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ABSTRACT

In genomic fine-mapping studies, some approaches
leverage annotation data to prioritize likely func-
tional polymorphisms. However, existing annotation
resources can present challenges as many lack in-
formation for novel variants and/or may be uninfor-
mative for non-coding regions. We propose a novel
annotation source, sequence-dependent DNA topol-
ogy, as a prioritization metric for fine-mapping. DNA
topology and function are well-intertwined, and as
an intrinsic DNA property, it is readily applicable
to any genomic region. Here, we constructed and
applied Minor Groove Width (MGW) as a prioritiza-
tion metric. Using an established MGW-prediction
method, we generated a MGW census for 199 038
197 SNPs across the human genome. Summarizing
a SNP’s change in MGW (�MGW) as a Euclidean dis-
tance, �MGW exhibited a strongly right-skewed dis-
tribution, highlighting the infrequency of SNPs that
generate dissimilar shape profiles. We hypothesized
that phenotypically-associated SNPs can be priori-
tized by �MGW. We tested this hypothesis in 116
regions analyzed by a Massively Parallel Reporter
Assay and observed enrichment of large �MGW for
functional polymorphisms (P = 0.0007). To illustrate
application in fine-mapping studies, we applied our
MGW-prioritization approach to three non-coding re-
gions associated with systemic lupus erythemato-
sus. Together, this study presents the first usage of
sequence-dependent DNA topology as a prioritiza-
tion metric in genomic association studies.

GRAPHICAL ABSTRACT

INTRODUCTION

Genetic association studies have successfully identified
thousands of loci associated with a broad range of pheno-
types (1). However, despite the abundance of these genomic
associations, analytic challenges have largely hindered iden-
tification of the specific genomic drivers of disease (2–4).
First, linkage disequilibrium (LD) constitutes a major an-
alytic challenge, as highly correlated variants exhibit com-
parable evidence of association, making it difficult to sta-
tistically isolate causal polymorphisms. Second, many as-
sociated single nucleotide polymorphisms (SNPs) reside in
non-coding regions, occluding functional relevance without
additional context and information. Even with increased
sample sizes and variant coverage, these challenges remain
(2–5). In-depth functional analyses are not practical for a
large number of variants, and thus, there remains the need
to effectively prioritize the most likely causal variants for
follow-up studies and approaches (e.g. CRISPR).

To prioritize potential causal variants, association results
can be weighted by functional information (e.g. histone
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Figure 1. Single nucleotide substitutions in a sequence can impose large or
small changes on local DNA shape, dependent on the flanking sequence.
(A) A single A/C substitution within a sequence generates minimal spatial
differences. (B) A single A/C substitution within a sequence imposes large
spatial differences.

modifications, CHIP-seq) from publicly available resources
(5–8). This approach has been successful in reducing and
refining associated variants, and there are a growing num-
ber of tools and methods that integrate functional data with
genomic association studies (6,9–13). Importantly, in these
methods, the choice of annotation and potential database
bias are strong factors for consideration as missing or in-
complete functional data could result in down-weighting
causal polymorphisms that are absent from the resource.
These challenges particularly arise for regions and variants
that are previously unstudied and/or have unknown func-
tional implications. Additionally, many publicly available
annotation resources are based primarily on European data
and may offer limited information for genetic studies in
non-European ancestries (e.g. novel regions) (14,15). Such
limitations can reduce the rate of progress in understand-
ing the functional impact of ancestry-specific associations
and perpetuate health disparities (16,17). To alleviate some
of these biases imposed by external datasets, we propose a
prioritization approach that leverages information intrinsic
to the DNA itself, sequence-dependent DNA topology.

From chromatin conformation to selective protein bind-
ing (18–26), DNA is a highly dynamic macromolecule
with structure inherently linked to function. Sequence-
dependent DNA topology (or shape) refers to the geomet-
ric parameters (measured in Angstroms or degrees) between
successive nucleotides in a DNA sequence (24,27–29). The
sequence dependency of these spatial measures (Figure 1)
has been well-studied and in recent years, increasingly con-
nected to various functional implications including protein
binding, DNA stability, and methylation (18,20,21,23,30–
38). High-throughput DNA shape prediction methods now

enable exploration of DNA topology on a genome-wide
scale, and thus, provide new opportunities in association
studies (24,39).

This study presents using sequence-dependent DNA
topology as a prioritization metric in genomic association
studies. Here, we focused on minor groove width (MGW),
which measures the distance (angstroms, Å) between the
sugar phosphate backbone of the forward and reverse
strands. For each SNP, we analyzed its change in minor
groove width (�MGW) to evaluate whether the SNP’s al-
leles created similar or divergent MGW profiles. MGW
has been implicated in numerous protein binding studies
and used in transcription factor binding prediction algo-
rithms (18,20,24,32,34,36,37,40,41). Recently it was stud-
ied in the context of purifying selection, where ‘shape dis-
rupting variants’ (examples in Figures 1 and 2) tend to be
less common in functional regions (shape-preserving poly-
morphisms being more frequent) (42). Thus, we proposed
that if a phenotypically-associated SNP also yields a large
�MGW, it is more likely to be causal as a function of diver-
gent shape profiles.

We specifically hypothesized that highly correlated SNPs
in a phenotype-associated region can be functionally pri-
oritized using each SNP’s magnitude of �MGW. We eval-
uated this hypothesis in four stages. First, using an estab-
lished MGW-prediction algorithm (39), we generated the
complete sample space for �MGW for all possible input
sequences. Second, we evaluated the observed frequency of
�MGW across the human genome using bi-allelic SNPs
in the dbSNP SNP150 dataset. Third, while large devia-
tions in �MGW could impact several functional mecha-
nisms, we explored patterns between �MGW and allele-
specific activity through a previously published Massively
Parallel Reporter Assay (MPRA) (43). Finally, to illustrate
our method, we applied �MGW-prioritization (through
both frequentist and Bayesian approaches) in three genomic
regions previously associated with systemic lupus erythe-
matosus (SLE) (44). For each region, we aimed to reduce the
number of potentially functional variants amidst the previ-
ously identified LD block of association (44). Together, this
manuscript provides a detailed description, summary, and
application of an intrinsic DNA property to enhance fine-
mapping studies.

MATERIALS AND METHODS

Calculation of �MGW for a bi-allelic SNP

The predicted MGW for a given sequence was obtained
using the DNAshapeR package (https://bioconductor.org/
packages/release/bioc/html/DNAshapeR.html), available
through Bioconductor (39). DNAshapeR calculates DNA
features using Monte Carlo simulations for nucleotide
structure based on DNA sequence fragments. DNA fea-
ture predictions are based on a rolling window of five
nucleotides for a given n-length sequence. For this study, to
capture the MGW at a SNP, we used the four flanking (up
and downstream) nucleotides (9-mer sequence) as input.
Each bi-allelic SNP produces two unique 9-mer sequences
(one sequence for each allele) and thus, both of a SNP’s
sequences were submitted to DNAshapeR to obtain the

https://bioconductor.org/packages/release/bioc/html/DNAshapeR.html
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Figure 2. Generation of �MGW for a SNP. (A) Minor groove width measures are plotted for the two sequences generated by a specific bi-allelic T/C SNP.
For a given SNP, the flanking sequence (±4 bp) was used as input for DNAshapeR (via Bioconductor) which calculates MGW along a rolling sequence
window. For a 9-mer sequence, the MGW can be consistently provided at the SNP’s position ± one nucleotide which is highlighted in yellow and labeled as
the ‘region of interest’. Expanding this region to additional nucleotides would require a longer input sequence and increases chance of additional genetic
variants within the input (and introducing additional variability). Although the two sequences for a SNP only differ at one nucleotide (at the SNP position),
the impact on MGW carries through adjacent bases. Thus, �MGW was calculated to capture the change in MGW for a SNP by incorporating information
at the SNP’s position and ±1 base pair (dashed lines). (B) Workflow for calculating the �MGW for a bi-allelic SNP. This method captures the change in
MGW at the SNP position and ±1 base pair. This Euclidean distance captures �MGW as a measure of magnitude (in Ångstroms).

corresponding feature vectors for MGW. The MGW was
retained for the nucleotide at the SNP’s position as well
as ±1 nucleotides. Capturing MGW for additional bases
would require longer input sequences, which could intro-
duce additional variability (e.g. SNPs within the flanking
sequence). The �MGW was calculated as a Euclidean
distance for the SNP and ±1 nucleotides (Figure 2).

Generation of �MGW sample space

To calculate the entire sample space for �MGW, we gener-
ated a dataset of all possible 9-mer sequences. All possible
combinations of adenine, cytosine, guanine and thymine,
generated 49 (262 144) 9-mer sequences. From this dataset,
all possible bi-allelic pairings (A/C, A/G, A/T, C/G, C/T,
G/T) were created on the fifth nucleotide of each sequence
(‘SNP position’) while holding the flanking nucleotides con-
stant, generating 393 216 9-mer pairings. These 9-mer pair-
ings represent every possible sequence combination that
could be observed for a bi-allelic SNP (Figure 3). These

paired sequences were evaluated for �MGW using the pre-
viously described method.

Visualization of DNA sequences

DNA shape measures, provided by DNAshapeR, were sub-
mitted as a parameter file to the 3D-Dart webportal (http:
//milou.science.uu.nl/services/3DDART/) for a ‘BDNA nu-
cleic acid’ (45). Resulting pdb files from 3D-Dart were
then visualized using Chimera (https://www.cgl.ucsf.edu/
chimera/) (46).

Curating dbSNPs150 database

The NCBI hg19 dbSNPs150 data file (snp150.txt.gz)
was downloaded via UCSC GoldenPath (hgdown-
load.cse.ucsc.edu) on July 6, 2018 (47). Insertion-deletions,
tri-allelic, quad-allelic, and multiple nucleotide polymor-
phisms were excluded. Retained bi-allelic SNPs were
limited to those located on chromosomes 1–22 and X.

http://milou.science.uu.nl/services/3DDART/
https://www.cgl.ucsf.edu/chimera/
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Figure 3. Summarization of �MGW across the complete sample space (A) �MGW sample space was constructed on six allele pairings (A/C, A/G,
A/T, C/G, C/T, G/T) with all possible combinations for flanking ±4 bp. This yielded 393 216 paired sequences that were evaluated for �MGW. (B)
The distribution of �MGW for the 393 216 paired sequences, these summary statistics are listed in Table 1. (C) Two randomly selected paired sequences
from the average and right tail of the �MGW distribution are shown. Sequences are plotted with their respective MGW values (Å). �MGW is calculated
as a Euclidean distance, which captures the change in MGW (dashed lines) at the SNP position and ±1 bp (highlighted in orange). ATGA[C/A]CGAT
exhibits a small �MGW, at 0.47 Å while TCCA[T/A]ATTG yields a large change in MGW (2.34 Å) which we would hypothesize to have greater potential
for functional consequence if also associated with a phenotype (two-parameter hypothesis). (D) The �MGW distribution for all paired sequences (gray) is
shown superimposed on the �MGW distributions by 5th nucleotide alleles (blue). Transition pairings (C/T, A/G) have a more strongly skewed distribution
with a smaller average �MGW compared to transversion pairings (A/C, A/T, C/G, G/T) (Table 1). Pairings that represent complimentary sequences (C/T
– A/G and A/C – T/G) exhibit the same distributions of �MGW, as expected.
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Any SNPs that were labeled with ‘Unusual Conditions’ as
defined by UCSC were excluded, as these indicate possible
discrepancies among alleles and/or potential mapping
issues (e.g. SNP flanking sequence aligns to more than one
location in the reference assembly) (47,48). The pruned
bi-allelic dataset contained 199,038,272 SNPs.

For dbSNP 150 data, each SNP’s flanking sequence
of four nucleotides was retrieved from the Human
Reference Genome (downloaded from the Build 37
GATK resource bundle on October 2017; available by
ftp.broadinstitute.org/bundle) (49) using SAMTOOLS.
For each SNP, the dbSNP ‘Strand’ variable was used to
inform if the alleles reported by dbSNP aligned with the
reference genome. All SNPs were successfully queried
against the reference genome. There were 75 SNPs that
contained at least one flanking base encoded as ‘N’ (any
base) and were excluded from summarizations, leaving a
final dataset of 199 038 197 SNPs. The �MGW for these
sequences were obtained as described above.

Curating data from a previously published MPRA study

MPRA data was downloaded from Supplementary Table
S1 of a previously published study by Tewhey et al. (43).
The table of 39 478 variants tested by the MPRA was fil-
tered to 4335 ‘active sequences’ (e.g. those that showed de-
tectable expression). Duplicate variants (n = 740) were re-
moved to retain the one with the most significant allelic
skewing. Insertion-deletions were also excluded. Any re-
maining variants that did not meet the filtering criteria for
�MGW analyses of the dbSNP150 data (as previously de-
scribed) were pruned, leaving bi-allelic SNPs without ‘un-
usual mapping conditions’ by the UCSC Table browser. The
final dataset of MPRA data contained 2819 SNPs.

Genomic regions were defined by the SNP with the most
significant MPRA allelic-skewing P-value and all (filtered)
SNPs tested within 500kb upstream and downstream of the
top variant. To test for global trends of enrichment, ge-
nomic regions were required to have at least 5 SNPs (n = 136
regions) and were retained only if there was at least one SNP
in the region that met FDR significance for allelic skewing
as defined by Tewhey et al. (116 regions; 1368 SNPs). For
the final dataset, �MGW values were obtained based on
rsID lookups in the SNP 150 data, as previously described.

SLE Immunochip Data for fine-mapping analyses

Genomic data for fine-mapping analyses came from the
published trans-ancestral SLE Immunochip study; geno-
type calling and genomic quality control methods were pre-
viously described (44). This data includes three ancestries,
European Ancestry (EA), African Ancestry (AA) and His-
panic Ancestry (HA), with large case-control counts: EA
(6748; 11 516), AA (2970; 2452) and HA (1872; 2016).

Genomic regions were named for the genes in physical
proximity to the region of association. Non-HLA genomic
regions were selected for fine-mapping if the region con-
tained SNPs reaching genome-wide significance (P < 5 ×
10−8) in at least two ancestry-specific analyses (44). We also
limited our analyses to regions where the top associations
mapped to non-coding regions (e.g. introns, intergenic),

where we hypothesize DNA topology might provide novel
insight to the fine-mapping analyses. Genomic regions con-
taining FAM167A-BLK (8p23), STAT4 (2q32) and TNIP1
(5q33) met these a priori criteria. Quality controlled ge-
nomic data for these regions were extracted using a 250
kb window around the previously reported top association
from the Immunochip analysis (44).

SNPs from the selected genomic regions were queried
against the human reference genome (as previously de-
scribed for the dbSNP 150 database) to retrieve the four
flanking nucleotides. Each SNP’s strand information (based
on Illumina Infinium Immunochip manifest file) was uti-
lized to ensure that the corresponding alleles appropriately
aligned with the reference genome. Using the 9-mers created
by the SNP’s alleles and flanking nucleotides, the �MGW
was calculated using DNAshapeR, as previously described
(39).

Statistical analyses

Single-SNP associations. Single-SNP associations were
previously reported and described in the transancestral SLE
Immunochip study (44).

SKAT analyses. The previous single-SNP logistic re-
gression analyses (44) did not incorporate SNP-specific
weights/information. Thus, SNPs in high LD yielded com-
parable association values. The Sequence Kernel Associa-
tion Test (SKAT) is a regression approach that was designed
to handle covariates and SNP-specific weights through a
weighted linear kernel (50). It was shown that well-selected
SNP weights can yield better statistical power (e.g. increas-
ing weight of functional variants) (50). SKAT was origi-
nally developed to leverage minor allele frequency (MAF),
as the weighting scheme in rare variant studies; however,
the SKAT framework is a general method that can accom-
modate any user-specified SNP weights (50). Here, we used
�MGW as the weighting scheme. A variation of SKAT is
the Optimal unified test which combines both SKAT and
the burden test (SKAT-O) (12). The SKAT-O test statis-
tic is a weighted average of the SKAT and burden test
statistics and can be beneficial when applying to genomic
regions where one test may be better powered than an-
other (51). Primary advantages of burden tests occur when
a large number of variants are causal and for smaller sam-
ple sizes (SKAT loses power in small sample sizes, <2000
cases and controls). Generally, burden tests do not perform
as well as SKAT when a large proportion of the variants
are non-causal (12,50,51). In this study, our datasets are
large (AA: 5422; EA: 18 264; HA: 2016), and we expect
many of the highly associated SNPs in LD to be non-causal;
thus, in this scenario we selected SKAT to be more appro-
priate, which is consistent with published power calcula-
tions and simulations (12,50,51). SKAT was applied to ge-
nomic regions through its implementation in the R package,
SKAT (https://CRAN.R-project.org/package=SKAT). For
each genomic region, the model parameters and residuals
were calculated for SKAT using SKAT Null Model() for
a dichotomous outcome (case/controls status) and previ-
ously described (44) population-specific factors (to account
for admixture). Since all datasets (AA, EA, and HA) had

https://CRAN.R-project.org/package=SKAT
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a sample size >2000 cases and controls, no small-sample
adjustment was applied. Within each genomic region, ad-
jacent 5-SNP windows were generated, offset by 1 SNP.
Each window was evaluated using the SKATbinary() with
method = SKAT and a linear-weighted kernel with SNPs
weighted by their �MGW. To evaluate consistency of the re-
sults (e.g. for SNPs outside of the main peak of association),
genomic regions were also evaluated using equal-weighting
for all SNPs. Given the small window size (n = 5 SNPs), we
expect a large proportion of each window to contain non-
causal SNPs, further supporting our selection of SKAT. For
comparison, we also applied SKAT-O but noted minimal
differences on the final outcome. To localize the top asso-
ciation signals to each SNP, SNP-window P-values were
treated as a SNP prioritization metric by generating the ge-
ometric mean of −log10(P-values) across windows contain-
ing each SNP. That is, the prioritization metric was calcu-
lated using the P-value for each SKAT analysis window (pi)
that contained the kth SNP (n analysis windows). With the
exception of the first and last five SNPs in a region, each
SNPk was included in five analysis windows (n = 5). Thus,
for each SNP k, we calculated its prioritization metric as:

Prioritization Metric SNPk = −log10

(
n∏

i=1

pi

) 1
n

(1)

Bayesian approach: credible SNP sets. Frequentist ap-
proaches, such as those implemented SKAT or single-SNP
logistic regression analyses are widely utilized; however,
their resulting P-values are not without limitations (52). For
one, P-values do not capture the confidence of a particular
association. Furthermore, they are more dependent on fac-
tors such as the power of the statistical test (influenced by
sample size and other variables). Bayesian methods offer an
alternative approach; here, Bayes factors are used, captur-
ing the ratio of probabilities between the null and alternative
hypotheses.

As a comparison to the frequentist approaches, we used
SNPTEST to generate the Bayes factors (BF), using the
score test and additive genotype modeling (53). Posterior
probabilities for a given SNP k, were then calculated using
method published by the Welcome Trust Case Control Con-
sortium (54). For SNPs 1-j in the region, the posterior prob-
ability for each SNP k, was calculated by:

Posterior Probability for SNPk = BFk∑
j BF j

(2)

Using these posterior probabilities, the 95% credible set
was determined for each region. This test assumes only one
causal SNP in the region and places equal a priori probabil-
ities that the causal SNP is any one of the analyzed SNPs
(54). In this study, we applied this method to previously de-
fined regions (44) where we hypothesized the association
signal is driven by one SNP.

Like the single-SNP logistic regression analyses, this
Bayesian analysis is not weighted by functional data. Thus,
for a �MGW-weighted analysis, a derived credible set was
generated from posterior probabilities that accounted for
each SNP’s �MGW through ad hoc weighting, where the

posterior probability for a given SNP k, was calculated
by weighting the Bayes factor by �MGWk divided by the
weighted average of Bayes factors for SNPs 1−j in the re-
gion. Here, the derived posterior probability for each SNP
k, is:

Derived Posterior Probability for SNPk

= BFk �MGWk∑
j BF j �MGW j

(3)

Using these values, the derived 95% credible SNP sets
were generated and compared with the unweighted 95%
credible SNP sets. This methodology enabled weighting by
a continuous variable versus existing methods designed for
dichotomous (presence/absence of functional annotation)
SNP weights (55).

Correlation between �MGW and Log2 fold change in MPRA
data. To evaluate the relationship between �MGW and
allele-specific activity, Pearson correlation coefficient (r) be-
tween �MGW and the absolute value of log2 fold change
by MPRA (‘LogSkew Comb’ from downloaded data) was
computed for each of the 116 genomic regions (43). We hy-
pothesize larger changes of �MGW to be positively corre-
lated with larger magnitudes of allele-dependent functional
activity (r > 0). To test for enrichment of r > 0, we com-
pared positive and negative r counts at iterative thresholds
of |r| in increments of 0.1 magnitude using the two-sided bi-
nomial test. To illustrate the resulting mixture distribution
(a null distribution with an enrichment of a subset under the
alternative), we fit a normal curve with mean of zero and a
variance estimated by the 6� method (i.e. range divided by
6) applied to the negative correlations (56). Under the null
hypothesis, r will be symmetric about zero and the standard
deviation can be estimated using the range from zero to the
smallest negative value and dividing this value by three.

�MGW ranking of top allelic skewing SNPs. For each of
the 116 genomic regions, SNPs were ranked from smallest
to largest according to �MGW and these ranks were con-
verted to percentiles. These �MGW ranks were summa-
rized across each region’s top MPRA SNP (SNP yielding
the largest log2 fold change in each region) (n = 116 SNPs).
We computed a chi-squared goodness-of-fit test under the
null hypothesis of no relationship between �MGW and log2
fold change.

Functional annotation

To evaluate the functional plausibility for an identified vari-
ant, several publicly available resources were referenced. For
variant associations with gene expression (eQTL status),
the Genotype-Tissue Expression (GTEx) dataset, version 8
was queried at gtexportal.org (57). SNPs were also queried
using the SCREEN (Search Candidate cis-Regulatory Ele-
ments by Encode, http://screen.encodeproject.org) (58,59).
Built using Encode data, SCREEN (b38) evaluates if a
given genomic coordinate (e.g. based on rsID) resides in a
Candidate cis-Regulatory Element (ccRE). ccREs are des-
ignated based on evidence from DNase hypersensitivity

http://screen.encodeproject.org
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Table 1. Summary statistics for the complete �MGW (Å) sample space

Percentiles (�MGW)

5th Nucleotide pairinga Min. Max. Mean ± SDb 10th 25th (Median) 50th 75th 90th

A/C 0.03 2.74 0.90 ± 0.39 0.42 0.62 0.86 1.16 1.51
A/G 0.05 2.07 0.50 ± 0.25 0.25 0.34 0.46 0.60 0.95
A/T 0.07 3.16 1.16 ± 0.48 0.60 0.80 1.11 1.46 1.99
C/G 0.00 1.44 0.64 ± 0.27 0.29 0.46 0.62 0.83 1.10
C/T 0.05 2.07 0.50 ± 0.25 0.25 0.34 0.46 0.60 0.95
G/T 0.03 2.74 0.90 ± 0.39 0.42 0.62 0.86 1.15 1.51
Complete sample space 0.00 3.16 0.77 ± 0.42 0.31 0.46 0.67 1.01 1.55

aPairings generated by 5th nucleotide in 9-mer sequence, all other nucleotides held constant. Each allelic pairing contains 65 536 paired sequences, summing
to 393 216 pairings for the complete sample space (as shown in Figure 3).
bStandard deviation.

sites, H3K4me3 and H3K27ac histone activity, and CTCF-
binding data. SCREEN contains 1.31 million ccREs,
correlating to 20.8% of the mappable human genome
(http://screen.encodeproject.org). For both, GTEx and
SCREEN, functional searches were agnostic to tissue type.
Genomic variants were also evaluated for evidence of long-
range DNA interaction via Hi-C data (hg19) available
through the Yue Lab 3D Genome Browser (http://promoter.
bx.psu.edu/hi-c/) (60). Similar to the ccRE search, SNPs
were queried to see if they resided in a genome region that
exhibited long-range chromatin interactions. The Yue Lab’s
Capture Hi-C data offers information across 19 cell line
options. We evaluated immune-related cell types: naı̈ve B-
Cells, CD4 Total (CD4 activated and Naı̈ve), CD8 naı̈ve,
monocytes, and neutrophils.

RESULTS

For �MGW, SNPs in the human genome exhibit a stronger
right skewed distribution in comparison to the complete sam-
ple space

In the complete sample space of �MGW, �MGW val-
ues ranged from 0.00 to 3.16 Å, with a mean of 0.77 Å
and a median of 0.68 Å (Table 1). The overall data ex-
hibited a right-skewed distribution (Figure 3). Transition
pairings (purine/purine or pyrimidine/pyrimidine) yielded
the smallest changes in �MGW, while transversion pairings
(purine/pyrimidine) produced the largest. Complimentary
allele pairs (i.e. A/G & T/C; A/C & T/G) yielded the same
�MGW values (Table 1). A/T allele pairings presented the
largest �MGW with a mean of 1.16 Å (SD, 0.47) (Figure
3).

We compared the �MGW sample space statistics to the
observed frequencies of �MGW across the human genome
using dbSNP data. The hg19 download of NCBI dbSNP150
contained 234 104 110 entries. After pruning to high qual-
ity, bi-allelic SNPs, 199 038 197 polymorphisms remained.
For these SNPs, there was a mean �MGW of 0.68 Å with
a standard deviation of 0.43. In comparison to the �MGW
sample space, SNPs across the genome exhibited a stronger,
right-skewed distribution of �MGW (Figure 4). Transi-
tion SNPs are more likely to occur (61,62), and this is con-
sistent with our SNP150 summarizations, where transition
SNPs comprised 66.43% of the dataset (Supplementary Ta-
ble S1). Our �MGW sample space summarization showed
that transition allele pairings had the smallest change in

�MGW (Table 1); thus, the decreased average in �MGW
dbSNP data is as hypothesized and illustrates the high
prevalence of shape-preserving SNPs in the genome. To
evaluate patterns in �MGW by SNP function (i.e. missense,
intron, coding-synonymous), SNPs with a single NCBI-
designation (see Methods and Materials) were subset and
summarized (Table 2, Figure 4). Notably, some SNP cat-
egories are limited to specific sequence combinations (63)
(i.e. stop-loss, Supplementary Table S2), which were re-
flected in the SNP-function-specific patterns of �MGW
(Figure 4). Coding-synonymous SNPs exhibited the small-
est overall change in �MGW (mean = 0.48 Å). SNPs de-
fined by NCBI as ‘unknown’ and intronic are not con-
strained to specific sequences (by definition) and comprised
the two largest categories (nunknown = 99 004 130; nintron =
84 909 115) and yielded �MGW means of 0.69 and 0.56 Å,
respectively.

Regional correlation identified between �MGW and reporter
gene expression in MPRA data

While changes in MGW have been implicated in a num-
ber of targeted functional studies, we aimed to identify
patterns between �MGW and function on a global scale.
The Massively Parallel Reporter Assay (MPRA) for find-
ing expression-modulating variants presents an ideal frame-
work for evaluating patterns between intrinsic �MGW
and functionality. Allelic skewing is identified by compar-
ing reporter assay activity between two oligonucleotides
which are identical except at the selected SNP locus. As
such, MPRA can be used to experimentally prioritize vari-
ants that are in high LD. We utilized a published MPRA
dataset (43) to test for associations between �MGW and al-
lelic skewing, hypothesizing that evidence of allelic skewing
would correlate with larger magnitudes of �MGW when
prioritizing SNPs in a genomic region.

MPRA data from 1,368 SNPs spanning 116 genomic re-
gions were evaluated for patterns between �MGW and re-
porter assay activity as measured by the absolute value of
log2 fold change (Supplementary Table S3; Figure S1). The
distribution of the Pearson correlation coefficient (r) shows
a mixture distribution with a subset of the regions not show-
ing an enrichment of larger, positive correlations and an-
other subset showing enrichment of a large positive corre-
lation between �MGW and log2 fold change (Figure 5A).
We tested whether the proportion of positive and negative
correlations were equal across a range of correlation thresh-

http://screen.encodeproject.org
http://promoter.bx.psu.edu/hi-c/
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Figure 4. Summarization of �MGW across the human genome using bi-allelic SNPs from dbSNP SNP150. (A) Comparison of �MGW sample space
(Figure 3) and the observed �MGW from SNPs across the genome (via dbSNP). Distribution of �MGW is shown in blue for observed bi-allelic SNPs from
the SNP150 dataset (n = 199 038 197 SNPs). The �MGW sample space distribution from Figure 3 is plotted in gray (n = 393 216 paired sequences). The
observed �MGW across genomic SNPs showed a stronger right skewed distribution than what would be expected from a random sampling of the entire
sample space of all-possible sequences. Only small numbers of SNPs elicit large magnitudes of �MGW. (B) �MGW distributions are similarly shown for
SNP subsets, by NCBI function (exclusive NCBI function label for each SNP, see Materials and Methods). Again, each distribution is superimposed with
the distribution from the �MGW sample space (shown in gray). Some NCBI defined SNP functions have specific sequence requirements (Supplementary
Table S2) and these are reflected in the �MGW distributions which are also sequence-dependent (e.g. splice-6, nonsense). (C) The mean and median
�MGW for each SNP category. All dbSNP SNP categories have significantly lower mean and median compared to the �MGW sample space (Tables 1-2).
Coding-synonymous SNPs have the smallest magnitudes of �MGW, compared to all other categories.

olds; and we observed enrichment of positive correlations
with a significant trend (P = 0.0031) for increasing r thresh-
olds (Figure 5B). The larger the threshold, the greater the
proportion of positive correlations. To further test for a re-
lationship between increased functional activity and greater
magnitudes of �MGW, we compared �MGW percentiles
for the top MPRA SNP identified in each region (see Mate-
rials and Methods). Under the null, the top SNPs from each
region should exhibit a uniform distribution of �MGW
ranks. There was significant departure from a uniform dis-
tribution based on the chi-squared goodness-of-fit test (P =
7.27 × 10−4), with an enrichment of larger �MGW among
top MPRA-identified SNPs for each genomic region (Fig-
ure 5C).

Fine-mapping SLE-associated genomic regions using
�MGW prioritization identifies potentially functional SNPs

To date, more than 100 genomic loci have been associ-
ated with SLE, many which map to non-coding regions

(44,64) To illustrate different scenarios based on the appli-
cation of our method, we pre-selected the genomic regions
containing FAM167A-BLK, STAT4 and TNIP1 for fine-
mapping because these regions showed robust single-SNP
associations (P < 5 × 10−8) with SLE in at least two ances-
tries (FAM167A-BLK: EA and AA; STAT4: EA and HA;
TNIP1: EA and HA) and the association signals are not
refined to a single SNP, due in part to strong LD. Further-
more, neither the SNPs nor their LD proxies are protein-
coding variants, leaving DNA topology as a potential func-
tional mechanism. For each region, we first describe the pre-
vious SNP association results (44) and their LD patterns, by
ancestry. Each region is then summarized by its �MGW
measures which were used in subsequent frequentist and
Bayesian �MGW-weighted analyses. We defined successful
fine-mapping as a reduction in the number of variants from
among the previously observed LD blocks of association.
SNPs identified by the �MGW-weighted analyses were sub-
sequently investigated for existing functional evidence (see
Materials and Methods).
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Figure 5. Correlation between �MGW and allele-specific activity as measured by log2 fold change in a Massively Parallel Reporter Assay. (A) Correlations
between �MGW and log2 fold change for SNPs (n = 116 genomic regions. Distribution of correlation estimates (r) shows enrichment for genomic regions
exhibiting large positive correlations between magnitude of allele-specific activity and magnitude of �MGW. (B) The proportion of positive correlations
between log2 fold change and �MGW shows enrichment at increasing thresholds of correlation estimates. Under null the null hypothesis we would expect
to see equivalent (0.5) proportion of negative and positive correlation estimates at any threshold of r, shown as a red line. Here, we see enrichment of positive
correlations. Globally, there is a significant (P = 0.0031) trend with increasing r thresholds, up to r = 0.8 where all five regions show positive correlation
between �MGW and allele-specific activity. (C) Regional �MGW percentile for SNPs showing the greatest allele-specific activity in 116 genomic regions.
For each region, we summarized the relative �MGW for the SNP with the largest magnitude of log2 fold change. Under the null (no relationship between
�MGW and allele-specific activity), we would expect a uniform distribution of �MGW with an expected value of 11.6 per bin (116/10). Instead, we
observe significant departure from the uniform distribution based on a chi-squared goodness-of-fit test (P = 0.0007). There was strong enrichment for
SNPs (with the greatest allele-specific activity) to also exhibit the largest magnitude of �MGW in the region.

FAM167A-BLK Region

The SLE-associated region at 8p23 lies upstream of
FAM167A and BLK, which are in a head-to-head gene
orientation. In the previous (44) logistic regression analy-
ses, the primary peak of association was captured by a 60
kb window. In EA, the most significant SNP associations
mapped to a 26 kb region of 16 SNPs in high LD (r2>0.8);
within the AA data, the top associations were refined to a
smaller 14 kb window containing 7 highly correlated SNPs
(Figure 6). The summary statistics for �MGW for SNPs in
the 500 and 60 kb regions were comparable to what was ob-
served across the genome, with only a few SNPs imposing
large changes in MGW (Supplementary Table S4).

In the frequentist approach using SKAT, SNPs with the
highest �MGW-weighted prioritizations largely followed
the pattern observed in the single-SNP logistic regression
analyses. That is, SNPs that were not previously associated

with SLE were not prioritized solely on �MGW, as illus-
trated in the region outside of the 40 kb peak of associa-
tion (Figure 6). When weighted by �MGW, rs2061831 was
sharply prioritized in both the EA and AA analyses (Fig-
ure 6). In EA, rs2061831 was one of the 14 highly corre-
lated SNPs identified by the single-SNP logistic regression
analyses; likewise, in AA, it was also within the LD block
comprising the 7 most highly associated SNPs. While the
other SNPs in these LD blocks exhibited comparable SLE-
association, rs2061831 had the greatest �MGW at 1.63 Å,
prioritizing it above other SNPs in the weighted analyses.
Importantly, while the single-SNP logistic regression analy-
ses identified a different top SNP in EA (rs13277113) and
AA (rs2736440) data, �MGW-weighting prioritized the
same SNP (rs2061831), across ancestries. An unweighted
SKAT prioritized the signal downstream of rs2061831, to
the region where multiple SNPs from the same highly-
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Table 2. Summary statistics for �MGW (Å) across bi-allelic SNPs in dbSNP SNP150 dataset

Percentiles

SNP categorya N Min. Max. Mean ± SDb 10th 25th (Median) 50th 75th 90th

dbSNP SNP150c 199 038 197 0.00 3.16 0.68 ± 0.43 0.28 0.40 0.56 0.86 1.22
coding-synonymous 1 178 980 0.00 2.58 0.55 ± 0.30 0.25 0.34 0.48 0.65 0.95
intron 84 909 115 0.00 3.16 0.68 ±0.42 0.28 0.40 0.56 0.85 1.21
missense 2 345 831 0.00 3.16 0.61 ± 0.36 0.26 0.36 0.52 0.74 1.11
ncRNA 499 593 0.00 3.16 0.63 ± 0.38 0.27 0.38 0.54 0.79 1.15
near-gene-3 654 589 0.00 3.16 0.66 ±0.41 0.28 0.39 0.55 0.81 1.18
near-gene-5 2 487 192 0.00 3.16 0.65 ± 0.41 0.27 0.38 0.54 0.81 1.17
nonsense 66 275 0.00 3.16 0.65 ± 0.37 0.28 0.39 0.55 0.79 1.18
splice-3 25 401 0.01 2.07 0.61 ± 0.31 0.28 0.37 0.57 0.77 1.08
splice-5 28 983 0.00 2.74 0.65 ± 0.31 0.37 0.46 0.57 0.71 1.15
stop-loss 2225 0.03 3.16 0.71 ± 0.42 0.31 0.42 0.61 0.91 1.46
unknown 99 004 130 0.00 3.16 0.69 ± 0.43 0.29 0.41 0.57 0.88 1.24
untranslated-3 1 299 685 0.00 3.16 0.67 ± 0.41 0.28 0.39 0.55 0.83 1.19
untranslated-5 181 208 0.00 3.16 0.58 ± 0.33 0.25 0.34 0.50 0.72 1.05

aNCBI-function specific categories represent exclusive categories of SNPs.
bStandard deviation.
cdbSNP 150 (hg19) bi-allelic SNPs, excluding insertion-deletions, MNPs, and SNPs labeled with unusual mapping conditions by the UCSC Table browser.

associated LD block were included in the same 5-SNP win-
dows (Supplementary Figure S2, Tables S5 and S6).

The �MGW-weighted frequentist fine-mapping evidence
for rs2061831 was corroborated using the Bayesian refine-
ment approach. In both EA and AA, the derived �MGW-
weighted credible set placed the highest posterior probabil-
ity on rs2061831 (58.9%-EA; 44.2%-AA) (Figure 6). In the
unweighted (standard) Bayesian analysis, rs2061831 was in-
cluded in the EA (30.6% posterior probability) and AA
(20.9% posterior probability) 95% credible sets, but it was
not the highest prioritized (Supplementary Tables S5 and
S6). Instead, the SNPs originally identified in the ancestry-
specific logistic regression analyses were given the high-
est posterior probability––EA: rs13277113 (49.9% poste-
rior probability), AA: rs2736340 (33.1%). Thus, like the fre-
quentist approach, weighting by �MGW resolved the sig-
nal in both EA and AA to the same SNP, rs2061831.

Using �MGW as a prioritization metric, rs2061831 was
consistently prioritized in both EA and AA data. SNP
rs2061831 has a �MGW of 1.63 Å, which is 2 standard
deviations above the mean across dbSNP150. Notably, this
SNP is a transition polymorphism (Purine/Purine), which
we previously showed to have the smallest (on average)
�MGW (Table 1, Figure 3). Considering only transition
SNPs, rs2061831 is actually 4.52 standard deviations above
the mean �MGWtransition SNPs (0.50 Å), indicating a con-
siderable departure from the expected value and thus we
would hypothesize a greater likelihood of functional rel-
evance. We explored (see Methods and Materials) func-
tional data resources for evidence of biological relevance,
in comparison to the top SNP signals from the single-SNP
analyses (rs13277113 in EA; and rs2736440 in AA). All
three SNPs are in high LD (R2 > 0.95) with one another
in both EUR and AFR 1000 genomes data. Thus, it is
not surprising that all three SNPs yielded similar eQTL
results via GTEx (data not shown). Despite the high LD,
these three SNPs are physically separated by several kilo-
bases. Both rs2061831 and rs13277113 mapped to Candi-
date cis-Regulatory Elements (cCRE) (accession numbers:
EH38E2610769 and EH38E2610775, respectively). Of note,

the cCRE mapping to rs2061831 showed high CTCF ac-
tivity with supportive TF binding (Supplementary Figure
S3). Review of the 3D-genome browser yielded a larger
number of long-range chromatin interactions in monocytes,
B-Cells, and CD4 cells for rs2061831, in comparison to
rs13277113 and rs2736440 (Supplementary Figure S4). In
the FAM167A-BLK region, �MGW-weighting successfully
differentiated among highly-correlated SNPs and priori-
tized rs2061831, a SNP within a potentially important reg-
ulatory region as documented by independent data.

STAT4 Region

The single-SNP SLE associations at 2q32 span the STAT4
gene (Figure 7). SNP associations reached genome signif-
icance in the EA and HA data, with the strongest signals
within intronic regions (44). In both ancestries, the primary
peak of association was captured by a broad 110 kb win-
dow. The strongest associations in the EA data (P-values
< 1 × 10−62) mapped to six SNPs in high LD, spanning
29 kb. Five of these SNPs also comprised the LD block of
strongest associations in the HA data (P < 1 × 10−13), in a
slightly narrower 26 kb region.

The mean �MGW for SNPs in this region was 0.72 Å
in EA and 0.73 Å in HA and both cohorts had a me-
dian �MGW of 0.56 Å. While these average �MGW were
slightly higher than what was observed across the entire bi-
allelic dbSNP dataset (mean = 0.68 Å), the EA and HA me-
dians were of the same magnitude (dbSNP �MGW median
= 0.56). The �MGW for SNPs within the 110 kb associa-
tion window exhibited similar means as the 500 kb region
(Supplementary Table S7).

We again applied the two �MGW-weighted approaches
using SKAT and Bayesian credible sets in the region. In
EA, the �MGW-weighted SKAT analyses shifted the top
signal upstream to rs11889341, which markedly increased
its priority (Figure 7; Supplementary Figure S5). This SNP
was one of the top six SNPs in the single-SNP association
LD-block. While it and the other five SNPs were all signif-
icantly associated with SLE, rs11889341 had the greatest
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Figure 6. FAM167A-BLK �MGW prioritization by Frequentist and Bayesian methods in European and African Ancestries. (A) Genotyped SNPs that
passed quality control and were within 250kb of the top single-SNP association analysis in EA and AA data. A 60 kb region capturing the primary
peak of association is highlighted. In both the EA and AA data a cluster of SNPs in high LD yielded the top association signals. (B) Using SKAT as a
�MGW-weighted frequentist approach, rs2061831 was sharply prioritized over SNPs in the previously identified LD blocks. While the single-SNP logistic
regression analyses in (A) identified a different top SNP in the EA (rs13277113) and AA (rs2736340) data, rs2061831 was consistently prioritized as the top
SNP in both the EA and AA analyses. �MGW-weighting did not yield spurious associations for with SNPs outside the broad 60 kb peak of association
highlighted in yellow. (C) SNPs within the 60 kb association peak were analyzed by a Bayesian approach. The �MGW-weighted posterior probabilities
are plotted. While the majority of SNPs yielded infinitesimal posterior probabilities, those comprising the 95% derived credible sets are labeled. Akin to
the �MGW-weighted SKAT analyses, rs2061831 was again prioritized in both the EA and the AA data, with the largest posterior probability. (D) The
�MGW is plotted for each SNP in the 60 kb region. The �MGW for a SNP is sequence-specific thus yielding the same values for SNPs in both the EA
and AA data. Differences between the two plots result from differences in genotyped SNP lists (i.e. SNPs that are monomorphic in one population would
not be plotted). SNPs identified by the derived �MGW-weighted credible set are plotted in yellow. While rs2061831 had a large �MGW, other SNPs in
the region had larger magnitudes of �MGW but did not show evidence of SLE-association. This illustrates the importance of a two-parameter hypothesis
which considers a combination of association signal and �MGW magnitude. Prioritized SNPs fall upstream of both FAM167A and BLK.

�MGW at 1.75 Å, which prioritized it over the other SNPs
in the LD block; the remaining SNPs had �MGW values
ranging from 0.31–1.12 Å. In HA, weighting by �MGW
in the SKAT analysis also prioritized rs11889341 as the
top SNP. This SNP was previously identified with the best
P-value in the single-SNP association analysis, but in the
�MGW-weighted approach, its prioritization distinctly in-
creased relative to the other SNPs in the LD block.

In the Bayesian analysis, rs11889341 was included in
the EA and HA derived �MGW-weighted 95% credible
sets. In EA, rs11889341 was not in the unweighted 95%

credible set but inclusion of �MGW increased its poste-
rior probability from 2.4% to 6.0% (Supplementary Ta-
ble S8). In EA, rs7568275 yielded the strongest signal in
both the unweighted (81.0% posterior probability) and de-
rived �MGW-weighted (77.3% posterior probability) cred-
ible sets (Supplementary Table S8). This is important to
note, as rs7568275 had a much smaller �MGW (0.66 Å)
than rs11889341 (1.75 Å). This provided an example where
the magnitude of the Bayes factor was so large (2.20 × 1064),
that the influence of �MGW was largely diminished in the
analysis. However, despite the predominant rs7568275 sig-
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Figure 7. STAT4 �MGW prioritization by Frequentist and Bayesian methods in European and Hispanic Ancestries. (A) Regional association plots in EA
and HA for genotyped SNPs that passed quality control and were within 250 kb of the top single-SNP association analysis in STAT4. Within the broad
11 Mb peak of association (highlighted in yellow), a cluster of SNPs in high LD yielded the top association values. (B) SNP refinement using SKAT with
a �MGW-weighted approach sharply prioritizes rs11889341 in both EA and HA data. In the EA data, the �MGW-weighting shifted the top signal to
rs1188931, whereas in the HA data, it accentuated the existing signal, above other SNPs. (C) For the highlighted 11 Mb region, SNP posterior probabilities
are plotted for the derived, �MGW-weighted Bayesian analysis. While the frequentist MGW-weighted approach prioritized the same SNP (rs1188931) in
both ancestries, this was not observed in the Bayesian approach. In the EA data, the Bayes factor for rs7568275 (BF = 2.20 × 1064) was at such a large
magnitude, that it was largely unaffected by �MGW-weighting. However, rs1188931 still entered the 95% derived credible set, albeit with a much smaller
posterior probability (6.03%) compared to rs7568275 (77.25%). In the HA data, �MGW-weighting increased the signal for rs1188931. (D) The �MGW for
SNPs within the 11 Mb region. SNPs that were identified by the derived �MGW-weighted credible set are plotted in yellow. Again, the analytic approaches
consider SNPs in the context of a two-parameter hypothesis, evaluating SNPs for a combination of association signal and magnitude of �MGW. Hence,
the prioritized SNPs (yellow) are not necessarily the SNPs with the largest �MGW in the region. Prioritized SNPs occur within an intron of STAT4.

nal, the derived credible set still detected rs11889341, the
SNP identified by the �MGW-weighted SKAT approach.
In the HA data, rs11889341 yielded the largest posterior
probability in the �MGW-weighted derived credible set.
This SNP also had the largest posterior probability in the
unweighted credible set. Unlike the EA analysis, where
the magnitude of the Bayes factor dominated the impact
of the �MGW-weighting, in the HA data, the �MGW
strongly increased the posterior probability of rs11889341
from 58.6% to 73.5%. This limited the derived 95% cred-
ible set to only 3 SNPs: rs11889341 (73.5%), rs8179673
(16.6%) and rs7574865 (4.8%) (Supplementary Table S9).

In �MGW-weighted analyses, rs11889341 was sharply
prioritized over other SNPs in the LD block, with an ex-
ception in the EA �MGW-weighted derived credible set,
where the high magnitude of the Bayes factor for rs7568275
(2.20 × 1064) over other SNPs (bf ≤ 1.79 × 1063) largely
negated the impact of �MGW in this analysis. Consider-
ing the evidence for rs11889341 in the other three anal-
yses, due to its strong combination of SLE association
and �MGW, we would hypothesize that rs11889341 would
be a candidate functional polymorphism. Like rs2061831
in FAM167A-BLK, rs11889341 is also a transition SNP
(purine/purine). While transition SNPs are more frequent
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across the genome (previously shown in Supplementary Ta-
ble S1), there are few transition SNPs (+/- 4 nucleotides)
that yield such a high �MGW (mean �MGW for transition
SNPs = 0.50 Å). Evaluation of publicly available functional
datasets yielded limited information for both rs7568275 and
rs11889341. Neither of these SNPs were identified as eQTLs
in GTEx nor were they within Candidate Cis-Regulatory
regions (cCREs). Furthermore, neither variant was shown
with long range chromatin interactions in the in the cur-
rently available HI-C data via the 3D genome browser. De-
spite the lack of functional information from these pub-
licly available databases, functional information is avail-
able via a 2018 study, where transancestral mapping iden-
tified rs11889341 with strong association with SLE (65).
This study focused on the STAT1-STAT4 region and found
rs11889341 was associated with STAT1 expression in B-
cells through increased binding of the transcription factor,
HMGA1 (65). Given the relationship between transcrip-
tion factor binding and DNA topology (20,31,32,66,67),
we hypothesize that the identified functional activity of
rs11889341 (via HMGA1 binding) may be mediated by the
large MGW change imposed by the SNP’s alleles.

TNIP1 Region

Previous single-SNP association analyses (44) identified
genome-wide significant findings (P < 5 × 10−8) in EA and
HA data at 5q33 (Figure 8). The peak of SLE association is
captured by a 40 kb window which encompasses most of the
TNIP1 gene. In the EA data, the top associations mapped to
three SNPs (rs960709, rs10036748, rs6889239) in high LD,
spanning 3 kb of a TNIP1 intron. These three SNPs are also
encompassed by the associated LD block in the HA data,
where four, highly correlated SNPs (rs1422673, rs960709,
rs10036748 and rs6889239) yielded P-values < 5 × 10−8.
As completed in the FAM167A-BLK and STAT4 regions,
we again applied �MGW-weighted fine-mapping strategies
to prioritize these non-coding SLE-associated SNPs.

In the TNIP1 region, the lists of high-quality geno-
typed SNPs were largely the same between the EA and HA
datasets. Consequently, the statistics for �MGW in this re-
gion were very similar between the two cohorts. Across the
500 kb window of high quality SNPs, the mean �MGW
was 0.67 Å (median = 0.55 Å) in both EA and HA (Supple-
mentary Table S10). These values were slightly lower than
the observed mean for bi-allelic SNPs from dbSNP (Table
1).

The SKAT analyses yielded similar results between the
EA and HA data. The �MGW-weighted analyses did
not effectively prioritize or refine the SNP signal. Unlike
FAM167A-BLK and STAT4, �MGW-weighting did not re-
solve the top signal to the same SNP in both ancestries.
Instead, in TNIP1, the top SNPs in the �MGW-weighted
analyses for EA (rs6889239) and HA (rs10036748) were the
same as those identified in the single-SNP logistic regression
analysis (Figure 8; Supplementary Figure S6). In this region
�MGW-weighting actually dampened the signal because
the SNPs with the greatest SLE association values had low
magnitudes of �MGW (ranging from 0.31 to 0.37 Å). This
pattern was also observed in the Bayesian approach, where
SNPs with the highest posterior probabilities in the derived

credible sets exhibited lower posterior probabilities than in
the unweighted credible set (Figure 8; Supplementary Ta-
bles S11–12), again due to the low magnitudes of �MGW
for top-associated SNPs.

DISCUSSION

Sequence-dependent DNA topology could provide impor-
tant functional context for associations, especially for poly-
morphisms in non-coding regions and/or in regions not
covered by currently available functional databases. We ex-
plored �MGW, a specific sequence-dependent measure of
DNA topology, as a weighting metric in fine-mapping anal-
yses. In a sample of 300k SNPs, Wang et al. previously
found that MGW-preserving SNPs are more common (42).
Here, we built upon these findings through a full census of
bi-allelic SNPs (n = 199 038 197) across the genome. We
showed the observed genomic �MGW was lower than the
complete �MGW sample space. These findings were con-
sistent with the relative frequencies of transversion (∼33%)
and transition (∼66%) mutations in the human genome
(61,62). We hypothesized that phenotypically-associated
SNPs with large �MGW would be more likely to impose
functional consequences; and thus, proposed �MGW as
a prioritization metric in fine-mapping studies. To test for
and delineate the relationship between �MGW and allele-
specific activity, we analyzed data from an existing MPRA
study (43). We observed significant enrichment for strong
positive correlations, illustrating the presence of a relation-
ship between �MGW and allele-specific activity. We do not
posit that this relationship holds for every SNP but that it
will be a useful additional prioritization metric. In fact, con-
sistent with our hypothesis, a large positive correlation was
not observed in every genomic region, but across the regions
studied, there was an enrichment. Further, we observed en-
richment for the largest (regional) �MGW among SNPs
that exhibited the greatest magnitude of log2 fold change via
the MPRA. While there is evidence that changes in MGW
can affect aspects that may go undetected by such a re-
porter assay (e.g. methylation, chromatin remodeling), the
observed patterns importantly document a potential role
between �MGW and functionality.

To illustrate an application of our approach, we ap-
plied two �MGW-weighted fine-mapping approaches,
across three genomic regions (FAM167A-BLK, STAT4,
and TNIP1) with well-established SLE associations. In
FAM167A-BLK and STAT4, we successfully reduced the
number of potential functional SNPs to a single, tran-
sancestral SNP in each region. For both of these �MGW-
identified SNPs, we identified external evidence supporting
their functional roles.

There are several advantages to using sequence depen-
dent topology, such as �MGW, as a weighting metric in
fine-mapping studies. For one, it is an intrinsic variable, in-
herent to the genetic sequence surrounding the polymor-
phism; thus, it is not reliant on external databases which
may offer limited information for the SNPs of interest
(database bias). As an intrinsic variable it is also not ances-
try specific, tissue specific, or sample size dependent. Lim-
itations in external (non-intrinsic) data may down-weight
potentially causal SNPs due to a lack of available func-
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Figure 8. TNIP1 �MGW prioritization by Frequentist and Bayesian methods in European and Hispanic Ancestries. (A) Genotyped SNPs within 250 kb
of the top single-SNP association analysis are shown for EA and HA. The 40 kb region that captures the primary peak of association is highlighted in
yellow. In EA and HA, the same three SNPs (rs10036748, rs6889239, and rs960709) show the highest association values and are all in high LD. In EA data,
rs6889239 has the best P-value and rs10036748 yields the best P-value in HA data. (B) Analyzing the region with SKAT in a �MGW-weighted approach.
In this region, for these SNPs, including �MGW did not provide differential prioritization, rs6889239 remained the top signal for EA and rs10036748
for HA. (C) For each SNP in the 40 kb region, the posterior probabilities are plotted for the derived, �MGW-weighted Bayesian analysis. The weighted
Bayesian analysis did not alter the relative signals observed in the single-SNP logistic regression analyses. In the EA data, rs6889239 yielded the largest
posterior probability in EA and rs10036748 remained the top signal in HA data. (D) The �MGW is plotted for each genotyped SNP that passed quality
control measures. SNPs that were identified by the derived �MGW-weighted credible set are plotted in yellow. These prioritized SNPs have comparatively
low magnitudes of �MGW, indicating that the driving factor of these SNP prioritizations stemmed from their SLE associations and not their magnitude
of �MGW.

tional data. While publicly available functional resources
continue to expand, these challenges remain, especially for
rare or novel variants. This is particularly relevant for di-
verse study populations where annotation resources based
on European data may offer limited information for re-
gions of interest (14). For example, Sherman et al. presented
deep sequencing data in 910 individuals of African descent
and found over 296 million base pairs which were absent
in the human reference genome (15). While a SNP’s func-
tional relevance can be supported by publicly-available re-
sources, a lack of information does not necessarily indi-
cate a variant’s lack of function. This was illustrated by
rs11889341 in STAT4, which lacked functional informa-

tion from public resources (GTEx, ENCODE, 3D-genome
browser) (57,58,60), but in a targeted functional study,
rs11889341 was correlated with gene expression and bind-
ing of the transcription factor HMGA1 (65). We identified
rs11889341 using �MGW as the prioritizing variable. Thus,
prioritizing SNPs by a factor intrinsic to DNA may help
alleviate some bias that would otherwise be introduced by
missing data from publicly available functional datasets.

A second benefit of using DNA topology in fine-mapping
is that DNA topology (e.g. MGW) can potentially im-
pact an array of biological functions such as transcrip-
tion factor binding, chromatin remodeling, or methylation
(20,21,23,26,31,32,36). By using �MGW (e.g. instead of
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weighting by specific MGW patterns for a particular tran-
scription factor), the approaches in this manuscript are ag-
nostic to the mechanism of function imposed by MGW. We
posit this as beneficial, as it does not limit functional infor-
mation to a single biological mechanism. This may be espe-
cially beneficial when the relationship between phenotype
and biological mechanism is unknown. While functional
work in STAT4 showed that rs11889341 altered HMGA1
binding, functional work is still needed to evaluate the
rs2061831 genotype in FAM167A-BLK. Here, the biolog-
ical implications of rs2061831 could involve transcription
factor binding, and/or, given its apparent location within a
long-range chromatin interaction hotspot (Supplementary
Figure S4), chromatin organization. Considering the strong
trans-ancestral signal of rs2061831 across EA and AA, fur-
ther functional work should explore whether this SNP acts
through an independent functional mechanism or through
interactions with other variants in the region (e.g. within
the context of sequence-dependent structural motifs), such
as the insertion-deletion identified in a study of ATAC-seq
data in 100 individuals of British Ancestry (68). Leveraging
changes in DNA topology can identify potentially causal
polymorphisms and also generate specific hypotheses for
functional follow-up studies.

Another advantage to using local DNA topology in fine-
mapping studies is its consistency of information across an-
cestries. Assuming identical flanking sequences (e.g. no ge-
nomic variant within ±4 bases of the SNP), a SNP’s im-
pact on intrinsic DNA topology is consistent across ances-
tries, highlighting the potential utility of DNA topology
as a means of resolving association signals across ances-
tries. Here, we showed that �MGW-weighted analyses of
FAM167A-BLK and STAT4 resolved the association sig-
nal to the same SNP in each ancestry via the frequentist
approach, followed by largely corroborating evidence via
the derived credible sets in the Bayesian approach. Notably,
rs2061831 was not the top-associated SNP in either the
ancestry-specific analyses; however, it was previously identi-
fied via the SLE Immunochip trans-ancestral meta-analysis,
where combining association signals across ancestries iden-
tified it as the top SNP (44).

Limitations and future work

There are several considerations and limitations to using
sequence-dependent topology as a weighting metric in fine-
mapping analyses. Notably, some of these limitations could
result in inconclusive and/or insignificant results, as ob-
served in the TNIP1 region. First, the functional variants
may not have been genotyped in the study. Analyses that uti-
lize SNP-specific weights decouple associations from LD.
Thus, a weighted metric performs best when the functional
SNP is included in the analysis set. For this reason, we pro-
pose application of this prioritization technique when there
is high confidence that the functional variants have been in-
cluded through dense genotyping or sequencing. We note
this limitation exists for any statistical association method.

Second, DNA topology may not be the mechanism im-
pacting phenotype at a particular locus. While sequence de-
pendent DNA topology can influence a number of func-
tional factors (18,21,23,24,32), it is not the only source

of biological interactions and could be irrelevant for a
specific phenotype or genomic region. Thus, when using
DNA topology, such as �MGW, in fine-mapping stud-
ies, analyses should be considered in the form of a two-
parameter hypothesis––a combination of association sig-
nal and �MGW. For example, in both the FAM167A-BLK
and STAT4 regions, the highest prioritized SNPs, rs2061831
and rs11889341, did not have the largest magnitude of
�MGW in the regions (Figures 6 and 7). Instead, these two
SNPs were prioritized by their combined signals of SLE-
association and �MGW.

Third, we placed greater weights on SNPs with larger
magnitudes of change on DNA topology. We recognize that
even small changes could yield functional consequences.
While we previously described benefits to using an agnos-
tic measure of MGW (�MGW magnitude), future stud-
ies could also explore weighting SNPs by particular topo-
logical profiles (e.g., those matching binding site profiles).
For instance, our TNIP1 analyses did not show strong sig-
nals when weighting by the magnitude of �MGW, but this
does not definitively rule out MGW as a functional mecha-
nism (e.g. driven by pattern, not magnitude). The focus on
MGW was motivated by the breadth of study on MGW and
function (18,20,32,34,36). So while this manuscript consid-
ered a single parameter, �MGW, we are currently expand-
ing to incorporate additional features (e.g. helix twist, roll)
through multivariate approaches that account for the cor-
relation structure (dependencies) among spatial measures.

Fourth, there are some limitations to the methods imple-
mented through �MGW-weighted SKAT and the derived
credible sets approach. Here, we assumed that the majority
of variants in the region are non-causal, which is why we
selected SKAT over a combined burden test. However, we
note that the results from SKAT and SKAT-O were largely
similar. Similarly, in case of the applied Bayesian approach,
a limitation is its assumption that a single causal SNP exists
in a region (54). In the EA STAT4 data, the magnitudes of
the Bayes factors were so large that weighting by �MGW
yielded minimal impact. Future work should consider ap-
proaches to scale weighting schemes by a constant derived
from the magnitude of signal across a genomic region. In
the SKAT approach, for the sliding analysis window, we
used five SNPs, which should yield a region that is neither
too wide nor too unstable. Additional testing could poten-
tially improve optimization of parameters for this analy-
sis. Furthermore, we emphasize that our evaluation of the
SKAT results by summarizing each SNP as the geometric
mean of SKAT-analysis P-values should be regarded as a
metric for prioritizing SNPs, not an association analyses,
as these values do not have the statistical properties of a
P-value. Overall, these limitations should be carefully con-
sidered when applying these specific methods; but they also
highlight opportunities to further explore the relationship
between sequence-dependent DNA topology and pheno-
type associations.

We note that, at present there are limited options for in-
corporating continuous values for SNP-specific weights. In
our frequentist approach, we utilized SKAT for its flexi-
bility in accepting user-specified weights. In our Bayesian
method we used derived credible sets based on ad hoc
weighting of the posterior probabilities by �MGW. While
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there are existing Bayesian methods that can incorporate
functional annotations, we note these require binary cate-
gorical values and assume agnostic application of annota-
tions and thus adjust prioritization based on enrichment of
the annotation in associations (55,69). That is, these meth-
ods do not assume the existence of an a priori hypothe-
sis for inclusion of user-specified weights. Under our two-
parameter hypothesis, we posit that at a locus, within a set
of comparably associated variants, only one or two (not the
majority) may show large magnitude of �MGW. For this
reason, we did not apply these existing methods within this
manuscript. While we showed success with the two methods
applied here, we also propose incorporating intrinsic DNA
topology (e.g. �MGW), as an annotation resource in other
statistical methods as they develop.

In summary, weighting SNP associations by functional
data can greatly improve identification of potentially causal
SNPs; however, existing annotation resources can nega-
tively affect these outcomes when SNP information is un-
available in public datasets, especially in novel genomic re-
gions (8,10,11,14). In this study, we presented and tested
sequence-dependent DNA topology as a novel annotation
source for genetic fine-mapping studies. As an intrinsic
property, sequence-dependent DNA shape alleviates many
of the challenges imposed by external data resources; and it
provides potential functional (testable) context for associa-
tions (e.g. topological disruption for protein binding). Us-
ing �MGW in weighted analyses, we successfully priori-
tized functional SNPs in two SLE-associated regions with
high LD. Likewise, as an annotation resource, sequence-
dependent DNA topology, such as �MGW, is readily ap-
plicable in any fine-mapping methods that can incorpo-
rate continuous values for SNP weights. Altogether, this
manuscript presents methods that are immediately applica-
ble to existing genetic data, and it illustrates how sequence-
dependent DNA topology can be used as a paradigm to
investigate and understand genetic associations in fine-
mapping studies.
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