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Abstract: Memory complaints are frequently reported by patients with epilepsy and are associated
with seizure occurrence. Yet, the direct effects of seizures on memory retention are difficult to assess
given their unpredictability. Furthermore, previous investigations have predominantly assessed
declarative memory. This study evaluated within-subject effects of seizure occurrence on retention
and consolidation of a procedural motor sequence learning task in patients with epilepsy undergoing
continuous monitoring for five consecutive days. Of the total sample of patients considered for
analyses (N = 53, Mage = 32.92 ± 13.80 y, range = 18–66 y; 43% male), 15 patients experienced seizures
and were used for within-patient analyses. Within-patient contrasts showed general improvements
over seizure-free (day + night) and seizure-affected retention periods. Yet, exploratory within-subject
contrasts for patients diagnosed with temporal lobe epilepsy (n = 10) showed that only seizure-free
retention periods resulted in significant improvements, as no performance changes were observed
following seizure-affected retention. These results indicate general performance improvements and
offline consolidation of procedural memory during the day and night. Furthermore, these results
suggest the relevance of healthy temporal lobe functioning for successful consolidation of procedural
information, as well as the importance of seizure control for effective retention and consolidation of
procedural memory.

Keywords: epilepsy; motor learning; offline consolidation

1. Introduction

Problems with memory retention are frequently observed in and reported by patients
with epilepsy [1,2], and can considerably affect their overall quality of life [3,4]. Despite the
observation that initial assessment of memory performance following learning sometimes
shows no differences between patients with epilepsy and healthy participants, long-term
memory retention (that is, over hours or days) is often much worse for patients for both
semantic and visual material [5–8]. This long-term forgetting is frequently observed
in patients with temporal lobe epilepsy [9,10] and considered more likely to affect the
retention of declarative, hippocampus-dependent memory modalities (that is, semantic and
episodic memory modalities) compared to procedural memory, which can be considered
to be more hippocampus independent [11–13]. Yet, recent studies have shown that the
consolidation of procedural motor sequence tasks also involves the hippocampus as well
as the striatum [14,15] (for a review on procedural memory consolidation, see [16,17]).
Furthermore, Schapiro and colleagues have shown that the hippocampus is crucial for the
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consolidation of a newly learned task without it being involved in the initial acquisition [18].
They evaluated memory performance for a motor sequence task in both hippocampal
amnesic patients and matched controls. While performance during the learning session was
similar between patients and controls, they found that offline consolidation after a period of
sleep resulted in improved performance during memory recall for the control participants
only, as no significant performance changes were observed for the patient group. The
authors argue that the sequence aspect of the procedural task can be consolidated by the
hippocampus, thus resulting in performance improvements in healthy controls [16,19].
Crucially, such hippocampal functioning is limited or lacking in amnesic patients diagnosed
with hippocampal damage, which would explain the lack of a performance gain as observed
in healthy controls.

Considering the importance of hippocampal functioning for memory consolida-
tion [20,21], any electrophysiological interference can be detrimental for memory retention
and performance [22,23]. With the medial temporal lobe being a predilection site for
epilepsy, the potential for such interference with hippocampal functioning is high. Conse-
quently, it is believed that electrophysiological interference of hippocampal functioning in
the form of epileptiform activity can be detrimental for memory consolidation processes;
therefore leading to worsened performance in this patient population [24,25]. In support of
this theory, memory retention has been negatively associated with the occurrence of epilep-
tiform activity (i.e., seizures and epileptic discharges), as their onset following learning
resulted in poorer retention and recollection of declarative information [5,6,26–29]. The
question is whether seizure occurrence has a similar detrimental effect on the retention and
consolidation of procedural memory.

Although the effects of epileptiform activity on declarative memory performance are
frequently studied in patients with epilepsy (for example, [5–8,26,30,31]), the effects on
procedural memory performance are relatively understudied in this patient population.
One of the few studies that investigated procedural memory performance in this patient
population was conducted by Long and colleagues, who contrasted performance on a mo-
tor sequence learning task between patients with epilepsy and healthy adults [32]. Results
showed that, although baseline performance was similar between patients and controls,
performance improvements from learning to recall were stronger for the healthy controls
as compared to the patients. This contrast in performance improvements between patients
and healthy controls is similar to results observed in hippocampal amnesic patients [18].
Unfortunately, this study did not directly look at the relation between seizure occurrence
and memory retention. Importantly, these results indicate that it is not the initial acquisi-
tion of motor sequence tasks that is affected in these patient populations, but rather the
subsequent consolidation processes that involve the medial temporal lobe structures and
specifically the hippocampus.

Taken together, these findings illustrate the detrimental effects of epileptiform activity
on memory consolidation as well as the relevance of healthy hippocampal functioning
for both declarative and procedural memory consolidation. Furthermore, these results
suggest that epileptiform activity may negatively affect hippocampal functioning related
to memory consolidation of procedural motor sequence learning; potentially preventing
any offline performance gains as seen in healthy participants. Yet, a direct link between
procedural memory performance changes and epileptiform activity is lacking from the
current literature.

The ability to directly study the effects of a seizure on memory retention in an ex-
perimental setting is challenging considering the unpredictability of a seizure occurrence.
Consequently, many studies evaluated memory retention following learning after a short
(30 min) and long-term (12 h, 24 h, 72 h, or 7 days) retention period, and conducted
between-patient contrasts based on the presence or absence of seizures during the retention
period. Yet, the within-patient contrasts are of highest interest to study the effects of
seizures on memory retention and performance, as the high between-subject variability
can be problematic confounds for between-subject analyses (for example, age, epilepsy
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type, hippocampal atrophy, age of epilepsy onset, as well as the type, number, and dosage
of antiepileptic medication).

The current study aimed to make within-subject evaluations of the effects of seizure
occurrence on memory retention and performance changes. Specifically, within-subject
contrasts were conducted to determine the effect of seizure occurrence during the retention
period separating learning and recall on procedural memory performance. We hypothe-
sized that memory retention and performance changes for procedural memory would be
negatively affected by seizure-affected retention periods, whereas offline gains in perfor-
mance from learning to recall were expected in seizure-free retention periods as observed
in healthy participants.

2. Materials and Methods
2.1. Patients

A total of 106 consecutive patients were recruited for this study; all of whom under-
went continuous monitoring for five consecutive days (Monday-Friday) for diagnostic
purposes in the Epilepsy Monitoring Unit (EMU) of the Department of Neurology, Chris-
tian Doppler Medical Center, Salzburg, Austria. Patients were excluded from further
analyses based on pilot participation (n = 21), lack of a clear epilepsy diagnosis (n = 17),
left-hand preference (n = 7), or incomplete behavioral data (n = 1). To ensure that our
analyses were not influenced by either incomprehension or an inability to perform our
procedural memory task, sessions were excluded when no clear learning performance was
observed at the end of each learning session (accuracy ≤ 50% or speed ≤ 5), which led to
the exclusion of 7 patients. The final sample consisted of 53 right-handed patients who
were diagnosed with epilepsy by specialized neurologists.

2.2. Study Protocol

Patients arrived at the EMU on Monday morning, after which they were fully briefed
on the study, provided written informed consent, and were screened for depression and
chronotype (see Supplementary Materials for additional screening details). The study
protocol started on Monday evening and lasted until Thursday evening, with sessions
taking place during the morning (07:00–09:00) and evening (18:00–20:00); therefore there
were seven sessions in total (Figure 1). The current study was part of a larger investi-
gation that aimed to evaluate the effect of seizures on the consolidation of procedural,
semantic, and episodic memory. Therefore patients were trained and evaluated on (1)
procedural memory, (2) verbal memory, and (3) visuospatial memory for each session (for
details on visuospatial memory, see [33,34]). Learning performance for the procedural
memory task was determined at the end of the learning session (average of last three trials),
whereas learning performance on verbal and visuospatial memory was evaluated through
immediate recall. Delayed recall performance was evaluated for all tasks at the start of
the subsequent session, after which patients were once again trained and evaluated on a
new version for each task (for details see Supplementary Figure S1). This paradigm was
repeated until the last session, during which patients only had to recall the information
acquired during the previous session. The study protocol was approved by the Ethics
Commission Salzburg (E/1755).

2.3. Instruments
2.3.1. Epilepsy Monitoring

The EMU consists of four beds that are situated in one room for simultaneous ob-
servation of four patients through video and electroencephalography recordings (EEG;
Micromed Brain-Quick System). Continuous 24 h monitoring was conducted by medical
staff situated in an adjacent room. Daily rhythm was roughly standardized for all patients,
with specific time ranges for lights on (06:30–07:00), breakfast (07:00–07:30), lunch (11:30),
dinner (16:30), and lights off (22:00–00:00).
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2.3.2. Procedural Memory-Motor Sequence Learning Task

Patients were trained and evaluated on procedural memory performance using a
fingertapping task [35] (Figure 2). Patients were instructed to continuously type a specific
five-element sequence made of four numbers (sequences used: 1–4–2–3–1, 4–1–3–2–4, 3–2–
1–4–3, 2–1–3–4–2, 1–2–4–3–1, and 4–3–1–2–4) as quickly and accurately as possible with
their non-dominant left hand. Four keyboard keys were assigned to the four numbers that
had to be typed using index-to-little fingers, respectively. Both learning and recall sessions
always displayed the desired sequence in the center of the screen and did not provide
feedback regarding performance. Each trial lasted 30 sec during which the patient was
encouraged to repeatedly type the sequence as quickly and accurately as possible. Trials
were separated by an inter-trial interval (ITI) of 30 sec. The learning sessions consisted of
12 trials whereas recall sessions consisted of 4 trials. Performance was evaluated based on
speed (number of completed sequences per trial), triplets (number of correct 3-element
inputs belonging to the desired sequence (i.e., for sequence 1–4–2–3–1, triplets are 1–4–
2, 4–2–3, 2–3–1, 3–1–1, and 1–1–4), and accuracy (percentage of elements belonging to
correct sequences relative to total keystrokes per trial). For analyses, learning and recall
performances were determined by averaging the last three trials of their respective session.
Performance changes (recall-learning) were calculated for each performance measure.

2.4. Analyses

Seizures were identified, marked, and classified as “tonic-clonic” seizures or “other”
by trained medical staff. Behavioral data were processed using Matlab v9.5 (R2018b; Natick,
MA, USA) and R v3.5.1. Statistical comparisons were conducted using IBM SPSS Statistics
v22 (Armonk, NY, USA) and R v3.5.1. Potential confounding factors such as age, time of
day, task difficulty, and day within the paradigm were initially investigated. Behavioral
performance was contrasted based on the type of retention interval (daytime vs. nighttime)
and the occurrence of seizures during retention. Note that nights during which sleep depri-
vation was applied were excluded from analyses. Within-patient contrasts were conducted
for subsamples extracted from the final sample of patients (N = 53) depending on the con-
trasts in question (that is, seizure-free versus seizure-affected retention periods; seizure-free
daytime versus nighttime retention periods). Behavioral performance was averaged per
patient for learning and recall sessions respective to their retention period. Main and in-
teraction effects were investigated using 2 × 2 (TIME × CONDITION) repeated-measures
analyses of variance (ANOVAs) using the “RM” function from the “MANOVA.RM” pack-
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age [36] using 10,000 iterations by the parametric bootstrap approach. This approach
is recommended considering we conducted both within- and between-subjects design
characterized by low as well as unequal sample sizes, respectively. Within-patient contrasts
were conducted using Wilcoxon signed rank tests that were corrected for multiple com-
parisons using the Bonferroni-Holm procedure for the number of tests conducted. Effect
size estimates and 95% confidence intervals (CI) were calculated in R using the “effsize”
package [37]. Results reported mean ± standard deviation unless otherwise specified.
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Figure 2. Visualization of the procedural memory task. (A) Participants used their non-dominant
left hand to type the desired sequence. Each finger was assigned to a specific keyboard key that
represented a number of the desired sequence. (B) Participants were shown a specific 5-element
sequence on a screen and were instructed to type the desired sequence as frequently and accurately
as possible for each trial (30 s) over the course of 12 trials; each trial was separated by an inter-trial
interval (ITI) of 30 s. Subsequent delayed recall consisted of only four trials.

3. Results
3.1. Patient Demographics and Baseline Descriptive

The final sample consisted of 53 right-handed patients (Mage = 32.92 ± 13.80 y, range
= 18–66 y; 43% male). Of these 53 patients, 17 patients (32%) experienced one or more
seizures during monitoring (daytime seizures only, n = 6; nighttime seizures only, n = 7;
daytime and nighttime seizures, n = 4). Patients’ descriptive information is displayed in
Table 1. Further patient details regarding epilepsy diagnosis, localization, lateralization,
and medication are reported in Supplementary Table S1.

3.2. Confounding Factors

Potential confounding factors such as age, task difficulty, learning effect, and circadian
effects were evaluated. As the main focus of this study lies on the relative change in perfor-
mance from learning to delayed recall conditions within patients, and therefore does not
specifically account for these factors (for a more detailed discussion, see Supplementary Ma-
terials). Patients’ medication usage was tailored to individual requirements and therefore
varied strongly (see Supplementary Table S1). To increase the occurrence of epileptiform
activity during the monitoring, medication was tapered in 60% of patients. Tapering was
implemented based on the individual patient history and consequently varied between
patients. Analyses therefore did not take medication or its dosage into account.
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Table 1. Descriptive information on demographic and epilepsy.

Demographics

Age (M ± SD) 32.92 ± 13.80
Gender (M/F) 23/30

Epilepsy characteristics

Epilepsy Type
Focal 43
Generalized 10
Location
Frontal 8
Temporal 14
Occipital 2
Bifrontal 2
Fronto-central 1
Fronto-temporal 5
Fronto-centro-parietal 1
Temporo-mesial 3
Parieto-occipital 1
Unclear 16
Lateralization
Left 20
Right 12
Bilateral 8
Unclear 13

3.3. Seizure Occurrence

A subset of patients (n = 17) experienced one or more seizures during their stay in
the EMU. Of these, behavioral data for both seizure-free and seizure-affected retention
periods were available from 15 patients for within-subject analyses. Retention periods
were classified based on the presence or absence of seizures (seizure-free daytime reten-
tion (nsessions = 219, n = 52); seizure-free nighttime retention (nsessions=215, n=53); seizure-
affected daytime retention (nsessions = 12, n = 10); and seizure-affected nighttime retention
(nsessions = 16, n = 11)).

3.4. Behavioral Within-Subject Contrasts
3.4.1. Seizure-Free vs. Seizure-Affected Retention Periods

Within-patient contrasts were conducted to compare retention periods with and
without seizures (n = 15). Performance for each category of retention period (that is,
with or without seizures) was averaged per patient for learning and recall sessions. We
conducted separate 2 × 2 repeated-measures ANOVAs (TIME × CONDITION) to evaluate
performance changes for speed, triplets, and accuracy. Results showed a main effect of
time for speed (F1,14 = 4.844, p = 0.042, η2

G = 0.017), whereas no main effect of condition
(F1,14 = 2.493, p = 0.134), nor an interaction effect was observed (F1,14 = 0.302, p = 0.593).
Similarly, triplets showed a main effect of time (F1,14 = 5.743, p = 0.029, η2

G = 0.017) and
a nonsignificant trending main effect of condition (F1,14 = 3.187, p = 0.092), whereas no
interaction effect was observed (F1,14 = 0.613, p = 0.441). For accuracy, no main effects nor
an interaction effect were observed (all p ≥ 0.646). Additional direct contrasts are reported
(Table 2). Both learning and recall performance scores were similar when retention periods
with and without seizures were compared. When investigating performance changes from
learning to recall, retention periods without seizures resulted in a significant performance
improvement for speed (d = −0.951, 95% CI (−1.740, −0.162]) and a trending improvement
for triplets (d = −0.954, 95% CI (−1.743, −0.165)). In contrast, no changes were observed
for any performance measure following retention periods with seizures. Crucially, fatigue
did not differ within the seizure-free condition between learning (3.61 ± 1.77) and recall
sessions (3.68 ± 1.53; Z = −0.746, p = 0.46), nor within the seizure-affected condition
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between learning (4.45 ± 2.27) and recall sessions (4.33 ± 2.16; Z = −0.140, p = 0.89),
nor were there any differences in fatigue between the seizure-free and seizure-affected
conditions during learning (Z = −1.399, p = 0.16) and recall (Z = −1.190, p = 0.23).

Table 2. Within-patient performance changes evaluated for retention periods based on the absence
or presence of seizures (n = 15).

Learning Recall

Speed M ± SD M ± SD Z p

Seizure-free
retention 14.61 ± 5.14 16.10 ± 5.43 −2.897 0.048 *

Seizure-
affected

retention
15.65 ± 3.84 16.66 ± 5.29 −0.816 1.000

Z −1.619 −1.108
p 0.954 1.000

Triplets

Seizure-free
retention 76.66 ± 27.38 84.78 ± 28.17 −2.811 0.055 +

Seizure-
affected

retention
82.42 ± 20.36 87.48 ± 26.36 −0.909 1.000

Z −1.675 −1.221
p 0.940 1.000

Accuracy

Seizure-free
retention 88.21 ± 7.14 87.16 ± 6.56 −0.426 1.000

Seizure-
affected

retention
87.35 ± 6.28 87.44 ± 5.22 −0.085 1.000

Z −0.628 −0.199
p 1.000 1.000

Note: p-values were corrected for multiple comparisons using the Bonferroni–Holm procedure (for all comparisons
(n = 12)). + p < 0.100; * p < 0.050.

3.4.2. Seizure-Free Day vs. Seizure-Free Night

Retention periods of days and nights without seizures were contrasted within patients
(n = 42). Performance for each category of retention period (that is, daytime or nighttime)
was averaged per patient for learning and recall sessions. We again conducted separate 2
× 2 repeated-measures ANOVAs (TIME × CONDITION) for speed, triplets, and accuracy.
For speed, we found a main effect of time (F1,41 = 9.677, p = 0.003, η2

G = 0.007) and a
nonsignificant trend of condition (F1,41 = 3.490, p = 0.066, η2

G = 0.003), whereas no significant
interaction was observed (F1,41 = 0.009, p = 0.928). Similarly, triplets showed a main effect
of time (F1,41 = 14.520, p < 0.001, η2

G = 0.01), whereas no effect of condition (F1,41 = 2.587,
p = 0.118) nor an interaction effect was observed (F1,41 = 0.007, p = 0.931). Finally, no
main nor interaction effects were observed for accuracy (all p ≥ 0.280). Additional direct
contrasts are reported (Table 3; Figure 4). Contrasting performance for each condition
showed no difference between seizure-free daytime and nighttime retention periods for
any performance measure. When investigating specific performance changes from learning
to recall, seizure-free days showed a trend towards improved performance for triplets
(d = −0.469, 95% CI (−0.910, -0.029)), whereas seizure-free nights showed improvements
in performance that were significant for triplets (d = −0.453, 95% CI (−0.892, −0.013))
and trending for speed (d = −0.344, 95% CI (−0.781, 0.094)). Importantly, contrasting
performance changes from learning to recall between seizure-free days versus seizure-free
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nights showed no significant differences. Also, self-reported indications of fatigue did
not differ within the seizure-free day condition between learning (3.52 ± 2.28) and recall
sessions (3.40 ± 1.80; Z = −0.083, p = 0.93), while the seizure-free night condition showed a
trend towards slightly lower fatigue for learning in the evening (3.17 ± 1.67) compared to
recall the subsequent morning (3.74 ± 2.14; Z = −1.919, p = 0.06). Crucially, no differences
in fatigue was observed between the seizure-free day and night conditions during learning
(Z = −1.057, p = 0.29) and recall (Z = −0.747, p = 0.46).

Table 3. Within-patient performance changes evaluated for retention periods that included
Scheme 42.

Learning Recall

Speed M ± SD M ± SD Z p

Seizure-free
retention 13.18 ± 4.77 14.03 ± 5.50 −2.093 0.324

Seizure-
affected

retention
13.77 ± 4.55 14.58 ± 5.67 −2.732 0.066 +

Z −1.663 −1.309
p 0.672 0.905

Triplets

Seizure-free
retention 69.35 ± 24.10 74.53 ± 28.20 −2.651 0.080 +

Seizure-
affected

retention
71.75 ± 23.23 76.75 ± 28.03 −3.282 0.012 *

Z −1.200 −1.575
p 0.905 0.690

Accuracy

Seizure-free
retention 85.47 ± 7.96 84.42 ± 9.95 −0.313 1.000

Seizure-
affected

retention
86.86 ± 8.12 85.50 ± 11.77 −0.025 1.000

Z −1.901 −1.338
p 0.456 0.905

Note: p-values were corrected for multiple comparisons using the Bonferroni–Holm procedure (for all comparisons
(n = 12)). For visualization of the data, see Figure 3. + p < 0.100; * p < 0.050.

3.5. Exploratory Within-Subject Contrasts in Patients with Temporal Lobe Epilepsy

Considering that patients with temporal lobe epilepsy showed significantly worse
long-term memory retention [9,10] as well as lower performance changes on procedural
memory as compared to healthy controls [32], we conducted an exploratory within-subjects
contrast specifically for those patients who experienced seizures during the paradigm and
were diagnosed with epilepsy originating from the temporal lobe (n = 10; see Supple-
mentary Table S1). As with the previous contrasts, we found main effects of time for the
speed (F1,9 = 5.448, p = 0.020, η2

G = 0.010) and triplets (F1,9 = 6.156, p = 0.013, η2
G = 0.010)

variables, whereas no main effects were observed of condition (all p ≥ 0.368). Yet, we
observed significant interaction effects (TIME × CONDITION) for speed (F1,9 = 8.017,
p = 0.021, η2

G = 0.007) as well as triplets (F1,9 = 9.772, p = 0.015, η2
G = 0.006) (Figure 3). Post

hoc tests revealed that the seizure-free retention periods resulted in higher improvements
of performance for speed (1.937 ± 1.238; p = 0.020) and triplets (9.855 ± 7.653; p = 0.012)
as compared to the seizure-affected retention periods (0.178 ± 2.122 and 1.141 ± 8.859,



Brain Sci. 2021, 11, 261 9 of 13

respectively). No significant main or interaction effects were observed for accuracy (all
p ≥ 0.495).
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bars have been corrected to represent within-subject variability. Contrasting performance between learning and recall
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no changes were observed for (C) accuracy. Importantly, the performance changes from learning to recall were similar for
seizure-free days and nights for speed, triplets, and accuracy. + p < 0.100; * p < 0.050.

3.6. Between-Subjects Contrasts

We conducted additional 2 × 2 repeated-measures ANOVAs (TIME × GROUP),
contrasting patients who experienced seizures (n = 15) with those who did not (n=36). Note
that we again contrasted average patient performance between groups on sessions that did
not involve the occurrence of a seizure. As with the within-subjects contrasts, we found
main effects of time for the variables speed (F1,49 = 15.456, p < 0.001, η2

G = 0.006) and triplets
(F1,49 = 17.984, p < 0.001, η2

G = 0.008), whereas no main effect of group nor any interaction
effects were observed (all p ≥ 0.091).
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4. Discussion
4.1. General Discussion

This study investigated the direct effects of seizures on procedural memory perfor-
mance in patients with epilepsy. Our results showed that patients were able to significantly
improve their performance on a procedural motor sequence learning task despite the lack
of additional training. Importantly, no within-subject differences were observed in perfor-
mance improvements depending on whether patients experienced a seizure or not during
the retention period separating learning and recall (n = 15). However, an exploratory
within-subject contrast specifically for patients diagnosed with temporal lobe epilepsy
(n = 10) showed that performance improvements were significantly better after a seizure-
free retention period as compared to a seizure-affected retention period. Furthermore, we
observed no differences between performance changes following a period of daytime wake-
fulness or nighttime sleep; suggesting that the acquired information can be consolidated
during both retention periods, thus resulting in performance improvements during recall.

The lack of a general effect of seizure occurrence on procedural memory performance
is striking given the results of prior studies on the negative effects of epileptiform activity
on declarative memory consolidation [5,29,38]. Yet, the exploratory within-subject contrast,
which was specific for patients diagnosed with temporal lobe epilepsy, did illustrate the
negative effects of seizure occurrence on procedural memory performance by preventing of-
fline performance improvements. Specifically, the lack of procedural performance changes
following a seizure is a result directly in line with previous findings [18,32] and suggests
the importance of healthy temporal lobe functioning for procedural memory consolidation.
Importantly, it should be noted that none of the within-patient contrasts showed a main
effect of condition. In other words, these results do not support the statement that seizure
occurrence is detrimental for procedural memory performance, but rather illustrate how
seizure occurrence following learning can be detrimental for potential performance gains
through offline consolidation during the subsequent retention period. Yet, we must stress
the exploratory nature of this within-subject contrast as well as the low sample size and
associated effect sizes. The within-patient contrast on seizure-free retention periods during
the day and night suggests that offline improvements in procedural memory consolidation
can occur during both time points, whereas previous studies specifically emphasize the
importance of nighttime sleep for procedural memory consolidation, as demonstrated in
healthy participants [16] and patients with epilepsy [39,40]. Importantly, some patients
reported taking daytime naps in the afternoon as a result of their restricted mobility within
the EMU (that is, bed restricted and limited in their actions and movements). Thus, it is
possible that this daytime improvement is a result of sleep during the daytime retention
period, but could also be a simple lack of daytime distractions inherent to the restricted
mobility within the EMU. Although a direct within-patient contrast between daytime wake
and daytime nap retention periods had insufficient power to draw statistical conclusions,
the benefit of a daytime nap for the consolidation of procedural motor sequence learning
has been established for healthy participants [16,41,42], and may be a way to foster memory
consolidation in patients with epilepsy to ameliorate memory problems [5], thus aiming to
improve their overall quality of life [3,4].

4.2. Limitations

Despite the use of an elaborate paradigm to evaluate the effects of seizures on pro-
cedural memory consolidation, the current study must acknowledge several limitations.
First and foremost, we acknowledge the limits of the low sample size, which is a direct
result of the unpredictability of seizure occurrence. Second, although the EMU offers the
opportunity to conduct a long-term study in patients with epilepsy, it is not the ideal experi-
mental environment (for example, noise and interference from other patients, medical staff,
and hospital activities). Third, while the occurrence of seizures was promoted through
tapering of medication, this was not implemented for all patients. Furthermore, tapering
of medication could potentially have affected cognitive performance [43]. In addition, the
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specific (combination of) medication and its dosage varied between patients and could
not be controlled or standardized. Fourth, the negative effect of interictal epileptiform
discharges (IEDs) was not investigated in the current study, but is a topic of high relevance
in the context of memory retention and cognitive performance [44,45]. Fifth, post-ictal
fatigue frequently resulted in the (temporary) withdrawal from the study, leading to a
loss of data and a relatively low number of samples that could be used for within-subject
analyses. This also forced us to omit any further investigations that differentiated between
patients based on their seizure type. Sixth, the three memory tasks might potentially
have interfered with each other [46]. For this reason the tasks were kept in a consistent
non-randomized order for all patients. Seventh and last, a detailed study on the interplay
between epilepsy, memory consolidation, and sleep is of high relevance [24,25]. Specifically,
previous research has indicated that epileptiform discharges may result in an alteration of
both sleep architecture [47–49] and sleep microstructures [22,24,50], which is likely to un-
derlie some of the memory problems in patients with epilepsy [24,25,51,52]. Unfortunately,
such a direct within-patient contrast was not possible given the low number of patients
who experienced seizures during the night (n = 11). Despite these limitations, we would
like to stress that this study, through its continuous 5-day recording time, had the unique
opportunity to evaluate performance changes on procedural memory following a seizure.

5. Conclusions

Our study shows that procedural memory performance generally improved following
daytime and nighttime retention periods, as well as following retention periods that
were seizure-free or seizure-affected. Yet, specific contrasts for patients diagnosed with
temporal lobe epilepsy showed that improvements for procedural memory performance
only occurred during seizure-free retention periods, whereas no performance changes were
observed following seizure-affected retention periods. These findings suggest the relevance
of healthy temporal lobe functioning for the consolidation of procedural information. These
results contribute to previous observations on the negative effect of seizures on memory
retention and stress the relevance of seizure control for the benefit of memory retention in
patients with epilepsy.
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