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Abstract
Background: Vascular endothelial cells (ECs) constantly experience fluid shear stresses generated
by blood flow. Laminar flow is known to produce atheroprotective effects on ECs. Nrf2 is a
transcription factor that is essential for the antioxidant response element (ARE)-mediated
induction of genes such as heme-oxygenase 1 (HO-1). We previously showed that fluid shear stress
increases intracellular reactive oxygen species (ROS) in ECs. Moreover, oxidants are known to
stimulate Nrf2. We thus examined the regulation of Nrf2 in cultured human ECs by shear stress.

Results: Exposure of human umbilical vein endothelial cells (HUVECs) to laminar shear stress (12
dyne/cm2) induced Nrf2 nuclear translocation, which was inhibited by a phosphatidylinositol 3-
kinase (PI3K) inhibitor, a protein kinase C (PKC) inhibitor, and an antioxidant agent N-acetyl
cysteine (NAC), but not by other protein kinase inhibitors. Therefore, PI3K, PKC, and ROS are
involved in the signaling pathway that leads to the shear-induced nuclear translocation of Nrf2. We
also found that shear stress increased the ARE-binding activity of Nrf2 and the downstream
expression of HO-1.

Conclusion: Our data suggest that the atheroprotective effect of laminar flow is partially
attributed to Nrf2 activation which results in ARE-mediated gene transcriptions, such as HO-1
expression, that are beneficial to the cardiovascular system.

Background
Vascular endothelial cells (ECs) are in direct contact with
blood flow and are constantly exposed to blood flow-gen-
erated shear stresses. Accumulated data in the literature
reveal that laminar shear stress is beneficial for the
endothelium [1]. Numerous studies and accumulating
microarray data [2-5] indicate that physiological shear
stresses produce antioxidant [6], antiapoptotic [7], anti-

inflammatory [8], and antiproliferative effects [9,10].
Investigations from our laboratories and others have
shown that shear stress inhibits serum-, cytokine-, and
hydrogen peroxide-induced responses [11-14]. Shear
stresses also initiate cascades of events that are essential
for endothelial function. For example, shear stress can
stimulate phosphatidylinositol 3-kinase (PI3K) activity
[15] which is required for Akt phosphorylation; this helps
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prevent endothelial apoptosis [7] and contributes to
endothelial nitric oxide synthase (eNOS) activation and
subsequent nitric oxide (NO) production [16,17]. NO
acts as a vasodilator and exerts atheroprotective effects on
the endothelium by inhibiting many atherosclerosis-
prone events [18-21]. Moreover, a number of antioxidant
genes, such as heme-oxygenase 1 (HO-1), NAD(P)H:qui-
nine oxidoreductase-1, and glutathione S-transferase, are
upregulated in ECs under laminar shear stress, and the
antioxidant response element (ARE) which resides in the
promoter regions of these antioxidant genes plays a vital
role in their induction [6]. Upregulation of the antioxi-
dant, superoxide dismutase (SOD), by shear stresses can
suppress the apoptotic effects induced by other agents
[22]. However, the detailed mechanisms of how the anti-
oxidant ability of shear stresses is regulated remain to be
elucidated.

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a
cap'n'collar (CNC) basic leucine zipper transcription fac-
tor [23]. Evidence compiled from in vitro and in vivo
studies has shown that Nrf2 is essential for ARE-mediated
induction of genes including phase II detoxifying
enzymes and antioxidant enzymes [24-26]. Results
obtained from experiments exploiting Nrf2-null mice sug-
gest that Nrf2 plays a protective role against xenobiotics,
oxidative stress, and cardiovascular injuries [26-28]. A
recent study revealed that Nrf2 activation inhibits inflam-
matory gene expression [29]. The N-terminal domain of
Nrf2 is bound to the cytoskeletal-associated protein,
Keap1, that negatively regulates Nrf2 by both repressing
Nrf2 transcriptional activity [30] and enhancing its rate of
proteasomal degradation [31,32] in the cytoplasm. Upon
stimulation, Nrf2 dissociates from Keap1 and is translo-
cated into the nucleus to initiate the following transcrip-
tional events [30]. Oxidants and electrophiles are known
to stimulate Nrf2 [33,34], and herein we show that hydro-
gen peroxide (H2O2), a major reactive oxygen species
(ROS), is another Nrf2 stimulator. A recent study demon-
strated that NO also induces Nrf2 nuclear translocation
[35]. So far, knowledge of the regulatory mechanisms of
Nrf2 activation is very limited. Several studies implied
that PI3K is a key regulator of Nrf2 [36,37]. It was also
found that protein kinase C (PKC) phosphorylates Nrf2
and regulates concomitant ARE-mediated transcription in
response to oxidative stress [38,39]. Mitogen-activated
protein kinases (MAPKs), such as ERK1/2 and p38, are
also reported to modulate Nrf2 activation [40,41].
Although the signaling pathways of the translocation of
Nrf2 were reported in several previous papers [42,43],
studies on the signaling pathway of Nrf2 translocation
under shear stress stimulation are very limited. Hosoya et
al. reported that both laminar and oscillatory shear
stresses can trigger the translocation of Nrf2, but only lam-
inar shear stresses can induce Nrf2 binding to the ARE

[44]. In this study, we investigated the signaling pathways
involved in shear stress-induced Nrf2 translocation.

In a previous study, we showed that shear stress increases
intracellular ROS and antioxidant activity in ECs [45].
Generation of ROS may participate in cellular responses
and signal transduction. Shear-induced ROS are responsi-
ble for inducing HO-1, that has remarkable antioxidant
abilities and carries out diverse protective functions in dis-
eases such as atherosclerosis [46-48]. In the present study,
we examined the regulatory mechanisms of shear stress
on the Nrf2 transcription factor and its downstream tar-
get, HO-1, in cultured human umbilical vein endothelial
cells (HUVECs). We demonstrated that shear stress
induced Nrf2 nuclear translocation, and this process
involved PI3K, ROS, and PKC. We also showed that shear
stress increased the ARE-binding activity of Nrf2. Parallel
experiments using H2O2 to stimulate ECs were carried out,
and similar results were obtained. Our data suggest that in
some way, the atheroprotective role of laminar shear
stress may be attributed to Nrf2 activation which results in
initiation of ARE-mediated gene transcription, including
HO-1 expression, that is beneficial to the cardiovascular
system.

Materials and methods
Cell culture
Primary cultures of HUVECs were harvested from umbili-
cal cord veins by collagenase isolation. The harvested cells
were resuspended in culture medium (Medium 199 sup-
plemented with 20% fetal bovine serum (FBS)), plated on
10-cm culture dishes, and then incubated at 37°C in 5%
CO2 balanced with air. The following day, HUVECs were
rinsed with buffer and grown to confluence within 2 to 3
days. The cells were subcultured on fibronectin-coated
glass slides. One day prior to the shear stress experiments,
the concentration of FBS in the culture medium was
reduced to 2%, and this was used throughout the shear
stress experiments.

Shear stress experiments
Exposure of HUVECs to shear stress was conducted in a
parallel-plate flow chamber as previously described [49].
Continuous flow of culture medium through the flow
chamber was generated by a roller pump. The flow loop
system was maintained at 37°C. The pH of the medium
was maintained at a constant level by continuous gassing
of the medium reservoir with humidified 5% CO2 bal-
anced with air.

Nuclear protein extraction
To prepare nuclear protein extracts, HUVECs were washed
with cold phosphate-buffered saline (PBS) and then
removed by scraping in detachment buffer (150 mM
NaCl, 1 mM EDTA, and 40 mM Tris; pH 7.6). After centrif-
Page 2 of 14
(page number not for citation purposes)



Journal of Biomedical Science 2009, 16:12 http://www.jbiomedsci.com/content/16/1/12
ugation of the cell suspension at 2000 rpm, the cell pellets
were resuspended in cold buffer A containing KCl (10
mM), EDTA (0.1 mM), dithiothreitol (1 mM), and phe-
nylmethylsulfonyl fluoride (1 mM) for 15 min. The cells
were lysed by adding 10% Nonidet P-40 and then centri-
fuged at 6000 rpm to obtain a pellet of nuclei. The pel-
leted nuclei were resuspended in cold buffer B containing
HEPES (20 mM), EDTA (1 mM), dithiothreitol (1 mM),
and phenylmethylsulfonyl fluoride (1 mM), as well as
NaCl (0.4 mM), and then vigorously agitated from time to
time, followed by centrifugation. The supernatant con-
taining the nuclear proteins was used for Western blot
analysis or an electrophoretic mobility shift assay (EMSA).

Western blot analysis
Proteins were extracted in sodium dodecylsulfate (SDS)
buffer and analyzed by SDS-polyacrylamide gel electro-
phoresis (SDS-PAGE). After being transferred onto a
nitrocellulose membrane, antigens were analyzed by spe-
cific antibodies. Antigen-antibody complexes were
detected using an ECL detection system (Pierce).

Reverse-transcriptase polymerase chain reaction (RT-
PCR)
The primer of Nrf2 (GenBank accession no.: BC011558)
was designed using the GCG system, and the GADPH
primer was provided by Dr. H. H. Chen (Institute of Bio-
medical Sciences, Academia Sinica, Taiwan). Nrf2 primers
were synthesized by MB Mission Biotech (Taipei, Taiwan)
and consisted of 5'-ACA CGG TCC ACA GCT CAT CAT-3'
(forward) and 5'-TTG GCT TCT GGA CTT GGA AC-3'
(reverse); GAPDH primers were synthesized by the same
company and consisted of 5'-TGG TAT CGT GGA AGG
ACT CAT GAC-3' (forward) and 5'-ATG CCA GTG AGC
TTC CCG TTC AGC-3' (reverse). When total RNA was iso-
lated from HUVECs, a Superscript III one-step RT-PCR kit
was used for the reverse transcription. After 25 cycles, the
end products were subjected to 1% agarose electrophore-
sis to analyze the target RT-PCR products.

Electrophoretic mobility shift assay (EMSA)
The supernatant containing the nuclear proteins was used
for the EMSA. The probe for EMSA was a synthetic 24-mer
oligonucleotide (5'-GGG ACT GGT GAC TCA GCA AAA
TCT-3') containing the ARE binding site within the pro-
moter region and about 4 kb upstream of the human HO-
1 gene [6]. The probe was end-labeled with biotin using
the Biotin 3'-end DNA labeling kit from Pierce (Rockford,
IL). Both the sense and antisense oligonucleotides were
separately labeled and then annealed to form the double-
stranded probe. 10 g of the nuclear protein from either
untreated or the different stress-exposed cells was incu-
bated at room temperature for 20 min in binding reaction
buffer containing the biotin-labeled 24-mer probe with,
or without, an unlabeled competitor. The competitor used

was the unlabeled 24-mer just described or the biotin con-
trol probe (Pierce). In the antibody supershift assay, the
anti-Nrf2 antibody (1 g, Santa Cruz Biotechnology) was
incubated with the mixture for 20 min at room tempera-
ture followed by the addition of the biotin-labeled DNA
probe. Proteins in the reaction mixture were then sepa-
rated by electrophoresis in a 5% TBE polyacrylamide gel
(Bio-Rad), run at 100 V for 45 min. Protein-DNA com-
plexes were transferred to a positively charged nylon
membrane (Bio-Rad) at 100 V for 60 min with 0.5% TBE
buffer at 4°C. The transferred DNA was cross-linked to the
membrane by 60-s exposure to ultraviolet light. Biotin-
labeled DNA was detected by using the LightShift chemi-
luminescent EMSA kit (Pierce) following the manufac-
turer's instructions.

Results
Shear stress increases Nrf2 expression and nuclear 
translocation
To examine the effect of shear stress on Nrf2 expression
and activation, HUVECs were exposed to a laminar shear
stress of 12 dyne/cm2 which resembles physiological
blood flow conditions in atherosclerotic plaque-free
regions. Shear stress substantially increased the total cellu-
lar levels of Nrf2 protein over time (Figure 1A). Despite
the fact that the predicted molecular weight of Nrf2 is 66
kD, the major Nrf2 band detected by immunoblotting
appeared to be approximately 100 kDa as seen in Figure
1A, similar to results reported in previous studies [50,51].

It had been reported that Nrf2 binds to the cytoskeleton-
associated protein, Keap1, in cytoplasm under basal con-
ditions and then is translocated into the nucleus upon
stimulation [30]. Herein, we investigated the regulation of
Nrf2 activation by shear stress. The nuclear level of Nrf2
protein increased with respect to time in HUVECs sub-
jected to shear stress (Figure 1B), revealing that shear
stress induced Nrf2 nuclear translocation, and thus could
initiate downstream transcription activities.

Since mRNA of Nrf2 is constitutively expressed in cells
[52], we also investigated the mRNA of Nrf2 and found
that it exhibited higher expression under shear stress stim-
ulation (Figure 1C). As revealed by RT-PCR, Nrf2 mRNA
was elevated after 30 min of shear stress, and reached a
maximum at around 60 min. The expression of Nrf2
mRNA was reduced after 120 min of shear stress, but it
was still higher than the basal static condition. The results
show that shear stress not only induces Nrf2 translocation
but also increases the expression of Nrf2 at the mRNA and
protein levels.
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Shear stress increases Nrf2 protein expression and induces Nrf2 translocation into nucleiFigure 1
Shear stress increases Nrf2 protein expression and induces Nrf2 translocation into nuclei. (A) Shear stress 
increased the total amount of Nrf2 protein. Human umbilical vein endothelial cells (HUVECs) were exposed to laminar shear 
stress at a magnitude of 12 dyne/cm2 for the indicated times. Total cell lysates were recovered and subjected to Western blot 
analysis with anti-Nrf2 and anti-tubulin (internal control, used to indicate equal loading of protein in each lane) antibodies. (B) 
Shear stress triggered the translocation and accumulation of Nrf2 protein in nuclei. HUVECs were exposed to laminar shear 
stress (12 dyne/cm2) for the indicated times. Nuclear extracts were isolated and subjected to Western blotting with anti-Nrf2 
and anti-nucleolin (internal control) antibodies. (C) Shear stress increased Nrf2 mRNA. HUVECs were exposed to laminar 
shear stress (12 dyne/cm2) for the indicated times. Total RNA was isolated, and Nrf2 and GAPDH (internal control) mRNA 
levels were detected by RT-PCR. Results are representative of three independent experiments.
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Shear stress induces Nrf2 nuclear translocation through a 
PI3K-dependent pathway
Many previous studies implied that Nrf2 activation is
mediated through the PI3K pathway [36,37,53]. Since
shear stress is known to activate the PI3K pathway, we
speculated that PI3K might participate in shear-induced
Nrf2 nuclear translocation. As anticipated, we found that
shear-induced Nrf2 nuclear translocation was suppressed
by pretreating HUVECs with LY294002, a PI3K inhibitor
(Figure 2A), suggesting that the PI3K pathway plays a key
role in shear-induced Nrf2 activation.

It was found that protein kinase C (PKC) phosphorylates
Nrf2 and regulates concomitant ARE-mediated transcrip-
tion in response to oxidative stress [38,39]. A recent study
showed that the anti-inflammatory activity of Phellinus
linteus (an orange-colored mushroom) is mediated
through PKCdelta/Nrf2/ARE signaling that leads to the
upregulation of HO-1 [54]. These findings suggest that
PKC may play a role in shear-induced Nrf2 nuclear trans-
location. To test this hypothesis, calphostin C (a PKC
inhibitor) was used to pretreat HUVECs prior to the shear
stress experiment. Pre-exposure to calphostin C did not
affect the basal level of nuclear Nrf2 protein but signifi-
cantly attenuated shear-induced Nrf2 nuclear transloca-
tion (Figure 2B), indicating that PKC is involved in the
nuclear translocation of Nrf2 in response to shear stress.

Chen et al. determined that dietary chemopreventive
compounds induce Nrf2 translocation through MAPK
pathways [55]. Owuor et al. also reported similar path-
ways for Nrf2 translocation under chemical stress [56].
Many MAPK family proteins, including p38 and JNK, are
activated by shear stress stimulation. It is likely that the
translocation of Nrf2 under shear stress conditions is reg-
ulated by the MAPK pathway. However, the use of
SB203580 (a p38-specific inhibitor) and SP600125 (a
JNK inhibitor) did not attenuate the translocation of Nrf2
(Figs. 2C &2D). This suggests that even though MAPK
pathways are activated by shear stress, p38 and JNK are
not involved in shear-induced Nrf2 translocation.

Shear stress increases Nrf2 nuclear accumulation and 
binding activity to ARE through ROS
In a previous study we showed that shear stress increases
intracellular ROS which participate in cellular responses
and signal transduction in endothelial cells [45]. Since
Nrf2 is a gene that can be stimulated by oxidants and elec-
trophiles [33,34], we also speculated that ROS might par-
ticipate in shear-induced Nrf2 nuclear translocation. We
found that shear-induced Nrf2 nuclear translocation
could be suppressed by pretreating endothelial cells with
N-acetyl cysteine (NAC), an ROS scavenger, suggesting
that ROS are essential for shear-induced Nrf2 activation
(Figure 3). We also found that pretreating cells with NAC

had an inhibitory effect on Nrf2 mRNA and protein levels
(data not shown).

On the other hand, a recent study demonstrated that NO
can also induce Nrf2 nuclear translocation [35]. It is
known that shear stresses increase NO production in
endothelial cells [57,58]. We thus investigated if NO plays
any role in shear-induced Nrf2 nuclear translocation.
Using eNOS inhibitors (L-NAME and L-NNA) to block
NO production in endothelial cells, no effect was seen on
shear-induced Nrf2 nuclear translocation (Figures 4A
&4B). Our results thus indicate that shear-increased NO
production is unimportant for the nuclear translocation
of Nrf2 induced by shear stress.

Nrf2 is a transcription factor that is essential for the ARE-
mediated induction of many redox-sensitive genes includ-
ing HO-1. To investigate the effect of shear stress on the
ARE-binding activity of Nrf2, nuclear proteins were iso-
lated from endothelial cells and used for an EMSA. An oli-
gonucleotide (5'-GGG ACT GGT GAC TCA GCA AAA TCT-
3') containing the ARE-binding site within the promoter
region lying about 4 kb upstream of human HO-1 gene
was used as a probe in the EMSA [6,59]. In the antibody
supershift assay, the anti-Nrf2 antibody was incubated
with nuclear proteins prior to the addition of the oligonu-
cleotide. The results indicated that shear stress enhanced
Nrf2 binding activity to ARE, and this effect was signifi-
cantly repressed by the ROS scavenger, NAC (Figure 5).
Similarly, H2O2 also increased the ARE-binding activity of
Nrf2, and this event was significantly suppressed by NAC
(Figure 5). Based on these findings, it is suggested that
shear stress promotes the binding activity of Nrf2 to ARE
through ROS.

Shear stress and H2O2 induce HO-1 protein expression 
through the PI3K pathway
As presented earlier, PI3K plays a vital role in shear-
induced Nrf2 activation (Figure 2). Activated Nrf2 was
demonstrated to bind to an ARE-containing oligonucle-
otide probe (Figure 5), and this might trigger the expres-
sion of ARE-containing genes including HO-1. As
expected, shear stress increased HO-1 protein levels in
HUVECs in a time-dependent manner (Figure 6A), and
this event was significantly suppressed by pretreating
HUVECs with LY294002 (a PI3K inhibitor), thus indicat-
ing an essential role of PI3K in shear-induced HO-1 pro-
tein expression (Figure 6B). H2O2 also increased HO-1
protein levels in a time-dependent manner (Figure 6C),
and it was significantly repressed by pretreating HUVECs
with LY294002 (a PI3K inhibitor), indicating that PI3K
also plays a key role in H2O2-induced HO-1 protein
expression (Figure 6D). Taken together, our data suggest
that shear stress and hydrogen peroxide both induce HO-
1 protein expression through the PI3K pathway.
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Discussion
In the present study, we examined the regulatory mecha-
nisms of shear stress on the Nrf2 transcription factor and
its downstream target, HO-1, in HUVECs. It was found
that shear stress activated Nrf2 nuclear translocation and
increased the amount of Nrf2 protein and the level of
mRNA transcription (Figure 1). The translocation of Nrf2
occurred after 10 min of shear stress, suggesting that Nrf2
translocation which induces downstream gene regulation
is a rapid response. However, the mRNA level of Nrf2

increased obviously after 30 min of shear stress and
reached a maximum at around 60 min. Hong et al. and
Eggler et al. reported that under a basal condition, Nrf2
undergoes Cul3-dependent ubiquitination and proteo-
somal degradation, but under various stimuli, Keap1 is
ubiquitinated to release Nrf2 into the nucleus [60,61]. It
is likely that when HUVECs are exposed to shear stress,
the early response is ubiquitination of Keap1 which
induces Nrf2 translocation. Nuclear translocation may
decrease the concentration of Nrf2 in the cytosol thus trig-

PI3K is involved in shear-induced Nrf2 nuclear translocationFigure 2 (see previous page)
PI3K is involved in shear-induced Nrf2 nuclear translocation. (A) PI3K is involved in shear-induced translocation of 
Nrf2 into nuclei. HUVECs were pretreated with LY294002, a PI3K inhibitor (50 M), for 60 min and then kept as static con-
trols or exposed to laminar shear stress (12 dyne/cm2) in the presence of LY294002 for 120 min. Nuclear extracts were pre-
pared and subjected to Western blotting with an anti-Nrf2 antibody. The cytoplasmic fractions were subjected to Western 
blotting with an anti-tubulin (internal control) antibody. (B) PKC is involved in Nrf2 activation. HUVECs were pretreated with 
calphostin C, a PKC inhibitor (200 nM), or DMSO as a negative control for 30 min, and then exposed to laminar shear stress 
(12 dyne/cm2) or kept in a static condition for 2 h. After treatment, nuclear extracts were prepared and subjected to SDS-
PAGE and immunoblotted with anti-Nrf2 and anti-nucleolin (internal control) antibodies. Similar results were obtained from 
repeated experiments. (C) p38 is not involved in shear-induced Nrf2 translocation. HUVECs were pretreated with SB203580, 
a p38 inhibitor (10 M), for 30 min, and then kept as a static control or exposed to shear stress in the presence of inhibitors 
for 60 min. Nuclear extracts were prepared and subjected to Western blotting with anti-Nrf2 and anti-C23 (internal control) 
antibodies. Similar results were obtained from repeated experiments. (D) JNK is not involved in shear-induced Nrf2 transloca-
tion. HUVECs were pretreated with SP600125, a JNK inhibitor (10 M), for 60 min, and then kept as a static control or 
exposed to shear stress in the presence of the inhibitor for 60 min. Nuclear extracts were prepared and subjected to Western 
blotting with anti-Nrf2 and anti-C23 (internal control) antibodies. Similar results were obtained from repeated experiments.

ROS are necessary for Nrf2 nuclear translocationFigure 3
ROS are necessary for Nrf2 nuclear translocation. HUVECs were pretreated with NAC, a reactive oxygen species 
(ROS) scavenger (10 mM), for 30 min and then kept as a static control or exposed to shear stress (12 dyne/cm2) in the pres-
ence of NAC for 30 min. Nuclear extracts were prepared and subjected to Western blotting with anti-Nrf2 and anti-nucleolin 
(internal control) antibodies. Similar results were obtained from repeated experiments.
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gering the expression of Nrf2 at both the mRNA and pro-
tein levels. But by 2 h later, the cells may have adapted to
the shear stress stimulation, and thus the transcription
level of Nrf2 began to decline. However, the amount of
Nrf2 protein was still higher than the basal condition (Fig-
ure 1A).

We also found that PI3K played a crucial role in shear-
induced Nrf2 translocation (Figure 2). Kang et al. revealed
that before entering nuclei, it is necessary for Nrf2 to be
translocated to plasma membranes where it is phosphor-
ylated by PI3K or PKC [36,42]. Based on our results, we
found that Nrf2 translocation and activation were PI3K-

Shear-induced Nrf2 nuclear translocation is not affected by nitric oxide synthase (NOS) inhibitorsFigure 4
Shear-induced Nrf2 nuclear translocation is not affected by nitric oxide synthase (NOS) inhibitors. (A and B) 
Shear-induced NO is not involved in the Nrf2 nuclear translocation. HUVECs were (A) pretreated with L-NAME, an NOS 
inhibitor (300 M), for 1 h or (B) pretreated with L-NNA, an NOS inhibitor (250 M), for 1 h, and then kept as a static control 
or exposed to shear stress in the presence of the inhibitor for 2 h. Nuclear extracts were prepared and subjected to Western 
blotting with anti-Nrf2 and anti-nucleolin (internal control) antibodies. Similar results were obtained from repeated experi-
ments.
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dependent. But PI3K is a lipid kinase, and the substrate of
PI3K should be a lipid like PIP2, not Nrf2. This implies
that the mechanism of Nrf2 translocation is indirectly
mediated by PI3K. There are likely more protein kinase(s)
involved in Nrf2 activation, and PKC may be one candi-
date. When shear stresses activate PI3K, it phosphorylates
PIP2 to PIP3, and at this time, phosphoinositide-depend-

ent kinase 1 (PDK1) may bind to PIP3 through its PH
domain. PKC, one of the downstream substrates of PDK1,
can be phosphorylated and activated. Activation of Nrf2
by PKC possibly occurs through the phosphorylation of
S40 at the Neh2 domain of Nrf2, which interacts with
Keap1 [38,39]. The phosphorylation of S40 triggers a con-
formational change in Nrf2, and thus Nrf2 is released

Shear stress increases the antioxidant response element (ARE)-binding activity of Nrf2 through reactive oxygen species (ROS)Figure 5
Shear stress increases the antioxidant response element (ARE)-binding activity of Nrf2 through reactive oxy-
gen species (ROS). HUVECs were kept in a static condition (Control), exposed to shear stress (SS) of 12 dyne/cm2 for 2 h, 
incubated with H2O2 (200 M) for 2 h (H2O2), or pretreated with NAC (10 mM) (NAC) and then incubated with H2O2 (200 
M) for 2 h (NAC+H2O2). Before applying the shear stress, HUVECs were pretreated with NAC (10 mM) for 60 min and then 
exposed to shear stress for 2 h (NAC+SS). Total nuclear extracts were prepared and analyzed by EMSA using a biotin-labeled 
oligonucleotide probe containing Nrf2 consensus binding sites corresponding to the HO-1 promoter region (5'-GGG ACT 
GGT GAC TCA GCA AAA TCT-3', within the promoter region lying about 4 kb upstream of the human HO-1 gene). The 
specificity of the Nrf2 binding was assessed by preincubating nuclear extracts with the biotin-labeled oligonucleotide probe in 
the presence of 100× unlabeled oligonucleotide probe to compete for Nrf2 binding (Competition). EMSA performed on the 
nuclear extracts preincubated with an Nrf2 antibody (SS+Nrf2 Ab) was also included. Results are representative of duplicate 
experiments with similar results.
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Figure 6 (see legend on next page)
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from Keap1. Free Nrf2 in the cytosol is translocated into
nuclei or interacts with other protein kinase(s). We specu-
late that nuclear translocation of Nrf2 requires either
phosphorylation by PKC or another serine or threonine
kinase at S40 of the Neh2 domain, which disrupts the
interactions of Nrf2 and Keap1, leading to Nrf2 separating
from Keap1. With the exception of PI3K, ROS also partic-
ipate in the nuclear translocation of Nrf2 (Figure 3). How-
ever, the detailed mechanism is not clear at the present
time. ROS may change the intracellular redox state of
HUVECs, triggering the formation of disulfide bonds
between the SH groups of cysteine residues within protein
molecules, thus altering the activities of those proteins
(see discussion below).

In a previous study, we showed that shear stresses increase
the amount of ROS in endothelial cells [45]. The genera-
tion of ROS may participate in many cellular responses
and signal transduction. This study verified that ROS are
important regulators of the nuclear translocation of Nrf2.
The intracellular redox state of HUVECs can be altered by
ROS. On the other hand, many previous studies reported
that shear stresses activate eNOS and increases the
amount of endogenous NO [57,58], which also affects the
intracellular redox state of HUVECs. However, we found
that shear-increased NO had no influence on Nrf2 trans-
location (Figure 4).

The detailed mechanism of the regulation of Nrf2 translo-
cation by the intracellular redox state remains to be eluci-
dated. Wakabayashi et al. showed that both C273 and
C288 residues are necessary for Keap1 to repress Nrf2
[62]. Based on our data in Figs. 3 &4, we speculated that
the redox state of HUVECs may influence Nrf2 transloca-
tion by changing the redox state of the C273 and C288
residues of Keap1. There might be several possible mech-
anisms that alter the C273 and C288 residues of Keap1
and thus release Nrf2. For example, it is possible that
when the amount of ROS is increased, the SH groups on
C273 and C288 may be oxidized to form disulfide bonds,

thus triggering Keap1 to release Nrf2 and initiating Nrf2
nuclear translocation. It was reported that an elevated
concentration of xenobiotics in the cytosol causes oxida-
tive stress and induces the dissociation of Nrf2 from
Keap1 through the above-mentioned ROS-mediated
mechanism [31]. Another possibility is the nitrosylation
of C273 and C288 residues of Keap1 which causes the
release of Nrf2, and this mechanism is carried out only
when the concentration of NO in the cytosol is much
higher than the basal condition. We speculated that the
concentration of shear-induced NO was not high enough
to trigger Nrf2 translocation. Thus, it is likely that the
ROS-mediated mechanism plays a relatively more impor-
tant role than the NO-mediated mechanism in regulating
Nrf2 translocation.

As for the intracellular sources of ROS, Li et al. and Han-
cock et al. showed that NADPH oxidases (NOXs) are a
major source of ROS [63,64], and in our preliminary
study, we found that the use of small interfering (si)RNA
against NOX2 repressed Nrf2 translocation (data not
shown). This result also supports our deduction that a
change in the redox state of HUVECs triggers Nrf2 translo-
cation.

Results obtained from the gel shift assay further revealed
that shear stress enhanced the ARE-binding activity of
Nrf2 through the involvement of ROS (Figure 5). Shear-
induced HO-1 protein expression was also suppressed by
a PI3K inhibitor (Figure 6). Parallel experiments were con-
ducted using H2O2, a major ROS, as the stimulus, and
similar results were obtained. These results provide evi-
dence that shear-induced Nrf2 regulates HO-1 expression
via binding to the ARE in the promoter region, and this
regulation involves PI3K and ROS.

Conclusion
In the present study, we examined the regulation of shear
stress on Nrf2 in HUVECs. We demonstrated that a lami-
nar shear stress of 12 dyne/cm2 induced Nrf2 nuclear

Shear stress and hydrogen peroxide induce HO-1 expression via a PI3K-dependent pathwayFigure 6 (see previous page)
Shear stress and hydrogen peroxide induce HO-1 expression via a PI3K-dependent pathway. (A) Shear stress 
increased HO-1 protein expression. HUVECs were exposed to laminar shear stress (12 dyne/cm2) for the indicated times. 
After cell lysis, total cell lysates were prepared and subjected to Western blotting with anti-HO-1 and anti-tubulin (internal 
control) antibodies. (B) PI3K is involved in shear-induced HO-1 protein expression. HUVECs were pretreated with LY294002, 
a PI3K inhibitor (50 M) for 60 min and then kept as static controls or exposed to shear stress in the presence of LY294002 
for 4 h. Total cell lysates were subjected to Western blotting with anti-HO-1, anti-phospho-Akt, and anti-Akt (internal control) 
antibodies. (C) Hydrogen peroxide (H2O2) increased HO-1 protein expression. HUVECs were incubated with H2O2 (200 M) 
for the indicated times. Total cell lysates were subjected to Western blotting with anti-HO-1 and anti-tubulin (internal control) 
antibodies. (D) PI3K is involved in H2O2-induced HO-1 protein expression. HUVECs were either kept as a static control or 
treated with H2O2 (200 M) for 4 h or pretreated with LY294002, a PI3K inhibitor (50 M), for 60 min. Total cell lysates were 
subjected to Western blotting with anti-HO-1, anti-phospho-Akt, and anti-tubulin (internal control) antibodies. Results are 
representative of duplicate experiments with similar results.
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translocation, and we found that PI3K, PKC, and ROS, but
not MAPKs (p38 and JNK), were involved in the signaling
pathway. We also found that shear stress increased the
ARE-binding activity of Nrf2 and HO-1 expression. HO-1
has been shown to have remarkable antioxidant abilities
and is responsible for diverse protective functions against
diseases such as atherosclerosis. Our data suggest that the
atheroprotective role of laminar shear stress is partly
attributed to Nrf2 activation which results in ARE-medi-
ated gene transcription, including HO-1 gene expression,
which is beneficial to the cardiovascular system.
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