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Abstract: Accumulation of amyloid-beta (Aβ) plaques leading to oxidative stress, mitochondrial
damage, and cell death is one of the most accepted pathological hallmarks of Alzheimer’s disease
(AD). Pandanus amaryllifolius, commonly recognized as fragrant screw pine due to its characteristic
smell, is widely distributed in Southeast Asia and is consumed as a food flavor. In search for
potential anti-AD agents from terrestrial sources, P. amaryllifolius was explored for its in vitro anti-
amyloidogenic and neuroprotective effects. Thioflavin T (ThT) assay and the high-throughput
screening multimer detection system (MDS-HTS) assay were used to evaluate the extracts’ potential
to inhibit Aβ aggregations and oligomerizations, respectively. The crude alcoholic extract (CAE,
50 µg/mL) and crude base extract (CBE, 50 µg/mL) obstructed the Aβ aggregation. Interestingly,
results revealed that only CBE inhibited the Aβ nucleation at 100 µg/mL. Both CAE and CBE also
restored the cell viability, reduced the level of reactive oxygen species, and reversed the mitochondrial
dysfunctions at 10 and 20 µg/mL extract concentrations in Aβ-insulted SY-SY5Y cells. In addition,
the unprecedented isolation of nicotinamide from P. amaryllifolius CBE is a remarkable discovery
as one of its potential bioactive constituents against AD. Hence, our results provided new insights
into the promising potential of P. amaryllifolius extracts against AD and further exploration of other
prospective bioactive constituents.

Keywords: Alzheimer’s disease; amyloid-beta; neuroprotection; nicotinamide; Pandanus amarylli-
folius; Thioflavin T; high-throughput screening multimer detection system (MDS-HTS) assay

1. Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder commonly
depicted by memory loss, mental dysfunctions, cognitive and learning impairments, and
emotional instability [1]. With global prevalence as the seventh cause of death in 2020
and 2021, it is estimated that 44 million people worldwide are affected by AD [2]. With
a complex plethora of etiologies, the excessive formation and deposition of amyloid-beta
(Aβ) plaques leading to oxidative stress, mitochondrial dysfunctions, and eventual nerve
cell death and tissue loss are the most accepted pathological hallmark of AD [3]. Currently,
US FDA approved the acetylcholinesterase inhibitors donepezil galantamine, tacrine, and
rivastigmine; the N-methyl-D-aspartate (NMDA) receptor antagonist memantine; and
aducanumab, a monoclonal antibody targeting the aggregation of Aβ [4,5], to combat AD.
However, these drugs only provide symptomatic relief of AD and come with adverse side
effects [5,6]. Moreover, treatment of AD utilizing aducanumab would be very expensive
at an annual price of USD 56,000 [7]. With the rapid growth of people worldwide with
AD, the discovery of potential drugs and medicinal plants with minimal adverse effects,
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cost-effective, and may help to alleviate the progression of AD is warranted. Plants have
been regarded as primary sources of diverse and pharmacologically important metabolites
used in drug discovery research for the treatment of various diseases, including AD [8–11].

Pandanus amaryllifolius, commonly known as fragrant screw pine, is one of the 700 species
of the Genus Pandanus widely distributed in tropical and sub-tropical environments such
as the Southeast Asian countries, India, Taiwan, Papua New Guinea, and Sri Lanka [12]. It
is utilized in Philippine traditional folk medicine to treat stomachache, high blood pressure,
urinary tract infection, and kidney illness [13]. It is also used in cooking to impart color,
flavor, and a distinct smell identified as 2-acetyl-1-pyrroline [14,15]. Phytochemical investi-
gations on the leaf extract elaborated the identification of diverse alkaloid structures [16]
and flavonoid and phenolic compounds [17,18].

In our continuing search for Philippine medicinal plants and their constituents with
inhibitory effects against Aβ toxicity in vitro [19–23], we herein describe the neuroprotective
effects and inhibition of Aβ aggregations and oligomerizations of P. amaryllifolius crude
alcoholic (CAE) and crude base (CBE) extracts. The unprecedented isolation of nicotinamide
from P. amaryllifolius, as a potential bioactive constituent of the crude base extract, is
also reported.

2. Materials and Methods
2.1. Plant Material

Fresh, matured P. amaryllifolius leaves were collected in Santa Maria, Bulacan, Philip-
pines, in April 2017. Leaves were authenticated at the Botany Division, National Museum
of the Philippines (Control #17-04-533). Voucher specimens were deposited at the UST
Herbarium, Research Center for Natural and Applied Sciences (USTH-3728).

2.2. Extraction of the Crude Extracts

Air-dried, ground P. amaryllifolius leaves (2 kg) were extracted with distilled MeOH
five times and filtered. The combined filtrates were concentrated under reduced pressure
yielding the crude alcoholic extract (CAE, 178 g). A portion of the CAE (170 g) was dissolved
in 1 M HCl and partitioned with EtOAc thrice. The aqueous layer was basified to pH 9
using Na2CO3. The basified aqueous layer was extracted with 5% MeOH in CHCl3 five
times. The combined organic layer was dried with anhydrous Na2SO4 and concentrated in
vacuo yielding the crude base extract (CBE, 3.3 g).

2.3. Thioflavin T (ThT) Assay

ThT assay was used to evaluate the inhibition of Aβ aggregation of the P. amarylli-
folius extracts and phenol red (positive control) as previously described [21–23]. Briefly,
Aβ42 (Aggresure™ AnaSpec, Fremont, CA, USA) in PBS was mixed with or without
the P. amaryllifolius extracts or phenol red for 24 h at 37 ◦C. After the addition of ThT
solution, the mixture was incubated for 15 min, and the fluorescence signal (Ex 450 nm;
Em 510 nm) was measured. The percentage inhibition was calculated using the equa-
tion: [(1 − IFi/IFc) × 100%], where IFi (with inhibitor) and IFc (without inhibitor) are the
fluorescence signals after subtracting the background signal of the ThT solution.

2.4. High-Throughput Screening of Multimer Detection System (MDS-HTS) Assay

The ability of P. amaryllifolius extracts to inhibit the Aβ oligomerization was evaluated
by the MDS-HTS assay (PeopleBio Inc., Sungnamsi, Gyeonggido, Korea), as previously
described [24]. Aβ42 (200 µg/mL), the crude extracts (100 µg/mL), and BPL-1 (100 µM,
positive control) were dissolved in PBS and were utilized, following an enzyme-linked
immunosorbent assay method [24–26]. Briefly, the 1000-times-diluted mixture of Aβ42
and the extracts in PBST (100 µL) were added to the antibody-coated wells of a 96-well
microtiter plate and incubated for 1 h at RT. Detection antibody with conjugated horseradish
peroxidase (HRP, 100 µL) was employed to spot the Aβ oligomer attached to the capture
antibody. After washing with washing buffer, a solution of 3,3′,5,5′-tetramethylbenzidine



Nutrients 2022, 14, 3962 3 of 11

(100 µL) was added and incubated at RT for 30 min. A stop solution (50 µL) was finally
added, and the optical density was measured after 24 h. The significant difference (p < 0.05)
against the negative control was determined.

2.5. Cell Culture

Neuroblastoma SH-SY5Y cells (ATCC CRL-2266) were obtained from the American
Type Culture Collection (Manasas, VA, USA) and maintained in DMEM supplemented with
10% FBS and 1% kanamycin/penicillin at 37 ◦C and 5% CO2. Cells at 80–90% confluency
were used in the experiments.

2.6. Cell Cytotoxicity and Neuroprotection Assay

SH-SY5Y cells (1 × 104 cells/well) were plated in 96-well plate and acclimatized for
24 h. Then, the cells were treated with 50, 20, 10, and 1 µg/mL P. amaryllifolius extracts
for 24 h. After treatment, cells were washed with PBS, followed by the addition of 100 µL
fresh media and incubation for 30 min. The cell viability was assessed following the
ATP Luminescence (CellTiter-Glo®) (Promega, Madison, WI, USA) method as previously
described [22,23]. The cell viability was expressed as % of the control cells (untreated).

For the neuroprotective experiment, SH-SY5Y cells (1 × 104 cells/well) were sub-
cultured in 96-well plate and incubated for 24 h. After incubation, cells were then treated
with the 20, 10, and 1 µg/mL P. amaryllifolius extracts for 6 h. This was followed by Aβ
(10 µM) treatment for 24 h. The % cell viability was determined in triplicate experiments
using the ATP Luminescence (CellTiter-Glo®) method as previously described [22,23].

2.7. Determination of Intracellular Reactive Oxygen Species (ROS)

After 24 h incubation, SH-SY5Y (1 × 104 cells/well) cells were pre-treated with 20,
10, and 1 µg/mL P. amaryllifolius extracts for 6 h and continued with 10 µM Aβ for 24 h.
After treatment, cells were then incubated with 25 µM H2DCFDA (Sigma Aldrich, St. Louis,
MO, USA) for 2 h in 37 ◦C oven. Fluorescence intensity (Ex 495 nm, Em 520 nm) was
measured, and the ROS level was calculated as a percentage of the control cells in triplicate
experiments.

2.8. Mitochondrial Membrane Potential (∆Ψm) Assay

Following 24 h incubation, SH-SY5Y (1 × 104 cells/well) cells were pre-treated with
20, 10, and 1 µg/mL P. amaryllifolius extracts for 6 h and incubated with 10 µM Aβ for 24 h.
The process was followed by the addition of 1 µM TMRE staining solution (Abcam TMRE
mitochondrial membrane kit) and incubation at 37 ◦C for 1 h. The fluorescence (Ex 549 nm,
Em 575 nm) was measured, and the ∆Ψm was calculated as a percentage of the untreated
control (untreated) cells in triplicate experiments.

2.9. Isolation of Nicotinamide (1)

CBE (3 g) was initially separated by silica gel flash column chromatography using
CHCl3/MeOH mixtures in increasing polarity. The collected fractions were subjected to
thin layer chromatography to obtain 4 pooled fractions, CBE1–CBE4. CBE 3 was partitioned
by amino silica gel column chromatography using increasing polarity of EtOAc in hexane,
neat EtOAC, 1:1 EtOAc/MeOH, and neat MeOH. The fraction eluting in neat EtOAc (10 mg)
was subjected to MPLC using 1:1 CHCl3/acetone as eluent to obtain nicotinamide as white
crystals (1.8 mg). The schematic diagram of the isolation and identification of nicotinamide
from P. amaryllifolius is presented in Figure 1. The 1H NMR, 13C NMR, and LCMS spectra
of nicotinamide are found in the Supplementary Material.

Nicotinamide: white crystals; 1H NMR (CDCl3, 400 MHz) δ 9.02 (1H, d, J = 2.0 Hz),
8.77 (1H, dd, J = 5.0, 1.8 Hz), 8.18 (1H, dt, J = 8.0, 2.0 Hz), 7.43 (1H, dd, J = 8.0, 5.0 Hz);
13C NMR (CDCl3, 150 MHz) δ 167.1 (C=O), 152.8 (CH), 148.2 (CH), 135.5 (CH), 129.6 (C),
123.6 (CH).
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2.10. General Considerations
1H-NMR was recorded on an ECZ 400 FT-NMR spectrometer, and 13C-NMR spectra

were recorded on an ECZ 600 FT-NMR spectrometer using CDCl3 as solvent and TMS as in-
ternal standard. Thin layer chromatography was performed using Merck 60 F254 precoated
silica gel plates (0.25 mm thickness). UV254, followed by Dragendorff reagent, was used for
visualization. Medium-pressure liquid chromatography (MPLC) was accomplished using a
silica gel prepacked column CPS-HS-221-05. PerkinElmer Victor-3® multi-plate reader was
used to measure the luminescence, fluorescence, or optical density in the biological assays.

2.11. Statistical Analysis

The quantitative data were reported as mean ± SD of at least three experiments.
Statistical analysis was determined by one-way ANOVA (GraphPad Prism 5 software
package, version 5.02, GraphPad Software Inc., San Diego, CA, USA), with the statistical
significance considered at p < 0.05.

3. Results
3.1. Inhibitory Effect on the Aggregation and Oligomerization of Amyloid-Beta

The anti-amyloidogenic potential of P. amaryllifolius CAE and CBE fractions were
elucidated using the ThT and MDS-HTS assays (Table 1). ThT binds to the Aβ aggregates
resulting in an increase in the fluorescence signal. With the presence of potential inhibitors,
the formation of Aβ fibrils and aggregates is prevented, thus, resulting in a decrease in the
fluorescence signal [27]. As shown in Table 1, both extracts inhibited the Aβ aggregation.
However, CBE revealed a stronger inhibitory effect at 89.53% in comparison to the positive
control (70.06%) and CAE (73.67%). These results were also manifested in the MDS-HTS
assay for screening Aβ breakers, which was an ELISA-based technique utilizing a capturing
antibody against Aβ and a detecting antibody (horseradish peroxidase antibody, HRP),
which allowed the selective detection of Aβ oligomers [26,27]. The inhibitors would
break up the Aβ aggregates and reduce the concentrations of the captured oligomers,
thus, resulting in a reduction of signal and preventing Aβ oligomerization [24–26]. The
alkaloidal extract (CBE) showed a significant reduction in Aβ oligomer formation against
the negative control. On the contrary, a significant difference was also observed with the
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CAE against the negative control but may further promote oligomerization as indicated in
the increase in optical density.

Table 1. Measurement of the Inhibition of Amyloid-βAggregation using the Thioflavin T (ThT) Assay
and the Inhibition of Amyloid-β Oligomerization using the Multimer Detection System (MDS) Assay.

ThT Assay a

(% Inhibition) c
MDS Assay b

(Optical Density) c

Crude Alcoholic Extract 73.67 ± 3.54 2.559 ± 0.19 ˆ
Crude Base Extract 89.53 ± 5.21 * 2.027 ± 0.080 ˆ

Phenol Red (Positive Control) 70.06 ± 2.87
BPL-1 (Positive Control) 1.509 ± 0.18 ˆ

Negative Control 2.203 ± 0.068
a The extracts and positive control were measured at 50 µg/mL and 50 µM, respectively. b The extracts and
positive control were measured at 100 µg/mL and 100 µM, respectively. c The % inhibition and optical density are
expressed as mean ± SD of triplicate experiments. * Significant difference at p < 0.05 versus the positive control
(phenol red). ˆ Significant difference at p < 0.05 versus the negative control.

3.2. Cell Cytotoxicity and Neuroprotective effects of P. amaryllifolius Extracts

Prior to the neuroprotective experiments, SH-SY5Y cell viability of the crude extracts
at 1, 10, 20, and 50 µg/mL concentrations were monitored (Figure 2). Results indicated
that >95% cell viability was exhibited when the cells were treated with 1–20 µg/mL extract
concentrations. However, 75.56 ± 2.97% for CAE and 80.64 ± 1.78% for cell viability were
observed at 50 µg/mL. These cell viabilities were significantly different from the control
(untreated) cells at p < 0.05. Hence, succeeding experiments utilized 1, 10, and 20 µg/mL
concentrations.
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Figure 2. Cell cytotoxicity of Pandanus amaryllifolius Crude Alcoholic Extract (CAE) and Crude
Base Extract (CBE). SH-SY5Y cells were treated with 1–50 µg/mL extract concentration and the cell
viability were evaluated by ATP Luminescence assay. “Control” refers to untreated cells. The (*)
showed significant difference with the control cells at p < 0.05.
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In the Aβ-insulted SH-SY5Y cytotoxicity assay (Figure 3), 49.05 ± 2.86% cell viability
was observed following the treatment of 10 µM Aβ. Pre-treatment of the extracts at
1–20 µg/mL followed by 10 µM Aβ significantly (p < 0.05) restored the cell viability. Both
extracts at 20 µg/mL showed the highest % cell viabilities at 86.02 ± 4.76% (CAE) and
80.65 ± 4.81% (CBE).
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Figure 3. Effect of Pandanus amaryllifolius extracts on neuroprotective activity assay. Neuroblastoma
SH-SY5Y cells were treated with the extracts for 6 h, followed by Aβ (10 µM) for 24 h. The % cell
viability represents mean± SD (triplicate experiments) and computed based on the control (untreated,
100%). @—statistically significant (p < 0.05) vs. control; *—statistically significant (p < 0.05) vs. Aβ-
treated cells.

3.3. Level of Intracellular Reactive Oxygen Species (ROS)

The amount of intracellular ROS production when SH-SY5Y cells were induced with
10 µM Aβwas determined using 2′,7′-dichlorodihydrofluorescein diacetate (H2DCFDA)
reagent. As shown in Figure 4, the level of ROS was comparable with the control when
the cells were treated with only the crude extracts (blue bars). Upon incubation only with
10 µM Aβ, 130.52 ± 2.63% ROS level was generated. Upon pre-treating the SH-SY5Y cells
with the crude extracts for 6 h at 10 and 20 µg/mL, a significant reduction (p < 0.05) in the
ROS level was observed when compared to the SH-SY5Y cells treated only with Aβ. CAE
exhibited 120.31 ± 3.77% (20 µg/mL) and 123.56 ± 2.04% (10 µg/mL) reductions, while
CBE showed 122.63 ± 3.06% (20 µg/mL) and 124.52 ± 1.05% (10 µg/mL) ROS levels. Both
extracts did not efficiently lower the ROS level at 1 µg/mL.
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Figure 4. Effects of Pandanus amaryllifolius (A) crude alcoholic extract (A,B) crude base extract on
intracellular ROS accumulation using the 2′,7′-dichlorodihydrofluorescein diacetate (H2DCFDA)
reagent. Neuroblastoma SH-SY5Y cells were incubated with the extracts for 6 h, followed by 10 µM
Aβ for 24 h. “No Oxidative Stress” indicates non-Aβ treated cells. Intracellular ROS level (% of the
control cells) was computed as mean ± SD of triplicate experiments. The (*) represents statistical
difference (p < 0.05) of the ROS level with the Aβ-treated alone cells.

3.4. Effect of the P. amaryllifolius Extracts on the Mitochondrial Membrane Potential (∆ψm)

As a result of Aβ induction in the neuroblastoma cells, an increase in ROS level
was observed, which may result in mitochondrial dysfunctions. Hence, the capability of
P. amaryllifolius extracts to restore the MMP was disclosed in Figure 5. Upon treatment
with 10 Aβ only, SH-SY5Y cells gave 64.62 ± 3.21% ∆ψm. Pre-treatment with the extracts
for 6 h prior to incubation with Aβ significantly (p < 0.05) restored the ∆ψm at 20 µg/mL
(86.54 ± 4.61% for CAE and 84.55 ± 2.08% for CBE) and 10 µg/mL (74.43 ± 3.77% for CAE
and 78.31± 1.06% for CBE). None of the extracts gave a substantial ∆ψm result at 1 µg/mL.
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3.5. Isolation and Identification of Nicotinamide from the Crude Base Extract

Fractionation of P. amaryllifolius CBE led to the isolation of white crystals elucidated
as nicotinamide by spectroscopic analyses. This is the first report on the isolation of
nicotinamide, a pyridine-containing alkaloid, from a Pandanus species. Nicotinamide was
previously identified to influence a flower-inducing activity in Lemna gibba G3 [28] and
was elaborated to be a bioactive repellent against the blue mussel Mytilus edulis in Mallotus
japonicus [29]. Nicotinamide was also identified in functional food plants such as dried
peas, red lentils, and chickpeas by the HPLC method using a standard sample [30].

Although nicotinamide was not subjected to bioassay experiments in this study, fore-
going in vitro and in vivo studies, have described its potential effects against AD. Nicoti-
namide restored cognitive deficits in vivo using the 3x-Tg AD mice model by selectively
reducing Thr231 in a Tau protein associated with microtubule depolymerization and in-
creasing the acetylated α-tubulin [31]. In vitro cell models showed that nicotinamide
prevented mitochondrial and autophagy dysfunctions and reduced neuronal susceptibility
to Aβ toxicity and oxidative and metabolic inducers [32]. In vivo results also indicated
that 3xTgAD mice treated with nicotinamide for 8 months showed an improved cognitive
function and a reduction in the Aβ and hyperphosphorylated tau proteins in the hippocam-
pus and cerebral cortex [32]. Nicotinamide-treated transgenic 5xFAD mice resulted in the
attenuation of deficits in spine density derived from primary hippocampal neurons of the
mice models [33]. Furthermore, nicotinamide is subjected (12 July 2017–30 August 2022) to
a Phase 2 clinical trial to test its effects in adults with mild cognitive impairment or mild
Alzheimer’s disease [34,35].

4. Discussion

As part of our interest in exploring plant resources with anti-amyloidogenic activity
against AD, we have investigated the crude alcoholic and crude alkaloidal extracts of
P. amaryllifolius. P. amaryllifolius is an important medicinal plant in Philippine traditional
folk medicine. Its ethnomedicinal uses were scientifically validated in pharmacological
studies including anti-inflammatory [36], antioxidant [17], antiproliferative [17], hepato-
protective [37], antidiabetic [38], antimicrobial [39], and antiviral [40] properties. The
anti-cholinesterase and β-secretase activities of a commercially available tea infusion of
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P. amaryllifolius (Pandan herbal tea) from Thailand have been reported [41]. Thus far, the
anti-amyloidogenic and neuroprotective effects on Aβ toxicity of P. amaryllifolius are still
unknown. Recently, we described the neuroprotective activity of P. clementis [22] and the
identification of phytosterols as possible bioactive agents [42]. P. amaryllifolius is also an
excellent source of alkaloids, collectively known as Pandanus alkaloids, yet biological stud-
ies on these Pandanus alkaloids, including the crude alkaloids extract, are limited [16,39].
Hence, this study also contributes to the limited pharmacological information specifically
focused on the alkaloidal fraction of P. amaryllifolius. Natural products, particularly alka-
loids, have been the primary source of new scaffolds for the treatment of neurodegenerative
diseases, including AD. Interestingly, the current drugs memantine, tacrine, rivastigmine,
donepezil, and galantamine approved by the US FDA for AD are all alkaloids.

In the present work, we were able to disclose the alkaloidal extract of P. amaryllifolius
to effectively inhibit the aggregation and oligomerization of Aβ. As a major contributor
leading to AD, these Aβ aggregates lead to Aβ plaques causing various oxidative stressors,
neuroinflammation, mitochondrial deterioration, and death. Hence, the neuroprotective
effects of P. amaryllifolius extracts on Aβ-insulted neuronal cells were also assessed. As
seen in Figure 3, P. amaryllifolius extracts rescued the cell damage caused by Aβ toxicity.
This may be explained by reducing the levels of ROS and increasing the mitochondrial
membrane potential. To further explore the possible bioactive scaffold, the alkaloid fraction
was subjected to chromatographic purification. Unprecedentedly, we were able to isolate
nicotinamide, a pyridine-type compound that possesses an array of in vitro and in vivo
activities against AD [31–33]. Our results also corroborated the previous report [41] on
P. amaryllifolius as a potential medicinal plant against AD. Since nicotinamide was isolated
as a minor metabolite comprising only 0.06% of the crude alkaloid fraction, we may specu-
late that the Pandanus alkaloids may have synergistic inhibitory and neuroprotective effects
and other potential bioactive Pandanus alkaloids are present in the extract. Hence, com-
prehensive isolation of known and possibly new Pandanus alkaloids is being undertaken
to assess their in vitro activities against Aβ aggregation and toxicity. Moreover, inhibition
of Aβ aggregation and oligomerization was evaluated using protein-based assays. From
a future perspective, Aβ will transfect neuronal cells to exploit the anti-aggregation and
anti-oligomerization of plant extracts and pure compounds in live cells. Furthermore, vali-
dation of the neuroprotective effects of the alkaloids on other neuronal cells and exploring
other AD-related mechanistic assays are also warranted.
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