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Semi‑classical Monte Carlo 
algorithm for the simulation 
of X‑ray grating interferometry
Stefan Tessarini1,2*, Michael Karl Fix3, Peter Manser3, Werner Volken3, Daniel Frei3, 
Lorenzo Mercolli4,5 & Marco Stampanoni1,2

Traditional simulation techniques such as wave optics methods and Monte Carlo (MC) particle 
transport cannot model both interference and inelastic scattering phenomena within one framework. 
Based on the rules of quantum mechanics to calculate probabilities, we propose a new semi-classical 
MC algorithm for efficient and simultaneous modeling of scattering and interference processes. 
The similarities to MC particle transport allow the implementation as a flexible c++ object oriented 
extension of EGSnrc—a well-established MC toolkit. In addition to previously proposed Huygens 
principle based transport through optics components, new variance reduction techniques for the 
transport through gratings are presented as transport options to achieve the required improvement 
in speed and memory costs necessary for an efficient exploration (system design—dose estimations) 
of the medical implementation of X-ray grating interferometry (GI), an emerging imaging technique 
currently subject of tremendous efforts towards clinical translation. The feasibility of simulation 
of interference effects is confirmed in four academic cases and an experimental table-top GI setup. 
Comparison with conventional MC transport show that deposited energy features of EGSnrc are 
conserved.

Phase sensitive X-ray imaging techniques1–3 such as propagation based imaging4, grating interferometry5–9, 
speckle based imaging10,11, or edge-illumination12 provide complementary contrasts in addition to absorption 
contrast. In Talbot-Lau X-ray grating interferometry8 (GI), for example, an absorption and a phase grating are 
inserted into an incoherent X-ray beam to generate interference patterns on an imaging detector, from which 
absorption, differential-phase, and dark-field contrasts are retrieved. GI has great potential for application in 
material science, biology and medicine. The latter two mainly due to enhanced soft tissue visibility13,14. For clini-
cal prototype development, simulations are of great value to estimate different performance and patient relevant 
quantities like radiation dose, beam spectra, fringe visibility, and scattering contributions. However, due to 
occurrence of inelastic (Compton and photo effect) scattering and interference phenomena the well-established 
simulation techniques like wave propagation15,16 and Monte Carlo (MC) particle transport17 are not sufficient 
to cover all relevant quantities. While MC particle transport is the gold standard for the estimation of scattering 
related quantities in fields like X-ray absorption imaging and radiotherapy18, it can not simulate interference 
phenomena. Wave propagation, on the other hand, which is used for the simulation of the interference patterns 
in phase contrast imaging19,20, can not simulate inelastic scattering events explicitly, which makes it unfeasible 
for scattering related quantities like radiation dose. Furthermore, wave propagation is often difficult to use in 
more complex situations, e.g. when a biological sample is inserted into a grating interferometer.

Previous MC approaches to the simulation of phase sensitive X-ray imaging setups include combinations 
of MC with wave propagators21–23, MC that imitate the Huygens-Fresnel principle24–27, and pure ray-tracing 
algorithms28,29. However, the algorithms applicable to GI either suffer from long computation times unfeasible 
for clinical prototype simulations or consist of a combination of more than one simulation technique, which is 
physically unsatisfactory.

Aiming for a MC framework for simulation of interference and scattering based quantities in GI with the 
potential scalability to clinical volumes a new MC algorithm is developed based on basic quantum mechani-
cal concepts, e.g., indistinguishability of paths for a photon to arrive on the detector, combined with classical 
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approximations. The MC algorithm for the calculation of the expected detector signal in a GI setup is built in two 
steps, as described in the Methods section. First a pure ray tracing algorithm for the computation of the interfer-
ence pattern without scattering is developed. Afterwards explicit simulation of inelastic and Rayleigh scattering 
events are introduced into the ray-tracing algorithm. The resulting MC algorithm describes scattering and inter-
ference phenomena in one framework and was implemented as an object oriented user friendly easy to expand 
extension library of the well-established EGSnrc30 MC particle transport code. Apart from uniform splitting at 
gratings that imitates Huygens principle similar to previous approaches, new variance reduction techniques for 
fast transport through flat (planar) absorption and phase gratings are introduced to address the scalability for 
the simulation of clinical GI prototypes. Although this work focuses on X-ray Talbot-Lau interferometry and 
aims at the simulation medical applications, the simulation framework is not restricted to grating based X-ray 
applications. Relying on c++ inheritance new optics components can be added to the framework and directly 
used by the provided interferometer class.

Results and discussion
The feasibility of the algorithm and the variance reduction techniques to model interference and scattering phe-
nomena is demonstrated with five examples motivated by but not exclusive of X-ray Talbot–Lau interferometry. 
Each example focuses on a different aspects required for the simulation of GI setups, such as basic interference 
patterns, absorption and differential phase imaging, deposited energy and the visibility in a laboratory GI setup. 
At first the capability of the algorithm to simulate basic interference patterns is validated by simulations of the 
double-slit experiment and the Talbot carpet for phase gratings. Since largest improvements in computation 
time are expected for transport through phase gratings, the example of the Talbot carpet serves as benchmarking 
case for the performance of Fourier splitting compared to Huygens splitting. The compatibility with simulation 
of scattering effects is demonstrated by comparison of the deposited energy with a modified tutor2pp EGSnrc 
user code. Finally, the visibility in a table top laboratory setup using a polychromatic source is simulated and 
compared to experiment. In all simulations the standard EGSnrc cross section data file 521ICRU is used for 
simulation and validation. The real part of the decrement of the refractive index are taken from the CXRO online 
X-ray database31 for an energy of 17 keV and interpolated for other wavelengths assuming a �2-dependence32. 
Two linux systems with an Intel Xeon E3 and an AMD Ryzen 7 3700X, respectively, were available for simulation.

Basic interference phenomena.  Double‑slit experiment.  The first example includes two versions of the 
double-slit experiment in Fig. 1 validating the feasibility for the simulation of basic interference phenomena. 
First a standard double-slit experiment is simulated. The second simulation includes a 0.1 mm thick gold slab 
blocking the beam 10 µ m behind one slit. In both cases the optical element implemented for source gratings 
using Fourier splitting is used with a 17 keV coherent point source generating 105 coherent histories, collimated 
onto two slits of  a = 0.2µm with a separation of  b = 2.2µm . The simulations were performed as a single task 
on the AMD core with computation times of roughly 260 s for the double-slit experiment and 670 s for the 
blocked case. To reduce the impact of fluctuations of the number of paths, the resulting raw MC output was 
renormalized by the number of paths squared for each data point. The resulting MC signals shown if Fig. 2, agree 

Figure 1.   Simulation setup for the double-slit experiment. A monochromatic point source is focused on two 
slits of a grating with a slit width a = 0.2µm and a distance b = 2.2µm between the slits. In one simulation a 
gold block with thickness dAU = 0.1 mm (>99.9% absorption) is placed after one of the slits. The distance from 
source to the slits l = 110 cm and the distance between the slits and the detector d = 10 cm.
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well with analytical results with a root mean squared error (rmse) of 0.0009 for the double slit and 0.004 for the 
blocked double slit compared to the analytical single slit signal.

Talbot carpet.  The spatial dependence of the interference patterns and the performance improvement pro-
moted by Fourier splitting over Huygens splitting is investigated by means of the Talbot carpet for a plane wave 
source of 20 keV passing a flat π-phase grating with 4 µ m period and duty cycle of 0.5. For performance com-
parison of the two splitting modes the signal at 10 grating-to-detector distances in the Talbot carpet are com-
pared to a Fresnel propagator based Fourier optics simulation15, for different splitting numbers NG1 and number 
of histories. Huygens splitting is tested with splitting numbers NG1 = 225, 450, . . . 14400 (doubling each time) 
and number of histories NH equal to 5× 105 and 106 . For Fourier splitting the parameters NG1 = 5, 7, . . . , 41 
(Eq. (25)) are combined with 106 , 4× 106 , and 8× 106 histories to compensate for the lower number of paths 
propagated compared to Huygens splitting. In a second step the entire Talbot carpet is simulated for the best 
Fourier splitting case with NG1 = 41 and 8× 106 histories and compared to the wave propagation result.

The simulation quality for each parameter pair ( NG1 and NH ) is assessed by the Pearson correlation coefficient 
between MC and wave propagation for the 10 detector signals and plotted against the average simulation time 
in Fig. 3. Each curve in Fig. 3 represents simulations with a specific splitting method with a constant number 
of histories. For improved readability, due to the large time differences the time axis is logarithmic. For both 
splitting methods the simulation time is roughly proportional to the number of histories and splitting numbers, 
which leads to a consistent large benefit in terms of simulation time for Fourier splitting over Huygens splitting 
when comparing simulation results with similar correlation coefficient. For instance, the best Huygens splitting 
simulation (highest correlation coefficient) is a factor of 74 to 136 slower than Fourier splitting simulations with 
similar correlation coefficient, as indicated by Table 1. Additionally, the correlation coefficients in Fig. 3 show a 
convergence towards the wave propagation signal for both splitting approaches, which is sufficient for most MC 
applications, especially in cases where the interference pattern can not be measured directly and an average over 
several periods is acquired in a phase stepping curve.

The Talbot carpet for NG1 = 41 Fourier splitting and 8× 106 histories is shown in Fig. 4 alongside with a 
wave propagation simulated carpet. For the full carpet the average simulation time per detector distance was 68 
s, resulting in a correlation coefficient of 0.9913 and a root mean squared error of 0.04. As shown in Fig. 3 the 
simulation time can be reduced significantly dependent on the demands on simulation quality for the respective 
simulation task.

Absorption and differential phase.  The feasibility to model absorption and differential phase imaging 
modalities of GI is demonstrated by the simulation of a projection of a cylinder Fig. (5) with a radius of 0.87 mm 
and a height of 0.9 mm consisting of an upper polystyrene part and a lower Silicon part. The simulation setup 
consists of a 20 keV coherent plane wave illuminating a π-phase grating with 2 µ m period and a duty cycle of 0.5 
and a detector at third fractional Talbot distance. The reference and sample image simulations were performed 
on the AMD core with 5× 108 coherent histories and a Fourier splitting of NG1 = 5 , with a resulting simulation 
time of 18 min for the reference and 24 min for the sample simulation. The resulting absorption and differential 
phase contrast (DPC) projections are shown in Fig. 6a,d, respectively, next to a comparison of the averaged line 
profiles in Fig. 6b,e to analytically calculated profiles and the absolute difference between MC and theory in 
Fig. 6c,f. Both cases (absorption and DPC) show good agreement between simulation and theory apart from the 
border regions of the cylinder. The rmse of the absorption profiles shown in Fig. 6b are 0.0091 for silicon and 

Figure 2.   Double slit and blocked double slit interference patterns on the left. The MC simulated profiles of 
the double slit signal in magenta, the blocked double slit in orange and the analytical intensities for double 
and single slits in black. The MC signals were divided by the number of paths squared for each data point. 
Furthermore, the results were normalized to equal area under the curve. For convenience the off-axis single slit 
signal is shifted to the center. The absolute difference between the theoretical and the MC signals is shown on 
the right, for the double slit in magenta and blocked double slit in orange.
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0.0072 for polystyrene. For the DPC profiles the rmse are 0.015 and 0.098, for silicon and polystyrene, respec-
tively. The main contribution to the rmse for both absorption and DPC originate from the cylinder borders, 
where the theoretical DPC signal diverges. The divergence of the DPC signal means that the phase shift, i.e. the 
local shift of the interference fringes is largest at the cylinder border. This can lead to a discretization issue when 
an interference fringe is shifted entirely outside the pixel without another one reentering from the other side, 

Figure 3.   The Pearson correlation coefficient of the MC generated signals and the wave propagation signals for 
different number of histories and splitting numbers. Each correlation coefficient is computed from 10 grating-
to-detector distances. The curves represent the two implemented splitting procedures, Fourier and Huygens 
splitting, for fixed number of histories, as indicated by the legend. For both splitting procedures the average 
simulation time (horizontal axis) has a roughly linear relationship with splitting numbers NG1 . For improved 
readability the simulation times are shown in logarithmic scale.

Figure 4.   Talbot carpets between the first two fractional Talbot distances at 3.23 and 9.68 cm obtained with MC 
on the left and with a wave propagator on the right for comparison. Grating-to-detector distance is plotted on 
the horizontal axis. The vertical axis corresponds to the position x on the detector.

Table 1.   Correlation coefficients and average simulation times for the best (highest correlation coefficient) 
Huygens splitting case and the Fourier splitting simulations leading to similar quality.

Splitting mode Huygens Fourier Fourier

NH 10
6

4× 10
6

8× 10
6

NG1 14,400 23 21

Correlation coefficient 0.9831 0.9828 0.9838

average simulation time 2682 s 20 s 36 s
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which can cause artificial absorption signals not accounted for by the theoretical signal based on Beer-Lambert 
law.

Deposited energy.  In order to demonstrate the feasibility of the simulation framework to explicitly sim-
ulate scattering related quantities the deposited energy is simulated and compared to the deposited energy 
obtained by conventional MC particle transport provided by a modified tutor2pp EGSnrc user code that doesn’t 
include diffractive effects at gratings or interfaces. For the sake of computation time, electron transport is not 
performed, instead all energy transferred to charged particles is assumed to be deposited locally. For maximal 
impact of Fourier splitting on deposited energy, the simulation setup in Fig. 5 is inverted with the sample after 
the G1 grating with a distance of 0.9 mm between the cylinder axis and the waver. Simulations with Fourier split-
ting were performed on three slightly different EGSnrc geometries, once without the periodic grating structure, 
in this case attenuation is modeled by transmission functions, which we refer to as implicit grating case. Another 
two simulations are performed with the periodic structure present as an EGSnrc geometry to model interactions 
in the grating slits. In order to combine transmission function based Fourier splitting with a grating geometry 
filled with media, a new EGSnrc medium equivalent to silicon in terms of cross sections but equivalent to air in 
terms of phase shift is generated to prevent errors in phase shift at the grating. For cases containing the EGSnrc 
grating geometry, the periodic structure was once placed right before and once after the splitting plane. The 
simulations are performed with 5× 108 histories and Fourier splitting with NG1 = 5 leading to a reported statis-
tical uncertainty (standard deviation) of less than 2× 10−3 . The resulting deposited energies for each structure 
including energy leaving through the detector plane and energy leaving anywhere else are displayed in Table 2.

The largest relative difference of 2.6% for the deposited energy occurs for the simulation with an implicit 
grating, i.e. when attenuation is performed by the optics component via Beer-Lambert law. However, the absolute 

Figure 5.   Simulation setup for the absorption and differential phase projections of a cylinder with radius 
R = 0.87mm and height h = 0.9mm . The cylinder consists of a polystyrene part and a silicon part, sketched 
with different gray values. The 20 keV plane wave is simulated by starting parallel paths from a source plane S. 
The detector is placed at the third fractional Talbot distance of (2.42 cm) from the grating.

Figure 6.   Absorption and differential phase signals of a cylinder. Retrieved absorption (a) and DPC (d) 
projections. Lines indicate regions for the averaging of profiles. (b) MC simulated averaged absorption profiles 
of Silicon (orange) and polystyrene (magenta) and the analytically calculated signal using Beer-Lambert law 
(black). (e) MC DPC profiles for Silicon (orange) and polystyrene (magenta) and the corresponding analytical 
signal9 (black). (c) and (f) Absolute difference between MC and theoretical signals.
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error remains small and is mainly affecting energy deposition inside the grating, which for implicit gratings is 
calculated as the left over energy due to overall reduction of the statistical weights at the grating (26). This is 
improved in the cases containing an EGSnrc grating geometry, for which the maximal relative error of 1.2% 
occurs for the energy leaving the geometry through the sides. Since diffraction at the grating and refraction at 
the cylinder surfaces are expected to broaden the beam, small differences compared to conventional tutor2pp 
simulations are expected. Hence, the results in Table 2 show that the presented algorithm preserves MC depos-
ited energy features.

Visibility in a Talbot–Lau laboratory setup.  After the successful simulation of interference patterns in 
academic setups, the simulation of a GI setup for pathology samples Fig. 7 serves as a proof of principle dem-
onstrating the potential of the algorithm to model GI setups with incoherent sources. The table-top X-ray phase 
contrast micro computed tomography system33 is composed of three 0.5 duty cycle gratings G0, G1, and G2 with 
the corresponding periods p0 = 1µ m, p1 = 1.5µ m, and p2 = 3µ m. The inter grating distances are 20.1 cm 
between G0 and G1 and 60.3 cm between G1 and G2.

The simulation of 0.5 cm field of view (FOV) around the optical axis is done with three adaptations: (1) The 
analyzer grating in front of the detector is not simulated, instead the detector directly records the interference 
patterns. Phase stepping is simulated in a post processing step rebinning the data into 75µ m sized pixels and 
using binary masks. (2) The spatial and directional dependence of the source, modeled by PS(rS , kS) in Eqs. (6) 
and (28) is set to a collimated Gaussian shaped line source with a FWHM of 10 µ m that emits photons isotropi-
cally. (3) For the source spectrum, i.e., the energy dependence of PS(kS , rS) , a filtered idealized 40 keV triangle 
X-ray spectrum with a peak around the design energy of 19 keV is used.

Two simulations, one with the grating in place and a reference simulation without gratings, of 2.5× 105 
incoherent particle histories were performed. At the source grating each path was split into 1.2× 106 paths with 
Q-values between ±2 2π

a  according to (22) and splitting into Fourier coefficients between NG1 = ±9 (25, 26) at 
the phase grating. The simulations were split into 10 parallel tasks using both cores to reduce overall waiting 
time, each taking roughly 19 h of computation time.

The recorded MC signals for the three central detector pixels shown in Fig. 8 are normalized with the average 
of the signal without gratings. The total signal over the full FOV of 0.5 cm is reduced by 49.15% when gratings 
are present. Classically expected, assuming a perfectly absorbing source grating, a 25µ m thick silicon phase 
grating (both with a duty cycle of 0.5), and orthogonal illumination, is a reduction of the intensity in the center 

Table 2.   Deposited energy in percent for the different structures. The reference case simulated with the 
adapted tutor2pp in the first column is followed by the three test cases and the relative error compared to the 
tutor2pp results in percent. The three test cases are ’no G1 geom’ where G1 attenuation is simulated by the 
transmission function, ’G1 after’ and ’G1 before’ where the periodic structure is present as MC geometry after 
and before the splitting, respectively. The MC reported standard deviation is below 2× 10

−3 for all deposited 
energies.

Structure tutor2pp No G1 geom Rel. error G1 after Rel. error G1 before Rel. error

leave at D 52.275 52.272 − 0.006 52.239 − 0.069 52.238 − 0.071

leave elsewhere 3.363 3.346 − 0.506 3.403 1.190 3.400 1.160

surrounding air 0.095 0.095 0.000 0.094 − 1.050 0.095 0.000

wafer 21.404 21.397 − 0.033 21.403 − 0.005 21.402 − 0.010

G1 0.932 0.956 2.580 0.931 − 0.107 0.931 − 0.107

Si cylinder 21.041 21.043 0.010 21.040 − 0.005 21.042 0.005

Polystyrene cylinder 0.889 0.890 0.112 0.889 0.000 0.890 0.112

Figure 7.   The table-top X-ray phase contrast micro computed tomography system simulated without the 
analyzer-grating G2. Initial positions of the particles are generated by the source S are normally distributed in 
x-direction with a FWHM of 10 µ m. The initial directions are collimated on the detector D. The inter grating 
distances are 20.1 cm and 60.3 cm, the grating periods are 1.0 µ m, 1.5 µ m, and 3.0 µ m for G0, G1 and G2, 
respectively. The duty cycle of all gratings is 0.5.
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by 49.5%. The difference of 0.4% can easily be explained by the more complex geometry and by a slight broad-
ening of the beam due to the splitting at the gratings, as the detector doesn’t cover the full width of the beam. 
The correct normalization of the interference pattern strongly suggests the compatibility with the estimation 
of scattering related quantities. The simulated signal has the theoretically expected and experimentally verified 
periodicity of 3 µ m. Neglecting the two outermost pixels on each side to limit boundary effects, the calculated 
fringe visibility v is in the range of vmin = 0.275 and vmax = 0.288 with an average visibility of 0.282. This is 
higher than the experimentally reported visibility around 0.195 in the center and the high visibility areas with 
a visibility around 0.23. However, an overestimation is expected due to the employed simplifications like the 
source shape and spectrum, imperfect experimental conditions (e.g. small grating tilts), idealized gratings, e.g. 
leakage through the absorbing parts of the source and analyzer gratings and detector response. For instance, for 
monochromatic beams the impact of the leakage though an analyzer grating with duty cycle 0.5 can be estimated 
classically with a visibility correction factor

taking into account the transmission through the gold TAU(�) and the silicon sections TSI(�) of the grating. For 
a 30 µ thick analyzer grating33 at the mean energy of the simulation spectrum (21 keV) the correction factor 
ccor(21 keV) = 0.96 and decreases for higher energies. Although calculated for a monochromatic beam, this 
effect can explain a few percent overestimation of the visibility when compared to experiment. Additionally, the 
transmission trough the absorbing iridium sections of the source grating ( ∼ 1.5 % at 21 keV) further reduces 
the visibility.

Conclusion
The newly proposed and implemented MC algorithm is feasible for the simulation interference phenomena from 
microscopic to macroscopic scales as well as for the simulation of scattering effects such as deposited energy. The 
c++ object oriented design allows for extensions such as the introduced variance reduction techniques for grat-
ings, which can achieve significant speedup in specific setups compared to the more general splitting approaches 
such as Huygens splitting. The far field like approximation for the variation reduction techniques and the simpli-
fied source model are supported by the successful simulation of interference patterns in academic setups and 
the visibility in a table-top X-ray phase contrast system. Furthermore, with the simulation of a mm-sized field 
of view on a single core with acceptable simulation times and the straightforward parallelization, the algorithm 
has shown its potential for scalability to larger volumes required for the simulation of clinical prototypes. The 
simulated intensity reduction in the lab setup and the deposited energy simulations assure that no intensity or 
energy is created or destroyed by the gratings or the interference effects during simulation. With significant 
improvement in simulation time, Fourier splitting has great potential for future extensions to bent grating setups, 
where the effects of grating aspect ratios are minimized. For flat gratings the piecewise constant transmission 
function approach has limitations, e.g., for higher energies that require high aspect ratio gratings. However, 
the thin grating assumption and the transmission functions are not essential assumptions for the presented 
framework, which offers alternative options for transport through optical components. Future optimizations of 
the transport parameters for the path splitting carry the potential for a better trade-off between accuracy and 
computation time, especially for Fourier splitting.

(1)ccor(�) =
TSI(�)− TAU(�)

TSI(�)− TAU(�)

Figure 8.   MC generated signals for the laboratory system limited to two pixels of 75 µ m (indicated by gray 
lines): rebinned signals with gratings (blue) and without (red). Both signals are normalized by the mean signal 
without gratings. The MC signal has the theoretically expected and experimentally verified periodicity of 3 µm.
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Methods
Expected detector signal.  The expected detector signal in a GI imaging device is obtained based on fun-
damental quantum mechanical concepts for photon propagation, creation - or photon sources, and scattering34 
and classical approximations.

Propagation.  Photon transport from r to r′ in vacuum is modeled through the single photon amplitude in real 
space

for a photon of frequency ω = ck , where c denotes the speed of light. At this point it is worth noting that all 
expressions are only to be understood up to a normalization constant, since normalization will be enforced dur-
ing MC run time. The sum over indistinguishable paths from source to detector of a single photon is the origin 
of interference phenomena34,35 and the use of the amplitude (2) was shown to be equivalent36 to conventional 
optics16 and statistical optics37 for simple diffraction experiments recording only the field intensity38.

When optical components such as gratings or material interfaces are introduced between the source and 
the detector in order to generate interference patterns, the classical approximation of the photon traveling in 
straight lines inside homogeneous isotropic media, that is used in conventional MC, breaks down. Instead, the 
amplitudes of all indistinguishable paths to arrive at the detector have to be summed. For the purpose of X-ray GI 
imaging systems, it is sufficient to restrict the sum over indistinguishable paths to a subset of piecewise straight 
paths crossing smooth interfaces G1, . . . ,GN covering the full field of view. According to the rules of quantum 
mechanics of adding amplitudes34,39,40 for alternative events and multiplying amplitudes for consecutive events 
the overall amplitude Ak

G(r, r
′) becomes a sum over the smooth surfaces Gj between source and detector

with rGj ∈ Gj and the surface element dGj of the jth interface Gj . As in classical wave theory contributions to the 
integral from outside the field of view are safely neglected.

Sources.  In classical optics the initial field emitted by a source is usually characterized by its transverse or lon-
gitudinal coherence length41. For simplicity we start with transverse and longitudinal coherent monochromatic 
spherical and plane waves and expand to X-ray tubes, which are assumed to have practically zero transverse and 
longitudinal coherence.

In the case of the coherent sources it is assumed that photon creation in the source S is associated with an 
amplitude ψ(r′, S, k) . Using the rules for combining amplitudes again, the overall amplitude (3) has to be mul-
tiplied by ψ(r′, S, k) and integrated over the source volume VS (or area). The probability Pp(j, S, k) for a coherent 
source S to find a photon in a detector pixel j with volume Vj of a pixel detector is given by the integration over 
the absolute value squared of the overall amplitude

For efficient modeling of more complex photon sources, such as X-ray tubes, additional assumptions and sim-
plifications on primary photon creation are made: (1) The source creates disentangled photons, i.e., the inter-
ference patterns originate only from the optical components along the photon path, which is supported by the 
intensity-independence of the experimentally observed interference patterns. (2) Different post-scattering states 
of a bremsstrahlung event do not interfere on the detector, since they correspond to different final states of the 
whole system. (3) A photon created by a scattering event in the anode of an X-ray tube is assumed to behave 
like a wave-packet ψkSrS (r

′) initially localized within a small volume around rS moving along kS . Therefore, by 
setting ψ(r′, S, k) = ψkSrS (r

′) individual photons42 are propagated and the probability to find the photon inside 
pixel j is given by

with kS = |kS| . However, in contrast to the perfectly coherent sources Eq. (4) the contributions of many photons 
labeled by the wave-vector kS and position rS have to be summed

where PS(kS , rS) is the probability to create a primary photon in an area around rS moving along kS . The prob-
ability PS(kS , rS) is modeled classically either by conventional MC particle transport or by sampling directly from 
a source spectrum, which can be position and direction dependent. In practice it allows the use of a spectrum 
and a source spot size to model incoherent polychromatic sources. It should be noted at this point that with a 
suitable choice of ψkSrS sources with non-zero coherence length can also be modeled.

(2)Ak(r, r′) =
eik|r−r′|

|r − r′|
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∫

Vj

d3r

∣

∣

∣

∣

∫

VS

d3r′Ak
G(r, r

′)ψ(r′, S, k)

∣

∣

∣

∣

2

.

(5)PkSrS (j, S) =

∫

d3r

∣

∣

∣

∣

∫

d3r′AkS
G (r, r′)ψkSrS (r

′)

∣

∣

∣

∣

2

(6)Pp(j, S) =
∑

kS ,rS

PS(kS , rS)PkSrS (j, S) =
∑

kS

Pp(j, S, kS),
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Scattering.  Performing a full path integral calculation for a macroscopic system would require to sum over a 
prohibitive number of amplitudes, especially when a medium is present. Therefore, additional simplifications 
are necessary in order to achieve acceptable simulation times. Revisiting the rules for calculating amplitudes and 
probabilities it is important to notice that for distinguishable paths, e.g., through an incoherent scattering event 
inside a medium, the corresponding probabilities are added rather than the amplitudes as in Eq. (3). Hence, for 
a monochromatic source the probability Pp(j, S, k) to find a primary photon of energy Ek = �ck in a pixel j of a 
detector and the corresponding probability Psc(j, S, k′, k) to find a scattered photon with Ek′ < Ek can be used to 
write the expected detector signal 〈D(S, k)〉j for monochromatic sources as the sum of primary and secondary 
(or scattered) contributions

assuming an ideal detector that generates a signal s(k) for each photon of energy Ek . The same principle of adding 
probabilities for primary and secondary signals applies in the incoherent case in a photon wise manner (compare 
Eqs. (4), (5), and (6)), i.e. summing over the contributions from different initial positions and wave-vectors which 
can be expressed as a sum over kS as in Eq. (7)

One goal of a GI MC is to estimate the expected detector signal in the presence of samples and optical ele-
ments for coherent and incoherent sources. This is achieved with a ray-tracing algorithm for the calculation of 
Pp(j, S, k) . Explicit scattering events are reintroduced in a second step into the ray-tracing algorithm modeling 
Psc(j, S, k

′, k).

Ray‑tracing algorithm.  For the calculation of the primary signal Pp(j, S,E) explicit scattering events are 
not of interest. Instead, only the decrease of the amplitude for the photons to travel through the medium with-
out a scattering event to happen is needed. Therefore, for large distances the transition amplitude is modified 
by a reduction of the norm and an additional phase shift, expressed with the complex refractive index nm of the 
medium m, which for X-rays often is expressed as nm = 1− δm + iβm . Therefore, in an infinite medium the 
transition amplitude given in Eq. (2) is modified by the replacement k → nmk (suppressing explicit k-depend-
ence of nm ), which results in the amplitude inside a medium m

that replaces Ak(r, r′) in all calculations.

Sources.  Modeling of different types of sources depends on the photon creation amplitude ψ . Thereby, Eqs. (4) 
and (5) serve as starting point for the development of the basic ray-tracing algorithm, which, due to the similar 
form of Eqs. (4) and (5) can be used for incoherent sources in a photon wise manner (6) with only few adapta-
tions. For validation purposes it is worth to consider simple coherent sources such as plane waves and point 
sources.

The simplest source S is a plane wave, obtained by setting ψ(r′, S, k) = 1 for positions r′ on a source plane S0 . 
The probability Pp(j, pw, k) , where ’pw’ stands for ’plane wave’, for a detector pixel j is then expressed through 
the integral over the source plane

with the surface area element dS0.
In an analogue way the probability Pp(j, sw, k) , for a spherical wave (’sw’) is obtained by the identification of 

ψ(r′, sw, k) with a delta function in three dimensions δ(3)(r′ − rS) resulting in

The assumption that incoherent sources, in the following abbreviated as ’ic’, create disentangled photons 
localized within a small source spot labeled by rS allowed to express Pp(j, ic, k) (6) as a summation over the 
macroscopic extension of the source. However, the amplitude for photon creation ψkSrS required for individual 
photon transport (5) is unknown. For the sake of computation time it is assumed that the initial photon can 
be approximated classically with sharply defined position and momentum similar to conventional MC particle 
transport, which results in

As a consequence, only the central mode of the wave packet is considered and integrals of the form (3) are 
calculated with plane waves instead of wave packets. The missing falloff of the wave packet is addressed by an 

(7)�D(S, k)�j = s(k)Pp(j, S, k)+
∑
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s(k′)Psc(j, S, k
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∑
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∣

∣

∣
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∣

∣

∣
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artificial limitation of the integration area to the close vicinity of the intersection of the classical path with the 
surface G in Eq. (3).

The different forms of Eqs. (10) and (11) compared to (6), impact the calculation of the detector signal in 
the ray-tracing algorithm. In the absence of optical components and interfaces photons emitted by incoherent 
sources as from Eq. (12) are simulated by starting a single trajectory at rS in the direction of kS (eventually gener-
ated according to a source distribution and a spectrum), which continues in a straight line until it is terminated 
when it reaches the detector or leaves the simulation geometry. This translates one to one to a particle history in 
conventional MC particle transport, apart from explicit scattering events, which will be addressed later. During 
the straight trajectories the algorithm keeps track of the amplitude AkS

m (r, rS) . After a history has been terminated 
the detector signal is computed according to (12) and then added to the total detector signal (6) before a new 
photon history is started. Thereby different photons are treated independently each creating a detector signal 
(if the detector is hit).

For coherent sources several straight line trajectories (or histories) with different initial positions (10) or 
initial directions (11), respectively, are required for the simulation of a single particle. Each history represents 
an indistinguishable photon path, hence, the corresponding amplitudes have to be added on the detector as 
indicated in (10) and (11). This can be seen as an attempt to model the uncertainty in position or momentum in 
the ray-tracing algorithm. In both cases the due to the random nature of the path generation it is unfeasible to 
guarantee that paths have the same endpoints. For the summation over the amplitudes the detector is discretized 
into small data points. Amplitudes of photon paths that end in the same data point are added coherently. The 
summation over the pixel volume Vj is performed after the simulation by adding the signals of all data points 
inside the detector pixel.

Optical components.  Huygens splitting.  When interfaces or optical components are present the amplitudes 
in Eqs. (10), (11), and (12) contain several integrals of the form (3) over surfaces G1, . . . ,GN . In the ray-tracing 
algorithm this translates into multiple particle trajectories that cross the interfaces or optical components, e.g. 
gratings at different locations, which can be solved by the introduction of a uniform path splitting, which imi-
tates the Huygens-Fresnel principle as it has been done in previous approaches26,27. In this work so called Huy-
gens splitting, is implemented as a planar optics component that splits every incoming primary path into N G 1 
outgoing paths with equal starting positions, statistical weights, phases and norms. The paths are distributed 
uniformly on an arc of a user defined angular range with the intention to ensure full coverage of the field of view, 
while reducing the number of paths as that are not propagated towards the detector.

Variance reduction.  In MC particle transport variance reduction techniques such as range rejection or interac-
tion forcing43 are widely used practices to reduce computation time. In the same spirit this section introduces 
variance reduction methods for the transport of the paths in a MC ray-tracing algorithm. Instead of including as 
many paths as possible in the ray-tracing algorithm, rules for the “important” paths that have to be considered 
can be derived. For instance, whenever a photon encounters an interface there is an amplitude for transmis-
sion and reflection. However, apart from total reflection at interfaces reflection is not taken into account as it 
is assumed to not be of any significance for the generation of interference patterns in X-ray GI, which could 
already be seen as variance reduction. In the following two variance reduction techniques—referred to as Fou-
rier splitting—for the propagation through source and phase gratings are developed in the corresponding sec-
tions Absorption gratings and Phase gratings. In the Medium interfaces section Snell’s law is introduced, as in 
previous simulation approaches, as generic method for reduction of simulation time at medium interfaces.

Fourier splitting.  For the purpose of Talbot-Lau interferometry, it is often sufficient to approximate the optics 
components as infinitesimally thin, which allows to define them as complex valued transmission functions

where j ∈ Z labels the grating period, τa(k) and τb(k) ∈ C correspond to the (energy dependent) transmission 
function values in the two grating sections of length a and b, respectively, and pG = a+ b equals the grating 
period. The transmission function formulation reduces the number of integrals by one and replaces the one tran-
sition amplitude in equation (3), resulting in a simplified expression for the overall transition amplitude Ak

G(r, rS) 
in Eqs. (10), (11), and (12) in the presence single grating G between two regions filled with media A and B

for rG ∈ G . In an attempt to reduce the number of paths required to propagate a single photon the contribution 
Ak
U(rj)

(r, r′) of a small neighborhood U(rj) ⊂ G around a point rj ∈ G to the amplitude Ak
G at r is considered. 

When modeling a flat grating GI setup the surface G is considered to be parallel to the xy-plane (with the main 
propagation direction along the z-axis) which allows to parameterize the neighborhood U(rj) as

with η = (ηx , ηy , 0)
T and ηx ∈ (ηmin

x , ηmax
x ) and ηy ∈ (ηmin

y , ηmax
y ) . For sufficiently small neighborhoods U(rj) it 

is possible to use16

(13)τG(x, k) =

{

τa(k), x ∈
[

jpG, jpG + a
)

τb(k), x ∈
[

jpG + a, (j + 1)pG
)

,

(14)Ak
G(r, r

′) =

∫

G
dGAk

B(r, rG)τG(rG , k)A
k
A(rG , r

′)

(15)rG = rj + η ∀rG ∈ U(rj)
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and

to approximate the amplitude in Eq. (9) with a linear phase term.
Neglecting the imaginary part of the refractive index, and introducing the difference of the wave vectors 

before and after G

allows to rewrite the contribution Ak
U(rj)

(r, r′) in the convenient form

where τ̃G(Qx ,Qy) denotes the Fourier integral over a restricted area U(rj)

with rG = (xG , yG , zG) and rj = (xj , yj , zj) . In the following Eqs. (19) and (20) serve as basis for the development 
of variance reduction techniques for photon transport through gratings. The resulting transport rules are sig-
nificantly faster than the implementation of uniform splitting to imitate Huygens principle.

Absorbing gratings.  Absorption gratings, labeled as G0, are assumed to be pG0 periodic binary gratings with 
τa = 1 and τb = 0 . Because source gratings in GI are placed close to the source and have periods much big-
ger than the X-ray wavelengths, the wave-packets that model the primary photon are assumed to be localized 
within one grating slit. Therefore, the photon is discarded if the classical photon path hits an absorbing section 
( τG0(x, k) = 0 ) of the grating and transmitted otherwise. Similarly, for coherent sources all paths that intersect 
the grating at an absorbing section are discarded. The natural limitation U(rj) of the spatial integral is one grating 
slit ( τG0(x, k) = 1 ) labeled by j, which turns Eq. (20) into the Fourier transform of the grating slit

The delta function assures that there is only a contribution to the amplitude Eq. (19) if the paths satisfies 
Qy = 0 . However, as expected there is a non-zero contribution to the amplitude for different x-directions. This 
is implemented by splitting the incoming straight line path of a photon into many paths with directions kj , each 
corresponding to a Qj , with a randomly chosen x-component Qjx and a z-component that ensures energy con-
servation 

∣

∣kj
∣

∣ = k . Each path is weighted by a complex weight

where N assures normalization 
∑

j

∣

∣zj
∣

∣

2
= 1 . Momentum conservation is assured by always including the paths 

corresponding to ±Qjx in the splitting, which ensures that the grating doesn’t introduce a random drift into 
positive or negative x-direction.

Phase gratings.  Analogous to absorption gratings the phase shift introduced by phase gratings, denoted by G1, 
is described by a piece-wise constant pG1 periodic transmission function τG1(x, k) of the form of Eq. (13). In GI 
phase gratings are used after a source grating G0 or with a coherent source. Therefore, the limitation of the inte-
gration area U(rj) is extended to several grating periods, assuming plane wave illumination. The calculation of 
Eqs. (19) and (20) for phase gratings, is done by expressing the grating transmission function as a Fourier series

restricted to 2NG1 + 1 Fourier coefficients, with

(16)|r − rG|
−1 ≈

∣

∣r − rj
∣

∣

−1

(17)|r − rG| ≈
∣
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∣
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∣

∣

η
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T := −nBk
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∣
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∣

∣

+ nAk
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in Eq. (20), which results in a discrete sum over Fourier coefficients for the transmission amplitude through 
phase gratings

This is implemented as a splitting procedure similar to source gratings with three differences. First, the direc-
tions changes Qx are not selected randomly but correspond to a finite set of augments Qnx = 2πn

pG1
 of the Fourier 

series. Second, apart from a position dependent phase term, all photon paths are transported through the grating 
independent of their intersection with the grating. Third, the weights applied to each path

are normalized due to Parseval’s theorem. The splitting procedures for phase and absorption gratings have great 
potential to improve simulation time since they allow to restrict the transport to relevant paths and give the user 
a way to define a maximum angle to be considered in the simulation.

Medium Interfaces.  Instead of splitting the paths at every medium interface, e.g. by using the implemented 
Huygens splitting, which would generate an unfeasible number of paths, Snell’s law is implemented as classical 
approximation. With the above notation (18) the corresponding path amplitude can be expressed as

The delta functions ensure that there is only a non-zero contribution at positions r satisfying Qx = 0 and 
Qy = 0 imposing two conditions on the direction change (18) of the path that are equivalent to Snell’s law. In this 
way classical behavior is established at interfaces. In the ray-tracing algorithm this is simulated by a piece-wise 
straight trajectory with a change of direction at the interface satisfying Snell’s law. Snell’s law is applied for any 
shape and size of interfaces in the ray-tracing algorithm. Additionally, in order to save simulation time only the 
transmitted part of the amplitude is considered during ray-tracing (setting τ = 1 ), except for situations where 
total reflection occurs, in which case τ → τR = −1.

Introduction of explicit scattering events.  The remaining step for estimating the expected detector 
signal (7) or (8) is to account for explicit scattering events. For simplicity, only the single-scattering case is 
investigated. The probability to find a scattered photon of energy E in pixel j depends on the source type S. For 
incoherent sources this probability is approximated as

where Pmsc(ksc, kS) denotes the probability that a photon with energy �c|kS| moving in direction of kS undergoes a 
scattering event resulting into a photon of energy �c|ksc| in direction of ksc in medium m present at location rsc , 
which is given over the respective cross sections. Thereby interactions and the potentially resulting secondary 
particles are described in close analogy to incoherent sources, reflecting the similarity between the two processes. 
For coherent sources the above expression has to be adapted by dropping the summation over ksc and rsc and 
by setting PS(rS , pS) to 1.

An implementation of Eq. (28) has to include the calculation of the probability to reach first the interaction 
location and then the detector, which would take an unfeasible number of paths to compute for each interac-
tion. Instead, the primary signal is calculated with the introduced ray-tracing algorithm implemented within 
EGSnrc. During this calculation scattering events are allowed to happen along every photon path created by the 
ray-tracing algorithm. The probability for a scattering event along a straight path segment is governed by the 
Beer-Lambert law as in conventional MC, which is handled by EGSnrc. Before a scattering event is performed 
by EGSnrc the primary path is propagated in a pure ray-tracing mode disabling explicit scattering events in 
order to prevent an overestimation of scattering related quantities and to ensure that no primary path for the 
calculation of the interference pattern is lost. After the pure ray-tracing of the primary path EGSnrc performs the 
scattering event adding potential secondary particles to the particle stack. Similar to MC particle splitting, the 
weights of secondary particles are multiplied by a 

∣

∣zj
∣

∣

2 factor, e.g. (26), if they occur on a path split by a grating, 
which follows from replacing AkS

m (r, rS) by AkS
G0(r, rS) , A

ks
G1(r, rS) , or AkS

G1(r, r
′)AkS

G0(r
′, rS) in Eq. (28). Any further 

propagation of secondary particles, with the exception of Rayleigh scattering, is assumed to produce no additional 
interference and, hence, is simulated with conventional EGSnrc MC particle transport without any splitting at 
the gratings. After a Rayleigh scattering event, however, the corresponding entry on the EGSnrc particle stack 
is handled as a primary path, including further splitting at gratings and its contribution to the primary signal. 
To limit the impact of Rayleigh scattering on computation time the number of such coherent scattering events 
is currently restricted to one per path. An illustration of the full GI MC is given in Fig. 9.
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Data availability
The data used for the findings reported in this work can be generated with the example user codes and the cor-
responding input files provided on GitHub.

Code availability
All code used to generate the results is provided on GitHub (https://​zenodo.​org/​badge/​lates​tdoi/​45410​
4492) under the GNU Affero General Public Licence.
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