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ABSTRACT
The gut microbiome in patients with colorectal cancer (CRC) is different than that of healthy 
controls. Previous studies have profiled the CRC tumor microbiome using a single biopsy. 
However, since the morphology and cellular subtype vary significantly within an individual 
tumor, the possibility of sampling error arises for the microbiome within an individual tumor. To 
test this hypothesis, seven biopsies were taken from representative areas on and off the tumor in 
five patients with CRC. The microbiome composition was strikingly similar across all samples from 
an individual. The variation in microbiome alpha-diversity was significantly greater between 
individuals’ samples then within individuals. This is the first study, to our knowledge, that shows 
that the microbiome of an individual tumor is spatially homogeneous. Our finding strengthens the 
assumption that a single biopsy is representative of the entire tumor, and that microbiota changes 
are not limited to a specific area of the neoplasm.
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Introduction

Colorectal cancer (CRC) is the second largest cause 
of cancer death in the United States1. Sporadic CRC 
arises after a series of cumulative genetic mutations,2 

with a 10-year progression from adenoma to CRC.3 

The microbiome is distinctly different in biopsies of 
CRC and adenomatous polyps,4,5 leading to an 
updated hypothesis that microbial changes6 and sec-
ondary consequences for immunological cell 
signaling7 may play a role in tumor progression. 
Bacteria are an established risk factor for cancer, 
such as H. pylori-related MALT lymphoma and gas-
tric carcinoma.8,9 In particular, several individual 
microbes such as Fusobacterium nucleatum10 and 
Escherichia coli11 have been implicated in the patho-
genesis of colorectal cancer, but a cause–effect rela-
tionship has not been established; rather, microbes 
and their metabolomes represent complex collec-
tions of gene networks that interact bidirectionally 
with cancer cells.12

CRC-associated microbiota is characterized by 
a reduced alpha diversity compared with healthy 
controls.13 Patients with CRC4,14 or adenomatous 
polyps4,15 show also distinct qualitative differences 
in both the microbiome and metabolome in 
fecal16,17 and biopsy samples4,14 compared with 
healthy controls. In these studies, the microbiota 
associated with cancerous and non-cancerous tis-
sues within the same individual did not differ 
significantly4,14 which suggests that in CRC, 
a global microbial ecosystem change occurs 
throughout the colon.4,18 However, the microbial 
alterations differ between proximal and distal 
cancers.4 These compositional changes often repre-
sent a relative over-abundance of oral bacteria, 
which are hypothesized to organize into biofilm- 
like structures19 on the tumor and on the right side 
of the colon.4,20 We have previously described that 
CRC patients can be stratified into four groups 
based on bacterial co-abundance groups (CAGs) 
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that link distinct mucosal gene-expression profiles4 

with similar networks of oral-based bacteria found 
in the gut mucosa and oral mucosa.18,20,21

Distinct morphological and phenotypical differ-
ences exist within and between colorectal tumors.22 

Classification systems such as NICE,23 Paris24 and 
Kudo25 use macroscopically visible differences in 
lesions to stratify malignant potential24 or stage 
neoplastic tumors26 detected at the time of endo-
scopy. Similarly, the World Health Organization 
(WHO) has classified the appearances of colorectal 
tumors at surgery into four groups: exophytic, 
endophytic, diffusely infiltrative and annular, with 
the recognition that significant overlap occurs 
between these categories.27 Macroscopic pheno-
types may also be an overall predictor of genetic 
alterations and DNA methylation in a colorectal 
tumor.28 Intra-tumoral heterogeneity for both 
genetic and epigenetic factors in CRC are also 
evident.29

Untargeted colonoscopy biopsies or untargeted 
segments of resected tumors have been used in 
most studies of CRC microbiota.4,14,30,31 Given the 
histologic and genetic intratumoral heterogeneity32 

of CRC, topographic variance in the microbiota of 
a single tumor may be a confounding factor. 
Therefore, we undertook the first study that aims 
to investigate the intratumoral microbial heteroge-
neity and its comparison with adjacent proximal 
and distal non-cancerous tissue.

Results

Five patients were recruited to the study, four males 
and one female, with a mean age of 72 ± 6.7 years 
with demographics shown in Table 1. All patients 
had a diagnosis of colonic adenocarcinoma within 
the previous 1–2 months. Seven samples were 
obtained from each individual comprising normal 
tissue proximal to the tumor (biopsy 6), normal 
tissue distal to the tumor (biopsy 5), a central 
tumoral biopsy (biopsy 5) and four peripheral 
tumor biopsies (biopsies 1–4). The tissue micro-
biome was profiled by 16S rRNA gene amplicon 
sequencing.

The microbiome composition was highly similar 
among samples within a particular individual 
(Figure 1a). The genus level composition differed 
significantly between patients (Figure 1a) but was 

remarkably similar within a single subject, both on 
(biopsy 1–5) and off the tumor site (biopsy 6 and 7). 
This was reflected in beta diversity distance metrics 
wherein samples are clustered by individual rather 
than biopsy site as represented in Principal Co- 
ordinate Analysis (PCoA) plots (Figure 1b). The 
identity of the patient from whom the biopsy was 
taken was associated with the top four PCoA axes 
which collectively explained >90% of variance (see 
Supplementary figure 1S, Supplementary table 1). 
However, there was no association between any of 
the top 10 PCoA axes, which collectively explained 
~99% of the variance, and sample site 
(Supplementary table 2). We employed permuta-
tional multivariate analysis of variance 
(PERMANOVA) to calculate the association 
between sample metadata factors and the global 
microbiome structure as defined by the beta- 
diversity distance matrixes. A strong association 
between the biopsy patient origin and the micro-
biome was identified (Figure 1b, Supplementary 
table 3). However, we did not detect any statistically 
significant association between the global micro-
biome structure and the sample site 
(Supplementary table 4). We next performed 
a patient-specific rank sum normalization on all 
samples to reduce the impact of patient bias. We 
performed a PERMANOVA on this transformed 
data to test for a significant association between 
location and the beta diversity metrics. However, 
we did not find a significant association 
(Supplementary table 5).

The beta diversity clustering data were supported 
by hierarchical clustering in which the topology of 
the dendrogram was clearly dictated by the subject 
identity rather than biopsy site (Figure 1c). Within 
subjects, there was no reproducible pattern of 
microbiota relatedness with anatomical origin that 
was replicated across subjects (Figure 1c).

Samples were pooled based on biopsy site and 
pairwise analysis was performed for each sample 
pair within the biopsy site. Differential ASV abun-
dance was not detected with respect to anatomical 
site when we applied paired sample Wilcoxon test 
with Benjamini-Hochberg adjustment for multiple 
comparisons (Supplementary table 6). We next uti-
lized DESeq2 which has been demonstrated to be 
sensitive when applied to small sample sizes.33,34 

We identified a number of differentially abundant 
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ASVs between sample-sites while controlling for 
which patient the biopsy originated from (Figure 
2). Notably, a number of ASVs assigned to the oral 
species Fusobacterium nucleatum, were observed to 
be enriched on tumor samples relative to undi-
seased disease (distal normal and proximal nor-
mal). In particular, Seq 31 was identified to be 
enriched in 5/5 proximal tumor biopsies relative 
to a healthy distal biopsy and 4/5 tumor biopsies 
relative to the healthy distal biopsy.

Previous studies have indicated that oral 
microbes can translocate from the oral cavity to 
the gut.35 Furthermore, CRC tumor microbiota is 
enriched with oral taxa.20 For these reasons, the 
buccal swab microbiota composition was analyzed 
and compared to that of the respective subjects’ 
biopsy sites as a function of beta diversity distance 
(Figure 3a, 3b, Supplementary Figure 2S). This 

analysis revealed that the microbiota of all the 
biopsies were equally distant from the oral micro-
biota in all the subjects.

The sequencing depth of the samples allowed for 
a thorough investigation of alpha diversity, that is 
microbial richness and evenness (Supplementary 
table 6, Supplementary Figure 3S). Considering all 
biopsies from each sample sites examined, the dif-
ference in alpha diversity of the biopsy microbiota 
datasets as measured by five different indices was 
significantly greater between any two individuals 
than it was within individuals (Figure 3c, 
Supplementary figure 4S).

Discussion

Many studies have profiled the microbiome in CRC 
using cancer tissue4,14,30,31 from a single biopsy 

−0.25

0.00

0.25

0.50

−0.4 −0.2 0.0 0.2 0.4
PCoA 1(44.45%)

P
C

o
A

 2
(3

1.
82

%
)

Sample site
Distal Normal
Inner Tumour
Outer Tumour 1
Outer tumour_2
Outer Tumour_3
Outer Tumour_4
Proximal Normal

Pateint
GT 001
GT 007
GT 009
GT 010
GT 011

Weighted Unifrac

GT 001 GT 007 GT 009 GT 010 GT 011

G
T

 0
01

 B
1

G
T

 0
01

 B
2

G
T

 0
01

 B
3

G
T

 0
01

 B
4

G
T

 0
01

 B
5

G
T

 0
01

 B
6

G
T

 0
01

 B
7

G
T

 0
07

 B
1

G
T

 0
07

 B
2

G
T

 0
07

 B
3

G
T

 0
07

 B
4

G
T

 0
07

 B
5

G
T

 0
07

 B
6

G
T

 0
07

 B
7

G
T

 0
09

 B
1

G
T

 0
09

 B
2

G
T

 0
09

 B
3

G
T

 0
09

 B
4

G
T

 0
09

 B
5

G
T

 0
09

 B
6

G
T

 0
09

 B
7

G
T

 0
10

 B
1

G
T

 0
10

 B
2

G
T

 0
10

 B
3

G
T

 0
10

 B
4

G
T

 0
10

 B
5

G
T

 0
10

 B
6

G
T

 0
10

 B
7

G
T

 0
11

 B
1

G
T

 0
11

 B
2

G
T

 0
11

 B
3

G
T

 0
11

 B
4

G
T

 0
11

 B
5

G
T

 0
11

 B
6

G
T

 0
11

 B
7

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

R
el

at
iv

e 
ab

un
da

nc
e(

%
)

Genus

Others
Bacteroides
Escherichia/Shigella
Granulicatella

Prevotella
Akkermansia
Parabacteroides
Fusobacterium

Enterobacter
Faecalibacterium
Streptococcus
Alistipes

Blautia
Sutterella
Acidaminococcus
Parasutterella

Megasphaera
Ruminococcus
Phascolarctobacterium
Clostridium_XlVa

a

Kendall correlation with
 ward d2 clustering

b

c

GT 001 B1

GT 001 B2
GT 001 B3
GT 001 B4

GT 001 B5
GT 001 B6
GT 001 B7

GT 007 B1
GT 007 B2

GT 007 B3
GT 007 B4
GT 007 B5

GT 007 B6
GT 007 B7

GT 009 B1

GT 009 B2

GT 009 B3
GT 009 B4

GT 009 B5

GT 009 B6
GT 009 B7

GT 010 B1
GT 010 B2

GT 010 B3

GT 010 B4

GT 010 B5

GT 010 B6
GT 010 B7

GT 011 B1

GT 011 B2

GT 011 B3

GT 011 B4

GT 011 B5

GT 011 B6

GT 011 B7

P-value= 0.001, Rsquared= 0.868

Figure 1. Microbiome relatedness of biopsies within Individuals. (a) Taxonomic bar plot of the proportional relative abundance of 
genera. “Others” is a grouping of genera with less than 1% abundancy across the samples as well as unclassified genera (b) PCoA plot 
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assuming that the microbiome profiled in this sin-
gle specimen was representative of the tumor as 
a whole. This study confirms that this is a valid 
assumption.

Given the macroscopic and microscopic hetero-
geneity of CRC tumors, it may seem surprising that 
the microbiome of an individual tumor is very 
similar throughout the entire tumor tissue, as 
shown in this study. In contrast, significant differ-
ences were noted in the genus level abundance of 
particular taxa in the microbiota sequenced from 
biopsy samples from five individuals in the study. 
These variations are probably due to the differences 
of tumor location (Figure 1) as has been previously 
reported,4,30 as well as to other factors such as 
antibiotic exposure36 and diet,37 which are known 
to alter the baseline microbiome.

Interestingly, as we showed in a previous study,4 

paired samples of un-diseased tissue proximal and 
distal to the tumor harbored the same microbiota 
with respect to dominant taxa and their relative 
abundance. Previous work has demonstrated the 
presence of anaerobic oral bacteria on the color-
ectal tumor mucosa20,31 consistent with the notion 

of a biofilm of pathologic bacteria forming38 and 
seeding on the tumor. In the current study, various 
distance metrics did not show that any particular 
site was closer to the oral microbiome. However, we 
did detect specific oral-associated taxa such as 
Fusobacterium nucleatum and Streptococcus san-
guinis overrepresented on tumor sample sites. 
Indeed, from the growing catalog of microbes asso-
ciated with CRC many of these microbes belong to 
oral-associated taxa including Fusobacterium, 
Porphyromonas, Gemella, Streptococcus and 
Leptotrichia.39 Two routes of translocation of oral 
microbes to the colon have been proposed: 1) 
though the gastrointestinal tract and 2) through 
circulatory system.35,40 Both Fusobacterium nucle-
atum and Streptococcus sanguinis have been 
observed to cause endocarditis, demonstrating the 
potential to travel through the circulatory 
system.41,42 Fusobacterium nucleatum is of particu-
lar note due to the growing body of evidence of its 
mechanistic role in the oncogenesis of CRC.41

There are some limitations to this study. The 
sample size of five patients is small, but tumor 
tissue within each individual was extensively 
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biopsied to capture macroscopically morphologi-
cally different areas such as ulcerated and non- 
ulcerated tissue. Four individuals were treated 
with antibiotics prior to or during the procedure 
as per hospital protocol. Similarly, all patients had 
bowel preparation on the day prior to their surgery 
which is known to alter the microbiome.43 

However, in this study, each individual was taken 
as a separate entity, therefore acting as an internal 
control and comparator and it is assumed that these 
modifiers of the microbiome affected the micro-
biome as a whole.

The global burden of CRC is increasing and this 
disease is a significant contributor to cancer 
deaths1. Prospective trials are ongoing that incor-
porate microbiota analysis with other factors as 
part of the investigative assessment and staging of 
cancer44 and to predict CRC outcomes.45 Through 

demonstration of microbial homogeneity within an 
individual tumor and in the adjacent normal tissue, 
this study helps validate the methodology of sam-
pling tissue going forward for these and other 
indications.

Patients and Methods/Materials and Methods

Patient recruitment

A total of five patients who were scheduled for 
colonic resection for colorectal cancer as part of 
their standard of care at Cork University Hospital 
and Mercy University Hospital, Cork were 
recruited for the study. Patients were labeled as 
GT (Geography of Tumor) 001,007,009,010 and 
011. Recruitment to the study took place from 
February 2019 to June 2019. Ethical approval was 
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granted by the Clinical Research Ethics Committee 
of the Cork Teaching Hospitals (Cork, Ireland). 
The study was conducted in accordance with the 
ethical principles set forth in the current version of 
the Declaration of Helsinki, the International 
Conference on Harmonization E6 Good Clinical 
Practice (ICH-GCP). Exclusion criteria included 
a history of inflammatory bowel disease or irritable 
bowel syndrome, a significant acute or chronic 
coexisting illness and neoadjuvant chemotherapy 
or radiotherapy. All patients received a macrogol 
preparation preoperatively. A single dose of oral 
metronidazole and neomycin were administered 
to two patients preoperatively and two other 
patients received intraoperative intravenous co- 
amoxiclav and metronidazole as per hospital pro-
tocol. The fifth patient took no antibiotics. None of 
the patients had probiotic exposure preoperatively.

A mouth swab was taken from patients in the 
preoperative room prior to anesthesia and snap 
frozen. Immediately after removal from the patient, 
the ex-vivo specimen was anatomically orientated, 
was dissected and the tumor was exposed. 
A representative tissue biopsy from each of the 
four quadrants of the tumor was taken in 
a clockwise manner starting at 12 o’clock. Tissues 
from the central area of the tumor plus two biopsies 
of adjacent macroscopically normal tissue 10 cm 
proximal and distal to the tumor were taken. 
A different set of sterile instruments was used for 
every biopsy taken and for each individual. This 
ensured there was no transfer of bacterial material 
from sample to sample within or between indivi-
duals. Samples were snap frozen in cryotubes and 
transferred immediately for storage at −80 °C.

DNA extraction and 16S RNA amplicon sequencing

Genomic DNA from biopsies was extracted using 
the AllPrep DNA kit from Qiagen. When preparing 
each sample, approximately 20 mg in total of tissue 
was dissected in small fragments from around the 
biopsy and pooled. These pooled fragments were 
then added to a bead beating tube containing sterile 
beads and 600 µl of buffer RLT plus was added. 
Samples were then homogenized for two 15 sec at 
full speed pulses in a MagnaLyzer (Roche, 

Penzberg, Germany) with rests on ice between 
pulses. The rest of the DNA extraction was carried 
out according to the Qiagen AllPrep DNA/RNA 
extraction kit. Oral genomic DNA was extracted 
using Qiagen DNeasy PowerSoil Kit following the 
manufacturer’s instruction.

Library preparation and sequencing

The 16S rRNA gene was amplified using primers 
for the V3-V4 region; forward, TCGTCG 
GCAGCGTCAGATGTGTATAAGAGACAGCC-
TACGGGNGGCWGCAG-3′ and reverse, 5′- 
GTCTCGTGGGCTCGGAGATGTGTATAAGA-
GACAGGACTACHVGGGTATCTAATCC-3ʹ. 
DNA was normalized to a concentration of 10 ng/µl 
and 10 µl DNA was added per 30 µl PCR reaction. 
The PCR thermocycler protocol was as follows: 
Initiation step of 98°C for 3 min followed by 30 
cycles of 98°C for 30 s, 55°C for 60 s, and 72°C for 
20 s, and a final extension step of 72°C for 5 min. 
Indexes were subsequently added to the purified 
amplicons according to Illumina 16S 
Metagenomic Sequencing Protocol (Illumina, CA, 
USA). Libraries DNA concentration was quantified 
using a Qubit fluorometer (Invitrogen) using the 
‘High Sensitivity’ assay and samples were pooled at 
a standardized concentration (80 ng of each sam-
ple). The pooled library was sequenced at Eurofins 
Genomics/GATC Biotech (Konstanz, Germany) on 
the Illumina MiSeq platform using 2 × 300 bp 
chemistry. All the samples in this study were pre-
pared in the same library and sequenced together.

Bioinformatics analyses

Raw data was imported into R v3.5.3 for processing 
and analysis. Paired reads were quality filtered, 
trimmed, merged and Amplicon Sequence 
Variants (ASV) inferred using the R package 
dada2 v1.12.1. The following parameters were 
used for the filterAndTrim function; filtRs, 
trimLeft = c(19,21),maxEE = c(2,2), truncLen = c 
(260,230). Taxonomic classification was performed 
using the RDP naive Bayesian Classifier within the 
dada2 against the Silva v132 database. Alpha diver-
sity was calculated from the ASV table using 
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QIIME v1.9.1 as previously described in Kuczynski 
et al.46 Samples were rarefied to 7000 reads in order 
to calculate alpha-diversity. QIIME v1.9.1 and the 
R package vegan v2.5.6 were used to infer β- 
diversity metrics.47 β-diversity was visualized via 
principal coordinates analysis (PCoA) plots whose 
coordinates were identified using the Ape package 
v5.1. The adonis() function within the R package 
vegan (v2.4–2) was used to perform permutational 
multivariate analysis of variance (PERMANOVA) 
difference in paired biopsy-buccal distance was 
assessed using paired Wilcoxon test. DESeq2 
(v1.28.1) was used to identify differentially abun-
dant taxa from the microbiota dataset.33 

Differences between inter- and intra-alpha diversity 
were tested using Wilcoxon signed-rank test.

Contamination control

We first carried out mock extractions to detect 
reagent-associated contamination from the two 
kits used in this study (Supplementary figure 5S). 
Further, we also carried out PCR controls, i.e., 
water, to detect contamination specific to the poly-
merase (Supplementary figure 5S). These negative 
controls underwent 5–10 additional PCR cycles 
relative to biological specimens to capture low 
levels of bacterial template. We utilized both the 
frequency and prevalence method within the 
R package decontam (v1.8.0) to identify contami-
nating ASVs.48 Using the “frequency” method, 
isContaminant(phyloseq_object, method = “fre-
quency”, conc = “qubit”,threshold = 0.05), two 
ASVs were identified (Supplementary figure 6S). 
However, these ASVs were present at a very low 
abundance and only present in two samples. 
Furthermore, these ASVs were assigned to 
Clostridiales and Burkholderiales which are 
known gut taxa and not indicative of contamina-
tion (Supplementary table 7). Using the “preva-
lence” method, isContaminant(phyloseq_object, 
method = “prevalence”, neg = “is.neg”,thresh-
old = 0.05), we identified seven contaminating 
ASVs (Supplementary table 8). However, these 
ASVs were only identified in three of our samples 
and only contributed between 2–6 reads to the 
samples. Thus, we treated them negligibly.
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