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Breast cancer is the most common malignancy in women, and there is

evidence for the dual role of cell pyroptosis in tumor development. However,

little is known about the relationship between cell pyroptosis and breast cancer

and its prognostic value. We aimed to construct a prognostic model using cell-

pyroptosis-related genes to provide innovative insights into the prognosis and

treatment of breast cancer. We screened candidate genes for pyroptosis using

public databases and identified 10 cell pyroptosis signature genes with the

random forest method. Finally, a nomogram for predicting 1-, 3-, and 5-year

survival probabilities was constructed. The differences in immune cell

distributions between survival periods were similar across the breast cancer

datasets. The 10 identified key pyroptosis factors showed a significant

correlation with Her2, tumor–node–metastasis (TNM) stage, and survival of

breast cancer. The risk scores correlated positively with the infiltration features

of naive B cells, CD8+ T cells, atpdelnd mast cells, while they correlated

negatively with those of M0 macrophages and dendritic cells. In conclusion,

our findings confirm that cell pyroptosis is closely associated with breast

cancer. Importantly, the prognostic complex values generated from the 10

cell-pyroptosis-related genes based on various clinical features may provide an

important basis for future studies on the prognosis of breast cancer.

KEYWORDS
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Introduction

According to the latest data on the global cancer burden, in 2020, breast cancer had the

highest morbidity worldwide and was the leading cause of cancer-related deaths, with

approximately 2.26 million newly diagnosed cases and 685,000 reported deaths (1). Among

women, breast cancer accounts for 24.5% of all cases and 15.5% of cancer-related deaths; it
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ranks first among cancers in terms of incidence and cancer-related

mortality in most countries (2). Owing to the continuous progress

in medical treatment, the survival rate of patients with breast

cancer has improved greatly, and the current 1-, 3-, and 5-year

survival rates are 0.92, 0.75, and 0.73, respectively. Although the

survival rate associated with breast cancer is better than that for

most other tumors, the 10-year survival rate remains low (0.61),

and some patients experience distant recurrence at different times,

with an average survival time of 2 years after recurrence (3). Given

this situation, a reliable prognostic model may help improve the

survival rate of patients.

Cell pyroptosis, also known as cellular inflammatory

necrosis, is an inflammatory form of programmed cell death

(PCD), but it differs considerably from other types of PCD (4). It

was first identified in infected macrophages in 1992 (5), and the

term was coined by Cookson et al. (6). PCD induced under

various stimuli has been studied extensively in many disease

models, and cell pyroptosis was found to be mediated by

gasdermin (GSDM) (7). The GSDM family includes gasdermin

A (GSDMA), gasdermin B (GSDMB), gasdermin C (GSDMC),

gasdermin D (GSDMD), gasdermin E (GSDME), and PJVK (8).

Except for PJVK, the other members of the GSDM family have

both C- and N-terminal structural domains. GSDM is cleaved,

and the GSDM-N structural domain is released (9). The released

N-terminal domain perforates the cell membrane and leads to

characteristic morphological changes associated with pyroptosis,

including cytoplasmic swelling, membrane rupture, and release

of inflammatory factors into the extracellular environment, thus

directly amplifying the systemic immune responses (9). The

main manifestation of pyroptosis in cells is swelling that results

in cell membrane rupture, which leads to the efflux of contents

and activation of an intense inflammatory response (10).

The role of cell pyroptosis in cancers is gradually becoming

evident. In esophageal squamous carcinoma, head and neck

squamous carcinoma, and hepatocellular carcinoma,

pyroptosis can be induced by different drugs to achieve tumor

suppression (11–13). On the other hand, pyroptosis inhibition

protects microglia and neurons, rescues dopaminergic neurons,

inhibits neuroinflammation, and alleviates neurodegeneration

(14). Therefore, pyroptosis is a double-edged sword that plays a

key role in antitumor immunity in certain tumors and may

provide an effective treatment strategy for cancer; however, its

induction in normal tissues and immune cells can lead to severe

damage (15). Thus, in the case of tumors, on the one

hand, pyroptosis causes inflammation that contributes

to the generation and maintenance of an inflammatory

microenvironment around cancer cells, thus promoting tumor

progression; on the other hand, acute activation of pyroptosis

leads to the infiltration of multiple immune cell types that inhibit

tumor progression (16). In non-small cell lung cancer, GSDME-

mediated pyroptosis can make immune factors MIP-1a, MIP-

1b, MIP-2, and IP-10 increase, thereby recruiting T cells to
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achieve anti-tumor effect (17). Some chemotherapeutic drugs

can induce the expression of GSDMC and activate caspase-8 and

induce the pyroptosis of breast cancer cells (18). Pyroptosis also

has different anti-tumor mechanisms in the study of

hepatocellular carcinoma, gastric cancer, and ovarian cancer

(19). To examine the prognostic impact of pyroptosis, a

pyroptosis score was constructed for melanomas. The results

indicated that cell pyroptosis is an independent prognostic factor

that can improve survival by strong immune clearance in tumors

through immune cells, including T cells, B cells, and natural

killer (NK) cells (20). Furthermore, a recent study found that N-

oxide induced pyroptosis in tumor cells by activating the

endoplasmic reticulum stress kinase PERK and, thus,

enhanced CD8+ T-cell-mediated antitumor immunity in

triple-negative breast cancer (TNBC) in the in vivo setting

(21). All these findings reveal the close relationship between

pyroptosis and breast cancer. Specifically, cellular pyroptosis

plays an important role in tumorigenesis and antitumor

processes, but its specific function in breast cancer is unclear.

This systematic study was conducted to determine the

expression of genes associated with cell pyroptosis in normal

breast tissues and breast cancer tissues in order to evaluate their

prognostic value and further investigate the correlation between

cell pyroptosis and the tumor immune microenvironment. We

aimed to comprehensively assess the relationship between cell

pyroptosis and the prognosis of breast cancer patients and also

constructed a nomogram based on breast cancer pyroptosis-

related genes. The efficacy of this nomogram was evaluated for

prognostic prediction, molecular characterization, clinical

significance, and assessment of the regulatory function of the

immune microenvironment.
Material and methods

Data collection

The Cancer Genome Atlas Breast Cancer (TCGA-BRCA)

expression profile, variants, clinical information, and follow-up

data were downloaded from XENA, and samples with complete

phenotypic and survival data were retained for further analyses.

The GSE96058 expression data and corresponding sample

information were downloaded from the GEO database. The

METABRIC expression data and corresponding sample

information were downloaded from the ciBoportal database.

The data were preprocessed as follows: first, probes

corresponding to genes according to the annotation file were

included, while unannotated probes were removed. If there were

multiple probes that corresponded to the same gene, the probe

with the maximum value was considered to represent the level of

expression of that gene. All genes with low expression were

filtered out at a cutoff of >1 in at least 10% of the samples.
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Differential gene analysis

Differential analysis of data normalized to fragments per

kilobase of transcript per million (FPKM) in TCGA-BRCA was

performed using the limma package in R. For screening, the

criteria were set as |FC| > 1.5 and p < 0.05.
Cox regression and survival analyses

For Cox univariate analysis, regression modeling of

individual genes or clinical features [age, tumor–node–

metastasis (TNM) stage, LumA, LumB, TNBC, and Her2

status] was performed using the coxph function in the survival

package. Prognosis-related genes or clinical features were

screened at a cutoff p-value of <0.05. After the corresponding

modeling parameters were extracted, forest plots were drawn

using the forestplot package.

For survival analysis, related genes were screened

and grouped according to their median expression level.

Overall survival (OS) and grouping information were fitted

using the survfit function in the surv package and finally

analyzed and visualized using the ggsurvplot function in the

survminer package.
Screening of pyroptosis factors and gene
set variation analysis by the random
forest method

Potential pyroptosis-related factors were screened using the

random forest (RF) algorithm. A three-time and 10-fold

crossover model was constructed using the carat package. The

optimized parameters were input into the RF package, and

finally, genes with the top 10 MeanDecreaseGini scores were

selected. The pROC package was used for prognosis prediction

of the tumor samples, and receiver operating characteristic

(ROC) curves were drawn. Finally, the genes with the top

10 MeanDecreaseGini scores were selected as the key

pyroptosis factors.

The pyroptosis signature gene expression values were

determined from normalized expression data in TCGA-BRCA,

and gene set variation analysis (GSVA) was performed on the

normalized expression data using the GSVA package to obtain

the complex values.
Prediction of survival using the
prognostic complex

Regression modeling of the complex values was performed

using the coxph function in the survival package, and the
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samples were classified into high- and low-risk groups

according to the median of the complex values. Finally, OS

was analyzed.
Validation of the prognostic complex
and nomogram construction

In order to verify the independent prognostic efficacy of the

high and low complex values, univariate Cox analysis was first

performed on the TCGA-BRCA dataset in combination with

other clinicopathological characteristics, including age, TNM

stage, LumA, LumB, TNBC, and Her2 status. Next, overall

prognosis based on the above factors was analyzed by multi-

factor Cox regression analysis to verify the independent

prognostic efficacy of the risk score. The Cox proportional

hazards regression model was constructed using the cph

function in the R package rms. Finally, the survival package

was used to calculate survival probability, and the nomogram

function was used to construct the nomogram and plot the

calibration curves to evaluate its accuracy and predict its utility.
Immune infiltration analysis

The immune infiltration score files for TCGA were

downloaded from the TIMER2 (http://timer.comp-genomics.org/)

database, and TCGA-BRCA sample data were screened. The

corresponding CIBERSORT score data were used for comparison

of immune cell differences among samples with different survival

values, using the t_test function in the rstatix package in R.

Difference analysis and correlation analysis between the complex

value and immune cell proportions were conducted by the Pearson

method. Immune infiltration scoring was performed using

TIMER2 along with normalized expression data from GSE96058

and METABRIC. Finally, immune cell differential analysis and

mapping were performed.
Enrichment analysis and correlation
analysis of key genes associated with
the clinical features

The enrichment of Gene Ontology (GO) terms and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathways was

analyzed using the clusterProfiler package. The enriched GO

terms were further analyzed by GSEA. For GO terms that were

enriched in both steps, similarity calculation and hclust

clustering were performed using the GOSemSim package.

For screening tumor samples for TCGA molecular typing

and stage, mosaic correlation analysis was performed on

survival-related clinical information, and the expression levels
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of pyroptosis-related key genes were analyzed with the

vcd package.
Mutation analysis and molecular docking

The Mutect2 mutation files of TCGA-BRCA were

downloaded using the R package, TCGAbiolinks, and this was

followed by visualization of mutation types using the R package

maftools. The corresponding compound structures were

downloaded from the DrugBank database (https://go.

drugbank.com/) and screened according to Lipinski’s rules

(hydrogen bond acceptor ≤ 10, hydrogen bond donor ≤ 5,

rotatable bond ≤ 10, the logarithmic value of lipid–water

partition coefficient ≤ 5, molecular weight 180–480, and polar

surface area ≤ 140). Finally, 5,464 small-molecule compounds

were obtained. The 3D structural information of the proteins

encoded by the characteristic pyroptosis-related genes in breast

cancer was queried in PDB (https://www1.rcsb.org/). Relevant

structural information was obtained for PAK7, and its

corresponding PDB file, 2F57, was downloaded. The

approximate docking box range was identified according to

the ligand information therein, and other relevant parameters

of AutoDock Vina were set. Docking with small-molecule

compounds was performed with AutoDock Vina, and

demonstration and analysis of interaction forces were

performed using Pymol and Ligplus.
Drug sensitivity analysis

We analyzed the drug resistance of genes based on the GDSC

drug database. The mRNA expression data and drug sensitivity

data were merged. Pearson correlation analysis was performed

to determine the correlation between mRNA expression of the

screened pyroptosis-related genes and the IC50 values of drugs.

The p-value was adjusted by false discovery rate (FDR).
Codes

The codes used to analyze the data can be found here:

https://github.com/wzhlc1206/ A-Novel-Pyroptosis-Related-

Signature-Indicates-Immune-infiltration-Features-and-

Predicts-Prognosis-.git
Results

Identification of pyroptosis-related genes

First, we combined the pyroptosis-related genes from the

PMID:338828074, MsigDB, and GeneCards databases

(Supplementary Table S1) and obtained a pyroptosis gene set
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containing 57 genes (Supplementary Table S2). Next, the

correlation of these genes with the normalized expression data

in the TCGA-BRCA dataset was analyzed. Genes with Pearson

correlation coefficients >0.6 and p-values <1e−10 were selected

as candidate pyroptosis-related genes. Finally, 4,939 genes and

4,996 pyroptosis-related genes were obtained. The heatmap of

partial genes is shown in Figure 1A, and the RNA expression

profile for breast cancer is shown in Supplementary Table S3.

FPKM expression data from TCGA-BRCA were processed

using limma and filtered to exclude genes with low expression

levels. These values were normalized for principal component

analysis (PCA). Short-term survival was set as <5 years, while

long-term survival was set as more than 5 years. By comparing

the expression of differentially expressed genes, we found that

there were significant differences between normal and tumor

samples (Supplementary Figure S1A). In contrast, differences in

short- and long-term survival were less significant

(Supplementary Figure S1B).

Differential analysis of TCGA-BRCA data was performed

using the limma package according to the presence or absence of

disease. Differential genes were screened between breast cancer

and normal tissue samples (Supplementary Table S4). The genes

that were associated with survival are listed in Supplementary

Table S5. The screening criteria were as follows: |FC| > 1.5 and

p < 0.05. A total of 10,913 genes were upregulated, while 10,577

were downregulated in breast cancer samples as compared to the

normal samples (Figure 1B). A total of 2,255 intersecting genes

related to pyroptosis were obtained (Figure 1D). The breast

cancer samples were grouped according to survival time for

differential analysis: 994 genes were upregulated, while 906 were

downregulated in patients with long-term survival (Figure 1C).

The last two sets of intersecting genes were overlapped, and 29

candidate genes for pyroptosis were identified (Figure 1D).
Screening of core genes associated
with pyroptosis

Tumor samples in the TCGA-BRCA dataset were screened,

and univariate Cox regression analysis was performed for 29

pyroptosis-related genes using the survival package. Based on

the median gene expression values, the genes were classified into

high- or low-expression groups. The results showed that a total

of 19 genes were associated with breast cancer prognosis

(Figure 2A, p < 0.05). Survival analysis of these prognosis-

related pyroptosis genes based on the median threshold

showed that 14 potential pyroptosis-related genes were

significantly associated with survival in breast cancer: IGLV1-

44, IGLV1-51, IGLV1-66, CALML3, IGHA2, PAK7, TNN,

TP53AIP1, PCP2, TRBV7-4, EDAR, IGLV3-19, FREM1, and

ZMYND10 (Figures 2B–O). High expression of these genes for

up to 6,000 days was associated with better survival, and these

results were highly significant for TP53AIP1.
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To identify the core genes associated with pyroptosis, we

further screened these 14 potential pyroptosis genes. A three-

time 10-fold crossover model was constructed using the carat

package, and finally, the normalized dataset was analyzed using

the RF method with optimized parameters. Gini scoring was

performed, and finally, the top 10 genes according to their

MeanDecreaseGini scores were selected as the core genes
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associated with pyroptosis. These genes included PAK7,

TP53AIP1, PCP2, ZMYND10, IGHA2, IGLV1-44, TNN,

FREM1, IGLV1-51, and TRBV7-4. The potential pyroptosis-

related genes according to their MeanDecreaseGini scores are

shown in Figure 3A. The heat map for their expression is shown

in Figure 3B, and Figures 3C–L show the expression of these

genes, along with survival, in breast cancer patients.
A

B

D

C

FIGURE 1

Screening of candidate genes for pyrosis. (A) Heatmap of the correlation between partial differences in the TCGA-BRCA dataset and pyroptosis
genes. (B) Volcano plot depicting the results of differential analysis between tumor and normal datasets and (C) survival time. (D) Venn diagram
of intersecting pyroptosis genes. *P < 0.05, **P < 0.01, ***P < 0.001.
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Prediction of OS based on prognostic
complex value and validation of
independent prognostic factors

The pyroptosis-related genes identified after screening were

used as the defined set for GSVA. GSVA was performed for

breast cancer samples using the GSVA package, and the complex

prognostic value was obtained. The samples were then divided

into high- or low-risk groups according to the median complex

prognostic values. The correlation between survival and

pyroptosis-related gene expression was determined. Significant
Frontiers in Oncology 06
differences in survival and LumB, LumA, and Her2 subtypes

were found between the high- and low-risk groups. Association

analysis of survival and expression was performed for the overall

sample and five subtypes according to LumB, Basal, LumA,

Normal, and Her2 status (Supplementary Figures 2A–F), based

on the complex prognostic values calculated using GSVA for

breast cancer samples.

To verify the independent prognostic efficacy of the high

and low complex prognostic values, Cox univariate analysis

was first performed on the TCGA-BRCA dataset in

combination with other prognostic factors, including stage,
frontiersin.org
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FIGURE 2

Genes related to the prognosis of breast cancer. (A) Results of univariate Cox analysis of the TCGA-BRCA dataset. (B–O) Prognosis-related
pyroptosis gene expression and breast cancer survival curve.
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age, Her2, LumA, LumB, TNBC status, and TNM stage

(Figure 4A). Overall prognosis based on the above six factors

(including the complex prognostic values) was then analyzed

by multifactor Cox regression (Figure 4B). The results

confirmed that the complex values were independent

prognostic factors and could be used to develop prognostic

column line plots that could predict the probability of survival

at 1, 3, and 5 years. Nomograms of 1-, 3-, and 5-year survival

probabilities were verified by the calibration graph method,

and the standard curve of the calibration graph was in

good agreement with the calibration prediction curve
Frontiers in Oncology 07
(Figures 4C–F). The predicted and observed values for 1-, 3-,

and 5-year survival were in good agreement.
Correlation analysis of complex
prognostic values and immune-
infiltrating cells

The immune infiltration score files for TCGA were downloaded

from the TIMER2 database, and data related to the breast cancer

samples in TCGA-BRCA were selected and grouped according to
A B

D E F

G IH J

K L

C

FIGURE 3

Identification of core pyroptosis-related genes and relationship between the expression of these genes and survival. (A) MeanDecreaseGini
score after RF modeling of potential scores (light blue indicates the top 10 pyroptosis factor scores). (B) Heat map of the association between
the level of expression of the top 10 pyroptosis factors and breast cancer survival. (C–L) Survival analysis of the pyroptosis factors.
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survival (with 5 years set as the threshold). The CIBERSORT score

data were used for immune cell differential analysis and mapping

(Figure 5A). Immune infiltration scoring was performed using

TIMER2 for standardized expression data from GSE96085 and

METABRIC, followed by immune cell differential analysis and

mapping. The results of immune infiltration analysis showed that

the complex values were positively correlated with infiltration of

naive B cells, CD8+ T cells, and mast cells, while they were negatively

correlated with M0 macrophages and dendritic cells (Figures 5B–F).
Frontiers in Oncology 08
Enrichment analyses of key functional
genes and pathways

The clusterProfiler package was used to perform GO-BP

(Supplementary Table S6) and KEGG pathway enrichment

analyses (Supplementary Table S7) (Figure 6A) for the top 10

pyroptosis factors identified with the RF method and enriched

pathways from GSEA (Supplementary Table S8) (Figure 6B). For

BPs enriched in the first two steps, similarity calculation and
A B

D E F

C

FIGURE 4

Independent prognostic efficacy of complex prognostic values. Results of (A) univariate and (B) multivariate Cox regression analyses, (C)
nomograms, and calibration curves for survival at (D) one (E) 3 and (F) 5 years.
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hclust clustering were performed using the GOSemSim package.

Immune responses, defense responses, and cell recognition were

enriched (Figure 6C); this indicates that these genes were

involved in regulating similar BPs.
Mutation analysis of key genes and their
correlation with clinical features

The TCGA-BRCA point mutation maf files of Mutect

analysis were downloaded from TCGA. The mutation data of

tumor samples and pyroptosis core genes were screened, and

this was followed by visualization of mutation types using the R

package mafTools. Mutation analysis showed that FREM1,

TNN, and PAK7 were the top 3 key pyroptosis genes with the

highest mutation frequency (Figures 7A–D).

Screening of clinical information related to TCGA molecular

typing and mosaic correlation analysis of Her2 status, stage,

survival, and levels of expression of the 10 key genes of

pyroptosis in breast cancer samples using the vcd package

showed that there was a significant correlation between clinical

features and expression of the 10 pyroptosis genes (Figures 7E–N).
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Screening of potential therapeutic
compounds based on molecular
docking experiments

Protein structure information was downloaded from the

PDB database. AutoDock Vina was used for molecular

docking experiments. Compounds were filtered based on their

binding energies, and finally, Pymol was used for drawing

protein–compound binding maps. The corresponding

compound structures were downloaded from the DrugBank

database (https://go.drugbank.com/) and filtered according to

Lipinski’s rule. Finally, 5,464 small-molecule compounds were

obtained. 3D structural information about the proteins encoded

by characteristic pyroptosis-related genes in breast cancer was

obtained from the PDB database (https://www1.rcsb.org/), and

only relevant structural information for PAK7 was obtained (the

other genes did not have corresponding structural files

containing ligands based on which the docking box range

could be inferred). The corresponding PDB file, 2F57, was

downloaded. The approximate docking box range was

calculated based on the ligand information therein, and other

relevant parameters were set for AutoDock Vina. AutoDock
A B

D E F

C

FIGURE 5

Correlation of complex prognostic values and immune infiltrating cells. (A) Differences in the distribution and proportion of immune cells in the
TCGA-BRCA, GSE96058, and METABRIC datasets. (B–F) Correlation analysis of complex values with the proportion of different immune cell types.
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Vina was used for docking small-molecule compounds, and

Pymol and Ligplus were used for demonstration and analysis of

the interaction forces. The top 3 small-molecule compounds

with the strongest binding abilities were DB08676, DB08674,

and DB06888 (Table 1). Docking conformation and interaction

force analysis of pak7 and these three small-molecule

compounds are shown in Figure 8. The complete docking

scores are provided in Supplementary Table S9.
Drug sensitivity analysis

To explore the relationship between pyroptosis genes and

drug sensitivity, we analyzed the drug sensitivity of genes based

on the GDSC drug database. The results showed that ZMYND10,
Frontiers in Oncology 10
PCP2, TNN, and FREM1 were associated with drug response.

Patients with cancer with high expression of the PCP2 and TNN

genes were probably sensitive to AS605204 and FK886 and

resistant to XAV939. Furthermore, cancers with high

expression of the FREM1 gene were sensitive to XAV939 and

dasatinib and resistant to SB590885 and gemcitabine, and

cancers with high expression of ZMYND10 were resistant to

XAV939, gemcitabine, and SB590885 (Figure 9).
Discussion

According to the latest statistics, breast cancer ranks first

among tumors in women in terms of incidence (22), and the

number of cases is expected to reach 4.4 million in 2070 (23).
A

B

C

FIGURE 6

Enrichment analyses of key functional genes and pathways. (A) Bubble plot for enriched GO-BP and KEGG pathways related to key pyroptosis
factors. (B) GSEA for enriched pathways in the TCGA-BRCA samples. (C) The enriched pathways in panels (A, B) are classified into three major
categories of biological functions based on similarity.
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Increasing evidence shows that cell pyroptosis is closely

associated with the development of lung, gastric, cervical, and

breast cancers (24). Some scholars have used long-chain non-

coding RNAs or lncRNAs associated with pyroptosis to predict

the prognosis and tumor immune microenvironment of breast

cancer patients (25); however, the role of pyroptosis-related

genes in breast cancer remains unclear. Therefore, there is a

need to examine the prognostic profiles of pyroptosis-related

genes by combining independent prognostic factors associated

with breast cancer. Herein, we describe the expression, mutation,
Frontiers in Oncology 11
immune infiltration, and clinical significance of pyroptosis-

related genes in breast cancer.

In our study, most pyroptosis-related genes were

differentially expressed in breast cancer, and this indicated

their potential roles in tumorigenesis (26). We constructed a

prognostic gene signature based on 10 cell pyroptosis genes

(PAK7, TP53AIP1, PCP2, ZMYND10, IGHA2, IGLV1-44,

TNN, FREM1, IGLV1-51, and TRBV7-4) and generated a

nomogram for predicting the probability of survival at 1 and 3

years. Survival analysis showed significant differences in OS
TABLE 1 Top 10 compounds with the best docking scores with PAK7.

DrugBank ID Hydrogen Hydrogen Rotatable LogP Molecular TPSA Affinity
Acceptors Donors Bonds Weight (kcal/mol)

DB08676 5 1 0 2.5 453.5 83.2 -11.1

DB08674 5 1 0 2.8 435.5 83.2 -10.9

DB06888 6 2 0 2.2 403.4 86.3 -10.7

DB15054 5 2 3 2.5 424.5 86.2 -10.7

DB12012 8 1 4 3.3 455.4 80.2 -10.5

DB12200 2 2 2 2.9 369.4 66.9 -10.4

DB12523 5 1 5 3.2 432.5 65.8 -10.2

DB06469 4 3 1 2.2 439.5 88.6 -10.1

DB08683 3 1 0 3.8 393.4 65.3 -10.1

DB12611 5 4 4 1.5 419.5 130 -10.1
fr
A B D
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C

FIGURE 7

Mutation analysis of key genes and their correlation with clinical features. (A) Waterfall plot for point mutation analysis of key pyroptosis factors
in samples from the TCGA-BRCA dataset. (B) Statistical plot of point mutation types. (C, D) Point mutation distribution for FREM1 and PAK7 and
(E–N) the relationship between key pyroptosis factors and TCGA molecular typing, Her2 status, and stage of breast cancer.
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between high- and low-risk groups classified according to the

complex prognostic values and between groups with high

and low complex prognostic values for three breast cancer

subtypes based on LumB, LumA, and Her2 status. The results

of univariate and multifactorial Cox analyses revealed

the independent prognostic effects of the complex prognostic

values. Furthermore, the differences in immune cell distributions
Frontiers in Oncology 12
according to survival were similar across the different breast

cancer datasets.

In the present study, the 10 key pyroptosis-related factors

identified were significantly correlated with TCGA molecular

typing based on the Her2 status and stage of breast cancer

samples. Some scholars have pointed out that GSDMB

overexpression/amplification occurs in 60% of HER2-positive
A B C

FIGURE 8

Docking conformation and interaction force analysis for PAK7 and three small-molecule compounds. (A) DB08676, (B) DB08674, and
(C) DB06888. Top panel: Pymol shows the docking conformation and hydrogen bonding, wherein cyan is the small molecule, the yellow
dashed line is the hydrogen bond, and blue is the amino acid residue forming the hydrogen bond with the small molecule. Bottom panel:
Ligplus force analysis, wherein the small molecule is in the middle, surrounded by related protein amino acid residues; the green dashed line is
the hydrogen bond; and the amino acid in green is the amino acid residue forming a hydrogen bond.
FIGURE 9

Drug sensitivity analysis of the pyroptosis genes. Data from the GSCA database represent the correlation between the expression of proptosis
genes and drug sensitivity. A negative correlation indicates that patients with cancer with overexpression of the proptosis genes are sensitive to
the drug, and vice versa.
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breast cancers (27). In addition, higher expression of DRD2 was

positively correlated with longer survival times, especially in HER2-

positive patients, and DRD2 also triggered GSDME-mediated

pyroptosis (28). This implies that HER2 may be more closely

related to pyroptosis. Mutation analysis showed that FREM1,

TNN, and PAK7 were the top 3 key pyroptosis genes with the

highest mutation frequencies. Only structural data for PAK7 were

available in the PDB database, and the results of molecular docking

revealed that PAK7 had the strongest binding ability for the three

small-molecule compounds examined, namely, DB08676, DB08674,

and DB06888. Some studies have shown that small molecular drugs

that can regulate immune cells will greatly improve the efficacy of

cancer immunotherapy (29). Small molecular compounds can

change the molecular pathway to deal with immune tolerance and

overcome tumor-related immunosuppression, so as to produce

effective anti-tumor response and improve the efficacy of cancer

immunotherapy (30). Small molecular drugs are compatible with

systemic administration and are suitable for extracellular and

intracellular targets (31). In future research, we will pay more

attention on how to improve the efficacy of breast cancer by

combining immunotherapy with DB08676, DB08674, and

DB06888 small molecular compounds. PAK7, an oncogene, is

significantly upregulated in both gastric and esophageal squamous

carcinoma (32, 33). Its expression is significantly enhanced in breast

cancer tissues and correlates positively with its pathological

differentiation and TNM stage. PAK7 is involved in breast cancer

progression through the activation of the Wnt/b-linked protein

signaling pathway; this indicates the potential applicability of PAK7

as a therapeutic target for the treatment of breast cancer (34). In fact,

one study has reported that inhibition of osteosarcoma can be

achieved by targeting PAK7 (35). Studies on non-small cell lung

cancer suggest that the PAK7 mutant phenotype is also associated

with the tumor immune microenvironment (36). Similarly, in our

study, it was confirmed that PAK7 was correlated significantly with

the TCGA molecular type, Her2 stage, TNM stage, and the immune

microenvironment in breast cancer. Notably, TP53AIP1,

ZMYND10, and FREM1 are associated with the apoptotic pathway

(37). Moreover, apoptosis and pyroptosis are tightly linked to each

other through multiple mechanisms (38). ZMYND10 suppresses

breast cancer oncogenicity by inhibiting the miR145-5p/NEDD9

signaling pathway (39). As an oncogene, ZMYND10 promotes

apoptosis in tumor cells by regulating the activity of sMEK1 (40)

and inhibiting angiogenesis. In addition, ZMYND10 can upregulate

BAX expression, which facilitates the pro-apoptotic pathway, thereby

promoting paclitaxel-induced apoptosis in ovarian cancer cells.

Reduced FREM1 expression is usually associated with hormone-

receptor-negative and TNBC status, and correlates significantly with

poor OS and recurrence-free survival. Furthermore, FREM1

expression correlates positively with the level of immune

infiltration of CD4+, CD8+ T cells, and CD86+ M1 macrophages,

while it correlates negatively with CD68+ pan− and CD163+ M2

macrophages. These findings suggest that FREM1 is a potential

biomarker for assessing immune infiltration status and BC prognosis
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(41, 42). Interestingly, TILRR enhances IL-1-induced anti-apoptotic

responses (43) and is a splice variant of the FRAS1 family (44). It has

also been shown that high IGHA2 mRNA expression is associated

with a more favorable prognosis (45); this is consistent with our

findings. IGHA2 is significantly associated with the OS of patients

with esophageal squamous cell carcinoma, as evaluated using a

prognostic risk score model of immune-related genes (46). The

close relationship between apoptosis and cell pyroptosis may

explain the dual roles of TP53AIP1, ZMYND10, and FREM1.

IGLV1-44 and IGLV1-51 are immune-related genes (47–49) that

can influence immune infiltration. Our results suggest that several

pathways associated with the pyroptosis-related genes were enriched.

Thus far, the relationship of TNN, TRBV7-4, and PCP2 with cancer

has not been reported, and our results suggest that these genes, as

core pyroptosis genes, have important associations with breast cancer

development and the immune microenvironment.

Breast cancer is often considered a cold tumor with reduced

immune cell infiltration, suppressed immune microenvironment,

and low mutation frequency (50). Importantly, immunotherapy

may produce lasting therapeutic effects. Therefore, many scholars

have studied and explored immunotherapy strategies for breast

cancer. For example, atezozumab is a monoclonal antibody against

PD-L1. In a phase III study, atezozumab combined with paclitaxel

was found to affect the progress of TNBC and improve its prognosis.

Accordingly, treatment with atezozumab has been approved by the

Food and Drug Administration (FDA) for PD-L1-positive advanced

or metastatic TNBC (51). Other immunotherapies for breast cancer,

including cytotoxic T-lymphocyte-associated antigen 4 or CTLA-4,

tumor-infiltrating lymphocytes, and tumor vaccines, have also

achieved relatively good results in the research setting and may

pave the way for more breast cancer treatments that can be applied in

the clinical setting (52). The combination of cell pyroptosis induction

and immunotherapy may synergistically increase anticancer activity

(53). Accordingly, it has been indicated that cell-pyroptosis-related

gene signatures correlate with almost all steps of the cancer immune

cycle (54). The results of immune infiltration analysis in the present

study showed that the complex prognostic values correlated

positively with the infiltration of naive B cells, CD8+ T cells, and

mast cells, while they correlated negatively with M0 macrophages

and dendritic cells. Thus, cell pyroptosis pathways may have an

impact on the immune-oncology landscape. Finally, the data

obtained from the GDSC database indicated that patients with

increased expression of the ZMYND10, PCP2, TNN, and FREM1

genes may not respond well to treatment with XAV939 and

dastatinib; however, they may respond to treatment with

AS605240, FK886, etc.

Some limitations of this study need to be mentioned. As the

data were obtained from public databases, they need to be

validated with laboratory/real clinical data. Yu et al. have

identified different pyroptosis genes from us in humans

through the TCGA and GEO databases (55), but the good

thing is that those pyroptosis genes found by both of us can

predict the prognosis of breast cancer. Therefore, in the next
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study, we will analyze the reported data and verify the

relationship between pyroptosis genes and breast cancer

through in vivo and in vitro experiments. However, the

immune microenvironment has a very important impact on

tumors, so we will also focus on the regulation of pyroptosis

genes in the immune microenvironment and the effects on

related immune cells. In conclusion, our results suggest that

induction of cell pyroptosis may be a novel strategy for breast

cancer immunotherapy and has broad clinical applicability. The

findings may provide an important basis for future studies in

terms of developing efficient treatment strategies for

breast cancer.
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