-1.28), p=0.02), suggesting that the people with TT + TC genotype were at a greater risk of developing breast cancer than those with CC genotype in the hospital-based subgroup. On the other hand, similar with the results obtained by using the entire population, analysis on XbaI (Table 4) and P325P polymorphisms (Table 5) showed that there was almost no heterogeneity for any of the subgroup cases, with I² being equal to 0 for all tests except for XbaI in the white group. In addition, no statistical significant association was found between Xbal and P325P polymorphisms and breast cancer susceptibility in any of the subgroups. Given these results, we conclude that only TT genotype in Pvull was associated with the risk of breast cancer for Asians, and polymorphisms in the other 2 SNPs in ESR1 had little influence on breast cancer.

Discussion

In recent years, the association of genetic susceptibility to cancers has drawn more and more attention to the study of polymorphisms of genes involved in tumorigenesis and other diseases. Numerous studies have been conducted to investigate the association between breast cancer susceptibility with 3 SNPs on ESR1: Pvull, Xbal, and P325P. However, because of the heterogeneous of data and methods, the conclusions in these studies are inconsistent and controversial. For example, some studies concluded that the Pvull CC and CT genotype significantly increased the risk of breast cancer [12,13]. Some studies claimed that T allele of Pvull conferred a higher risk of breast cancer [18,24,32]. Other studies showed that ESR1 Pvull polymorphism did not have any significant effect on breast cancer [19,21,25,27,28]. Given these results, it is necessary to perform a meta-analysis to clarify this issue, which can rapidly and effectively increase sample size by combining data of association studies, thus enhancing the statistical power of analysis to estimate the genetic effects. Pooling data from different studies also has the advantage of reducing random errors. With the accumulation of the studies over the years, we performed an updated meta-analysis, by including 3 SNPs of ESR1 and by involving as many data as possible from published studies, to provide a more comprehensive and reliable estimation of the potential association correlation between ESR1 Pvull, Xbal, and P325P polymorphisms and the risk of breast cancer. In the present study, our results showed that genotype TT+TC or TT in ESR1 Pvull were significantly associated with increased breast cancer risk in overall population compared

Figure 4. Forest plot of the association between breast cancer risk and ESR1 P325P polymorphism in all population with respect to (A) dominant model (CC vs. CG+GG), (B) recessive model (CC+CG vs. GG) and (C) homozygote model (CC vs. GG).

Figure 5. Funnel plot of the association between breast cancer risk and ESR1 Pvull polymorphism in all population with respect to (A) dominant model (TT vs. TC+CC), (B) recessive model (TT+TC vs. CC) and (C) homozygote model (TT vs. CC).

with CC genotype. The ESR1 Pvull polymorphism is intronic and possibly affects receptor function by changing ESR1 expression levels or altering its pre-mRNA splicing. Herrington et al. found that the C allele of Pvull produced a functional binding site for a transcription factor B-Myb, which resulted in significantly increasing transcription of a downstream reporter construct compared to the T allele [39]. This indicates that CC genotype correlates with a higher ESR1 transcriptional level and may explain our observation that TT+TC or TT genotypes were associated with higher breast cancer risk than was CC genotype, but further functional studies are needed to investigate the functions of these alleles.

It is likely that the tumorigenesis of breast cancer is affected by many factors such as age, ethnicity, environment, and other variables. We therefore performed subgroup analysis

Figure 6. Funnel plot of the association between breast cancer risk and ESR1 Xbal polymorphism in all populations with respect to (A) dominant model (GG vs. GA+AA), (B) recessive model (GG+GA vs. AA), and (C) homozygote model (GG vs. AA).

Table 3. Subgroup meta-analysis of the association between ESR1 Pvullpolymorphisms and breast cancer risk.	

Subgroup		T vs. TC+CC	TT+TC vs. CC					TT vs. CC				
Sungroup	I² (%)	ph#	OR (95%CI)	pOR*	l² (%)	ph#	OR (95%CI)	pOR*	l² (%)	ph#	OR (95%CI)	pOR*
Ethnicity												
Caucasian	58.5	0.01	1.06 (0.95–1.18)	0.28	31.9	0.14	1.05 (0.98–1.12)	0.16	56.1	0.01	1.13 (0.98–1.29)	0.09
Asian	10.0	0.35	1.05 (0.97–1.14)	0.24	38.0	0.01	1.17 (1.04–1.31)	0.12	33.8	0.16	1.18 (1.04–1.33)	0.01
Source												
HB	74.6	<0.01	1.02 (0.83–1.26)	0.83	15.0	0.32	1.15 (1.03–1.28)	0.02	58.9	0.02	1.13 (0.90–1.43)	0.28
PB	0.0	0.77	1.04 (0.98–1.10)	0.23	44.2	0.05	1.05 (0.99–1.12)	0.13	81.3	<0.01	0.78 (0.64–0.94)	0.01

[#] P-value from heterogeneity test; * P-value from OR test.

based on ethnicity of samples. We found only Asians with TT genotype of ESR1 Pvull polymorphism had a higher risk of breast cancer than people with CC genotype, while whites did not show this trend. This may be attributable to genetic heterogeneity among different populations. We could not rule out the possibility of gene-gene interactions or the possibility of linkage disequilibrium between polymorphisms. Further studies of multiple polymorphisms in ESR1 [40,41] or different genes or gene regulators such as microRNAs [42–44] are needed to address this question. In addition, it is also possible

Subgroup		G <i>vs</i> . GA+AA	GG+GA vs. AA				GG vs. AA					
	l² (%)	ph#	OR (95%CI)	pOR*	l² (%)	ph#	OR (95%CI)	pOR*	l² (%)	ph#	OR (95%CI)	pOR*
Ethnicity												
Caucasian	11.9	0.33	1.09 (0.96–1.22)	0.17	0.0	0.51	1.04 (0.97–1.13)	0.27	0.0	0.41	1.11 (0.98–1.26)	0.10
Asian	0.0	0.67	0.85 (0.62–1.16)	0.30	0.0	0.89	1.06 (0.94–1.20)	0.34	0.0	0.73	0.88 (0.64–1.20)	0.42
Source												
PB	0.0	0.66	1.04 (0.93–1.17)	0.46	0.0	0.76	1.05 (0.98–1.12)	0.15	0.0	0.75	1.07 (0.95–1.20)	0.27

Table 4. Subgroup meta-analysis of the association between ESR1 Xbalpolymorphisms and breast cancer risk.

[#] P-value from heterogeneity test; * P-value from OR test; ** Analysis on HB is not performed due to the lack of study.

Cubaraun	CC vs. CG+GG					CC+CG vs. GG				CC vs. GG				
Subgroup	l² (%)	ph#	OR (95%CI)	pOR*	l² (%)	ph#	OR (95%CI)	pOR*	l² (%)	ph#	OR (95%CI)	pOR*		
Ethnicity														
Caucasian	0.0	0.81	1.06 (0.90–1.24)	0.50	0.0	0.51	0.88 (0.60–1.29)	0.52	0.0	0.50	0.90 (0.61–1.33)	0.60		
Asian	0.0	0.51	0.98 (0.87–1.10)	0.70	0.0	0.43	0.98 (0.87–1.11)	0.73	0.0	0.42	0.97 (0.84–1.12)	0.67		
Source														
HB	0.0	0.72	1.00 (0.90–1.12)	0.98	0.0	0.67	0.99 (0.88–1.11)	0.83	0.0	0.64	0.98 (0.85–1.13)	0.81		
PB	0.0	0.39	1.03 (0.83–1.27)	0.82	0.0	0.70	0.71 (0.44–1.14)	0.16	0.0	0.60	0.72 (0.44–1.18)	0.19		

Table 5. Subgroup meta-analysis of the association between ESR1 P325Ppolymorphisms and breast cancer risk.

* P-value from heterogeneity test; * P-value from OR test.

that differences in environment and lifestyle between different populations may affect the tumorigenesis of breast cancer.

The heterogeneity between studies could also be from the heterogeneous controls. Therefore, we also conducted a sourcestratified subgroup analysis on 14 studies of population-based controls and 11 studies of hospital-based controls, and found significant association in the recessive model of the hospitalbased subgroup. Interestingly, we also noticed that TT genotype of ESR1 Pvull polymorphism in the population-based subgroup decreased the risk of breast cancer more than CC genotype. The inconsistent results between different subgroups could come from the possible non-differential misclassification bias because the hospital-based controls might develop more breast cancer than healthy populations in subsequent years. For P325P, only 2 studies were included in subgroup analysis for PB. Given this small sample size, the statistical power is limited. More studies should be conducted to provide a more precise result.

Conclusions

Our study provided a systematic review and updated metaanalysis of genetic association between ESR1 Pvull, Xbal and P325P polymorphisms and the risk of human breast cancer. Using 3 models (dominant model, recessive model, and homozygote comparison model), we confirmed that only Pvull polymorphism was a risk factor for breast cancer susceptibility in the overall population, but not Xbal and P325P SNPs. Moreover, our results suggest that subgroup assessment by ethnicity of samples and source of controls yields results that are different from those using the overall population. Thus, we believe our study clarifies the inconsistent conclusions from previous studies, and will shed some light on future breast cancer-related research.

Conflict of interest statement

No conflict of interest.

References:

- 1. Balmain A, Gray J, Ponder B: The genetics and genomics of cancer. Nat Genet, 2003; 33(Suppl.). 238–44
- 2. Nathanson KL, Wooster R, Weber BL: Breast cancer genetics: what we know and what we need. Nat Med, 2001; 7(5): 552–56
- Crooke PS, Justenhoven C, Brauch H et al: Estrogen metabolism and exposure in a genotypic-phenotypic model for breast cancer risk prediction. Cancer Epidemiol Biomarkers Prev, 2011; 20(7): 1502–15
- Mallepell S, Krust A, Chambon P, Brisken C: Paracrine signaling through the epithelial estrogen receptor alpha is required for proliferation and morphogenesis in the mammary gland. Proc Natl Acad Sci USA, 2006; 103(7) :2196–201
- Hill SM, Fuqua SA, Chamness GC et al: Estrogen receptor expression in human breast cancer associated with an estrogen receptor gene restriction fragment length polymorphism. Cancer Res, 1989; 49(1): 145–48
- Sun H, Deng Q, Pan Y et al: Association between estrogen receptor 1 (ESR1) genetic variations and cancer risk: a meta-analysis. J BUON, 2015; 20(1): 296–308
- Cheng D, Liang B, Hao Y, Zhou W: Estrogen receptor alpha gene polymorphisms and risk of Alzheimer's disease: evidence from a meta-analysis. Clin Interv Aging, 2014; 9: 1031–38
- Gu Z, Wang G, Chen W: Estrogen receptor alpha gene polymorphisms and risk of prostate cancer: a meta-analysis involving 18 studies. Tumour Biol, 2014; 35(6): 5921–30
- Cai L, Zhang JW, Xue XX et al: Meta-analysis of associations of IL1 receptor antagonist and estrogen receptor gene polymorphisms with systemic lupus erythematosus susceptibility. PloS One, 2014; 9(10): e109712
- Wang T: Meta-analysis of Pvull, Xbal variants in ESR1 gene and the risk of Alzheimer's disease: the regional European difference. Neurosci Lett, 2014; 574: 41–46
- 11. Yang M, Li C, Li M: The estrogen receptor alpha gene (Xbal, Pvull) polymorphisms and susceptibility to idiopathic scoliosis: a meta-analysis. J Orthop Sci, 2014; 19(5): 713–21
- Tang LY, Chen LJ, Qi ML et al: Effects of passive smoking on breast cancer risk in pre/post-menopausal women as modified by polymorphisms of PARP1 and ESR1. Gene, 2013; 524(2): 84–89
- Madeira KP, Daltoe RD, Sirtoli GM et al: Estrogen receptor alpha (ERS1) SNPs c454-397T>C (Pvull) and c454-351A>G (Xbal) are risk biomarkers for breast cancer development. Mol Biol Rep, 2014; 41(8): 5459–66
- 14. Li LW, Xu L: Menopausal status modifies breast cancer risk associated with ESR1 Pvull and Xbal polymorphisms in Asian women: a HuGE review and meta-analysis. Asian Pac J Cancer Prev, 2012; 13(10): 5105–11
- Jurada S, Marc J, Prezelj J et al: Codon 325 sequence polymorphism of the estrogen receptor alpha gene and bone mineral density in postmenopausal women. J Steroid Biochem Mol Biol, 2001; 78(1): 15–20
- Jeon S, Choi JY, Lee KM et al: Combined genetic effect of CDK7 and ESR1 polymorphisms on breast cancer. Breast cancer research and treatment. Breast Cancer Res Treat, 2010; 121(3): 737–42
- Hu Z, Song CG, Lu JS et al: A multigenic study on breast cancer risk associated with genetic polymorphisms of ER Alpha, COMT and CYP19 gene in BRCA1/BRCA2 negative Shanghai women with early onset breast cancer or affected relatives. J Cancer Res Clin Oncol, 2007; 133(12): 969–78
- Chattopadhyay S, Siddiqui S, Akhtar MS et al: Genetic polymorphisms of ESR1, ESR2, CYP17A1, and CYP19A1 and the risk of breast cancer: a case control study from North India. Tumour Biol, 2014; 35(5): 4517–27
- Dunning AM, Healey CS, Baynes C et al: Association of ESR1 gene tagging SNPs with breast cancer risk. Hum Mol Genet, 2009; 18(6): 1131–39
- Gonzalez-Zuloeta Ladd AM, Vasquez AA, Rivadeneira F et al: Estrogen receptor alpha polymorphisms and postmenopausal breast cancer risk. Breast Cancer Res Treat, 2008; 107(3): 415–19
- 21. Han J, Jiang T, Bai H et al: Genetic variants of 6q25 and breast cancer susceptibility: a two-stage fine mapping study in a Chinese population. Breast Cancer Res Treat, 2011; 129(3): 901–7
- 22. Kjaergaard AD, Ellervik C, Tybjaerg-Hansen A et al: Estrogen receptor alpha polymorphism and risk of cardiovascular disease, cancer, and hip fracture: cross-sectional, cohort, and case-control studies and a meta-analysis. Circulation, 2007; 115(7): 861–71

- Modugno F, Zmuda JM, Potter D et al: Association of estrogen receptor alpha polymorphisms with breast cancer risk in older Caucasian women. Int J Cancer, 2005; 116(6): 984–91
- 24. Onland-Moret NC, van Gils CH, Roest M et al: The estrogen receptor alpha gene and breast cancer risk (The Netherlands). Cancer Causes Control, 2005; 16(10): 1195–202
- 25. Sakoda LC, Blackston CR, Doherty JA et al: Selected estrogen receptor 1 and androgen receptor gene polymorphisms in relation to risk of breast cancer and fibrocystic breast conditions among Chinese women. Cancer Epidemiol, 2011; 35(1): 48–55
- 26. Shen Y, Li DK, Wu J et al: Joint effects of the CYP1A1 Mspl, ERalpha Pvull, and ERalpha Xbal polymorphisms on the risk of breast cancer: results from a population-based case-control study in Shanghai, China. Cancer Epidemiol Biomarkers Prev, 2006; 15(2): 342–47
- Sonestedt E, Ivarsson MI, Harlid S et al: The protective association of high plasma enterolactone with breast cancer is reasonably robust in women with polymorphisms in the estrogen receptor alpha and beta genes. J Nutr, 2009; 139(5): 993–1001
- Rajaraman P, Wang SS, Rothman N et al: Polymorphisms in apoptosis and cell cycle control genes and risk of brain tumors in adults. Cancer Epidemiol Biomarkers Prev, 2007; 16(8): 1655–61
- Wedren S, Lovmar L, Humphreys K et al: Oestrogen receptor alpha gene haplotype and postmenopausal breast cancer risk: a case control study. Breast Cancer Res, 2004; 6(4): R437–49
- Cai Q, Shu XO, Jin F et al: Genetic polymorphisms in the estrogen receptor alpha gene and risk of breast cancer: results from the Shanghai Breast Cancer Study. Cancer Epidemiol Biomarkers Prev, 2003; 12(9): 853–59
- Shin A, Kang D, Nishio H et al: Estrogen receptor alpha gene polymorphisms and breast cancer risk. Breast Cancer Res Treat, 2003; 80(1): 127–31
- 32. Gonzalez-Mancha R, Galan JJ, Crespo C et al: Analysis of the ERalpha germline Pvull marker in breast cancer risk. Med Sci Monit, 2008; 14(3): CR136-43
- 33. Lu H, Chen D, Hu L-P et al: Estrogen receptor alpha gene polymorphisms and breast cancer risk: a case-control study with meta-analysis combined. Asian Pac J Cancer Prev, 2013; 14(11): 6743–49
- Siddig A, Mohamed AO, Awad S et al: Estrogen receptor alpha gene polymorphism and breast cancer. Ann NY Acad Sci, 2008; 1138: 95–107
- 35. Slattery ML, Sweeney C, Herrick J et al: ESR1, AR, body size, and breast cancer risk in Hispanic and non-Hispanic white women living in the Southwestern United States. Breast Cancer Res Treat, 2007; 105(3): 327–35
- Ding SL, Yu JC, Chen ST et al: Diverse associations between ESR1 polymorphism and breast cancer development and progression. Clin Cancer Res, 2010; 16(13): 3473–84
- Fernandez LP, Milne RL, Barroso E et al: Estrogen and progesterone receptor gene polymorphisms and sporadic breast cancer risk: a Spanish casecontrol study. Int J Cancer, 2006; 119(2): 467–71
- Gallicchio L, Berndt SI, McSorley MA et al: Polymorphisms in estrogen-metabolizing and estrogen receptor genes and the risk of developing breast cancer among a cohort of women with benign breast disease. BMC Cancer, 2006; 6: 173
- Herrington DM, Howard TD, Brosnihan KB et al: Common estrogen receptor polymorphism augments effects of hormone replacement therapy on E-selectin but not C-reactive protein. Circulation, 2002; 105(16): 1879–82
- Son BH, Kim MK, Yun YM et al: Genetic polymorphism of ESR1 rs2881766 increases breast cancer risk in Korean women. J Cancer Res Clin Oncol, 2015; 141(4): 633–45
- Wang Y, He Y, Qin Z et al: Evaluation of functional genetic variants at 6q25.1 and risk of breast cancer in a Chinese population. Breast Cancer Res, 2014; 16(4): 422
- 42. Wang X, Lu X, Fang Y et al: Association between miR34b/c polymorphism rs4938723 and cancer risk: a meta-analysis of 11 studies including 6169 cases and 6337 controls. Med Sci Monit, 2014; 20: 1977–82
- Ren HT, Wang XJ, Kang HF et al: Associations between C1772T polymorphism in hypoxia-inducible factor-1alpha gene and breast cancer: a metaanalysis. Med Sci Monit, 2014; 20: 2578–83
- 44. Zhang X, Pu Z, Ge J et al: Association of CYP2D6*10, OATP1B1 A388G, and OATP1B1 T521C polymorphisms and overall survival of breast cancer patients after tamoxifen therapy. Med Sci Monit, 2015; 21: 563–69