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Abstract

A prominent feature of Parkinson’s disease (PD) is the loss of dopamine in the striatum, and many therapeutic interventions
for the disease are aimed at restoring dopamine signaling. Dopamine signaling includes the synthesis, storage, release, and
recycling of dopamine in the presynaptic terminal and activation of pre- and post-synaptic receptors and various
downstream signaling cascades. As an aid that might facilitate our understanding of dopamine dynamics in the
pathogenesis and treatment in PD, we have begun to merge currently available information and expert knowledge
regarding presynaptic dopamine homeostasis into a computational model, following the guidelines of biochemical systems
theory. After subjecting our model to mathematical diagnosis and analysis, we made direct comparisons between model
predictions and experimental observations and found that the model exhibited a high degree of predictive capacity with
respect to genetic and pharmacological changes in gene expression or function. Our results suggest potential approaches
to restoring the dopamine imbalance and the associated generation of oxidative stress. While the proposed model of
dopamine metabolism is preliminary, future extensions and refinements may eventually serve as an in silico platform for
prescreening potential therapeutics, identifying immediate side effects, screening for biomarkers, and assessing the impact
of risk factors of the disease.
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Introduction

Parkinson’s disease (PD) is the most common neurodegenerative

movement disorder, affecting more than 1% of the worldwide

population over the age of 65 [1,2]. Pathologically, PD is

characterized by a progressive loss of dopamine neurons in the

substantia nigra pars compacta, the presence of ubiquitin- and alpha-

synuclein-positive cytoplasmic inclusions known as Lewy bodies

[3,4], depigmentation of the locus ceruleus, and autonomic

dysfunction including sympathetic denervation of the heart [5].

While PD is a complex, multi-faceted disease, it has been suggested

that neurodegeneration is primarily due to the generation of toxic

species and to oxidative stress caused by abnormal dopamine

metabolism [6–9]. Because loss of dopamine is responsible for the

majority of the motor symptoms of PD, treatment options have

mostly been based upon restoration of dopamine function by

replacement of dopamine precursors, inhibition of degradative

enzymes, or dopamine agonists. Some efforts have also been

targeted toward the development of drugs for PD based on the

synergistic action of dopamine, glutamate, and acetylcholine

neurotransmission on GABAergic neurons in the striatum [10–14].

For many years, there has been considerable debate as to

whether L-DOPA, administered to treat the symptoms of PD, may

actually be exacerbating the disease due to oxidation of L-DOPA

and its metabolites. In addition, L-DOPA treatment, which should

counteract decreases in dopamine, tends to become ineffective

after a while, again demonstrating the complexity of the

controlled, adaptive metabolic system. Given the inherent

complexity of dopamine dynamics and the redox state of the

neuron, a quantitative analysis using mathematical models could

enhance our understanding of these complicated processes.

To our knowledge, no dynamic model of presynaptic dopamine

homeostasis is available outside the one proposed here. Some

investigators have developed models for various aspects of

dopamine function [15,16], while others have elucidated some of

the context in which dopamine metabolism affects PD, schizo-

phrenia, opium addiction and other pathologies with focus on

functions and processes on postsynaptic site, and specifically the

role of DARPP-32 [14,17–20]. We therefore set out to design a

mathematical model of dopamine metabolism/homeostasis de novo.

The focus on dopamine was chosen not only because of its

common role in Parkinson’s disease and other disorders, but also

because of its key role as a physiologically, pathologically, and

pharmacologically interesting neurotransmitter. The resulting

model turned out to provide qualitatively reasonable and even

semi-quantitatively accurate predictions of critical systemic

responses of the dopamine metabolism and may eventually serve

as a computational platform for rational drug development and

biomarker screening for PD.

Materials and Methods

The design of a pathway model requires three sets of input

information: knowledge or assumptions regarding the pathway
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topology and regulation; choice of a suitable mathematical

modeling framework; and data permitting parameter estimation.

Pathway Structure
As a starting point, we focused on the nigrostriatal pathway,

which is the dopamine pathway most affected in PD. The

simplified pathway diagram (Figure 1) was constructed by

integrating information from databases [21,22], literature

[23,24], and expertise provided by neurologists and biologists.

Dopamine metabolism is located primarily in the presynaptic

neuron and the synaptic cleft. Its homeostasis is controlled through

a complicated biochemical network. Tyrosine, as the precursor of

the dopamine pathway, is converted to L-DOPA by tyrosine

hydroxylase (TH), which is regarded the rate-limiting enzyme of

dopamine metabolism. DOPA decarboxylase (AADC) uses most

of the L-DOPA to synthesize the key neurotransmitter dopamine,

but L-DOPA can also be converted into the neuronal pigment

melanin. Dopamine is packed into vesicles by the vesicular

monoamine transporter (VMAT2). The packed dopamine is

subsequently released into the synaptic cleft, where released

dopamine can bind to dopamine receptors located on the

postsynaptic membrane. Alternatively, dopamine can be taken

up by the dopamine transporter (DAT) and returned back to the

cytoplasm of the presynaptic neuron. Furthermore, extracellular

dopamine can be methylated by catechol O-methyltransferase

(COMT) to 3-methoxytyramine (3-MT). Monoamine oxidase

(MAO) can oxidize cytoplasmic dopamine to 3,4-dihydroxyphe-

nylacetate (DOPAC), which COMT may convert to homovanil-

late (HVA) .

Modeling Framework
For our modeling environment we chose Biochemical Systems

Theory (BST) [25–27], because it permits mathematical analyses

and simulations of biochemical pathways under a minimal set of

assumptions and even if crucial quantitative information is lacking,

as it has been demonstrated in other, similarly complex contexts

[28–30]. BST has been described numerous times, and detailed

reviews are available [28–33]. The easy access to documentation

of theory and applications allows us to minimize the description

here; some pertinent details are given in the Supplemental

Materials S1.

The key feature of BST is the representation of processes with

products of power-law functions. This particular formulation is

solidly anchored in Taylor’s approximation theory and exhibits

three important features. First, the representation is guaranteed to

be appropriate in the vicinity of some chosen nominal point at

Figure 1. Simplified diagram of the nigrostriatal dopamine pathway, constructed from information in the literature, databases, and
expert opinion of biochemists and neurologists. Detailed lists of all metabolites, variable names in the model, abbreviations, and numerical
values are presented in Supplement Tables S1 and S2. Primary metabolites are highlighted in yellow, reactive oxygen and nitrogen species in light
red, and toxic species in light purple; X29 is dopamine-3-sulfate, which is merely a recipient of material and not explicitly modeled; it is therefore not
listed in Supplement Table S1 and S2. The ellipse shows dopamine inside vesicles. Metabolites in the synaptic cleft are indicated by dashed frames.
Solid arrows represent biochemical reactions; associated enzymes are denoted in capital italics in light blue. Dash-dotted arrows designate inhibition,
while dashed arrows with plus sign designate activation. Transport steps are represented as dashed arrows. Abbreviations of enzymes are: TH -
tyrosine hydroxylase, TYR - tyrosinase, XO - xanthine oxidase, ALDH - aldehyde dehydrogenase, MAO - monoamine oxidase, SSAO - semicarbazide-
sensitive amine oxidase, AADC - DOPA decarboxylase, DCT - dopachrome isomerase, CAT - catalase, SOD - superoxide dismutase, COMT - catechol O-
methyltransferase, GPx - glutathione peroxidase, MIF - migration inhibitory factor. Question marks refer to enzymes that are unknown or not fully
understood. Not shown in the diagram are deacetylipecoside, deacetylisoipecoside, noradrenaline, norcoclaurine, and norlaudanosoline; they are
identified as ‘‘downstream products’’.
doi:10.1371/journal.pone.0002444.g001
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which the system normally operates. Second, experience has

shown that this vicinity can be quite large in biological systems and

that power-law representations are often sufficiently accurate for

high-percent or even fold variations in system components. In

other words, systems characterized by high variability are often

well characterized by power laws. Third, the resulting equations

are very rich in structure and can model, in principle, any

conceivable nonlinearity that has continuous derivatives [34],

including limit cycles and deterministic chaos [35].

It is customary in BST to distinguish dependent variables (Xi,

i = 1, 2, …, n), representing genes, proteins, metabolites, or other

components characterizing the dynamics of the system, from

independent variables (Xi, i = n+1, n+2, …, n+m), such as constant

inputs or enzyme activities, that do not change during any single

experiment. Both types of variables enter the appropriate power-

law terms of the system, but equations are only formulated for the

dependent variables. In the so-called Generalized Mass Action

(GMA) form, which we use here, a BST model thus has the format

_XXi~+ci1 P
nzm

j~1
X

fij1

j + . . .+cik P
nzm

j~1
X

fijk

j , ð1Þ

where each power-law term is composed of a rate constant c and

of all variables that directly affect the modeled process, raised to a

kinetic order exponent f. A rate constant characterizes the flux rate

between pools or variables, while a kinetic order reflects the

strength of the effect that the corresponding variable Xj has on a

given process.

If the true functions for the processes in the system are

unknown, the numerical values of the parameters in the power-law

representations (Eq. 1 and Supplement Eq. S1) are not known.

Nevertheless, the structure of the equations is completely

predictable and can be formulated symbolically from information

about which variables directly affect each process. This type of

information is often, though not always, available for metabolic

pathways, and the task of determining appropriate parameter

values remains to be one of the most significant challenges of

modeling with BST or any other model.

Parameter Estimation
Any numerical implementations and simulations of a BST

model require the identification of parameter values. Although

numerous methods have been developed over the years [30,36],

each new pathway creates its own challenges. To some degree,

kinetic information may be available in enzyme databases [21,22],

but it is still often difficult to assess to what degree kinetic

information from one organism and one set of (typically in vitro)

conditions is applicable to another organism and possibly in vivo.

Our task of developing a numerical model of dopamine

metabolism in the human brain (Fig. 1) did not allow us to use

much published data. For instance, very little information is

available on the exact concentrations of the metabolites that

contribute to dopamine metabolism. Fortunately, every parameter

in a BST model has a unique and unambiguously defined role,

which greatly facilitates model design and estimation. This is to be

seen in contrast to traditional kinetic models, which may contain

multiple parameters characterizing the same process or event. For

instance, detailed models of enzyme catalyzed mechanisms, such

as a ping-pong mechanism, may require dozens of affinity,

equilibrium, and rate constants that are associated with interme-

diate complexes, as poignantly discussed in Schultz [37]. Adding

to this complication is the fact that it is seldom a priori clear which

traditional mechanism would be most appropriate in a given

situation. In BST models, by contrast, the effect of any given

system component on any given process is uniquely described by

one kinetic order plus one rate constant for the overall turn-over

rate of the process. These differences between traditional and BST

models are crucial for the estimation of parameters, because: (1) it

is immediately clear how many parameters are to be used and how

they enter the system of equations; (2) typically fewer parameters

are to be estimated; and (3) the specific meaning of each parameter

allows the setting of biologically supported constraints. In addition,

experience with BST and other approaches suggests that systems

models are rather robust if the system structure is captured

correctly. In other words, if all connections between metabolites

and all signals are accounted for, the parameter values are not as

critical as one may think, and if a kinetic order is set as 0.75

instead of 0.6 or 1, the model responses are often still meaningful.

All these aspects render BST a powerful structure for model

implementation and estimation in the face of uncertainty.

Even with the stated advantages of BST, parameter estimation

difficult. In fact, it may well be the hardest step in the entire

modeling process. In light of the generic difficulties and the relative

robustness of BST models, we decided to construct our dopamine

model as a ‘‘relative’’ model based on expert knowledge.

Specifically, adapting strategies for assessing complex systems

from the fields of toxicology, risk assessment and evidence-based

medicine, we asked several experts on neurochemistry and

Parkinson’s disease about the relative amounts of compounds in

the dopamine system with respect to dopamine itself or to some

other, relatively well characterized compounds in the system. We

utilized this expert knowledge to estimate the relative metabolite

profile at steady state as well as the relative magnitudes of fluxes

within the dopamine system. We complemented this information

with default values for kinetic orders, as they have been used in

BST for a long time (Chapter 5 in [30]). It is clear that this type of

procedure is not as quantitative as we would like. However, there

is really not much of an alternative, and the models thus

constructed do reflect expert opinions of the dopamine metabolism

quite well [38–50]. As far as we know, the type of expert-based

parameter estimation applied here has not been used in metabolic

modeling before. To limit the parameter space further, we

assumed that all processes are of first order with respect to the

catalyzing enzyme, which is the implicit default assumption in

most kinetic models.

The results of our parameter search are reflected in Supplement

Table S1 and in the numerical models (see Supplemental Material

S2). The independent variables of the model are listed in

Supplement Table S2.

Results

Steady-State Analysis
The model of dopamine metabolism (represented in diagram form

in Figure 1) was diagnosed, analyzed, and refined according to the

guidelines provided in BST [30]. Due to the expert-based

determination of parameter values, the steady-state concentrations

and fluxes of the model were automatically consistent with expert

opinion (Supplement Table S1). Also consistent with the expert-based

flux profile, the rate constants associated with the generation of L-

DOPA from tyrosine, conversion of L-DOPA to dopamine, and

dopamine transportation turned out to have the largest magnitudes.

The dopamine model is locally stable and thus able to withstand

small perturbations. Upon perturbations to the system, some

metabolites may exhibit well-damped, small-amplitude oscilla-

tions. Such oscillations occur primarily in dopamine quinone (DA-

Q), dopamine chrome, 5,6-dihydroxyindole-2-carboxylate

(DHICA), melanin, DOPAC, and DOPAC quinone (DOPAC-Q).

Computational Dopamine Model
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Simulation Analysis
The real testing of the model occurred through simulations of

enzyme manipulations. In these simulations, local perturbations

(on enzyme activities and regulatory functions) were introduced

and the global model responses were compared to experimental

findings. In contrast to the confirmation of steady-state features,

which were used for model design, the consistency in these

dynamic experiments is by no means automatic, and because there

was no additional data fitting, the results are much more indicative

of the quality of the model or of its shortcomings.

TH, COMT, DAT, and VMAT2 were selected as primary

targets of manipulations, because experimental data are available

for comparison. Simulations addressed heterozygotes (single allele

deletion), gene knockouts (two allele deletion), gene hypomorphs

(severely impaired transcription), as well as DAT inhibition.

Striatal levels of dopamine and its two main metabolites, DOPAC

and HVA, were compiled and used for comparison with model

predictions.

Table 1 shows comparisons of experimental data and model

predictions. Here, the activities of TH and COMT were changed

through the use of heterozygote or homozygote knockouts, and

cases with or without DAT inhibition [51–53] were tested against

the resultant changes in the concentrations of dopamine, DOPAC,

and HVA. The manipulation of VMAT2 included an approxi-

mate 95% genetic reduction of expression [38]. The results

demonstrate a surprisingly high degree of accuracy of prediction,

which supports the qualitative validity of our model. For example,

relative changes in dopamine, DOPAC, and HVA levels in

response to a COMT heterozygote mutation together with 90%

DAT inhibition were predicted by the model as 15%, 90%, and

243%, respectively, while experimental measurements yielded

comparable values of 22%, 71%, and 217%. Recent findings

show that reduction of VMAT2 causes a severe reduction of

dopamine, nigrostriatal neurodegeneration, increased vulnerabil-

ity to various toxicants, and motor behavior deficits [50,54,55].

Our experimental data and model predictions revealed that

reduced VMAT2 causes adverse effects such as lowering

dopamine level, elevating toxic metabolites (cysteinyl adducts, a

marker of quinone formation as seen in reference [38]), and

exacerbating oxidative stress [38]. Equally supportive results were

found for most of the other manipulations, where the model

provided qualitatively correct and even semi-quantitatively

accurate predictions of systemic behaviors.

Some predictions, especially with respect to HVA, differ

considerably from experimental data. This relatively low accuracy

is in most cases due to our deliberate decision not to tweak

parameter values arbitrarily. Specifically, all enzymes have kinetic

orders of 1, reflecting the typical default of first-order involvement.

Deviations from this default could effectively improve accuracy of

prediction of HVA level. For example, if one simply alters the

kinetic order of COMT in the synthesis of HVA to 0.3, the relative

change on HVA in the COMT heterozygote and COMT

heterozygote/DAT 90% inhibition experiments is predicted to

be 220% and 217%, which is very similar to the experimental

findings (215% and 217%). It is unknown at this point whether

there is rationale for such an alteration, but the change in kinetic

order indicates that the model could be slightly reparameterized

for more accurate numerical results. We did not consider this

necessary at the present state of our model.

Gain Analysis
An important feature in any systems analysis is the relative

strength of control that each part of the system plays. Questions of

this type are addressed with methods of sensitivity analysis, where

one investigates output responses of the system due to small,

permanent disturbances, either in the environment or in the

system structure, which in turn is characterized by its parameters.

These kinds of sensitivity analyses allow a preliminary screening

for environmental factors and system properties that are most

critical or that could potentially be manipulated efficaciously in

order to alter important system behaviors, such as disease states.

Interpreted correctly, sensitivity analyses can aid both in the

discovery of biomarkers and the development of potential

pharmacological interventions.

It is customary in BST to distinguish the model’s steady-state

sensitivity with respect to parameter values as opposed to

independent variables. The relative change of a dependent

variable at steady state in response to a relative change in an

independent variable is specifically called a logarithmic gain (log

gain). Each gain or sensitivity value corresponds to the (positive or

negative) percent change evoked by a 1% increase in an

independent variable or a parameter.

Log gains are very useful for the assessment of the robustness of

a system, because changes in independent variables often reflect

natural fluctuations within the internal or external milieu of the

organism. In our model, independent variables include dozens of

enzymes and environmental variables that are considered constant

and at their normal value under physiological conditions

(Supplement Table S2). Among these, L-Glutamate (Glu) can be

Table 1. Changes in metabolite concentrations, relative to
wild type, in response to manipulations of components of
dopamine metabolism.

Manipulation Metabolites
Experimental
Result Prediction

TH heterozygote dopamine No change 22.68%

DOPAC No change 0.78%

HVA No change 20.94%

TH knockout dopamine 299.58% 2100.00%

DOPAC Not detected 2100.00%

HVA Not detected 2100.00%

COMT heterozygote dopamine 6.93% 18.56%

DOPAC 10.54% 18.93%

HVA 214.52% 249.10%

COMT knockout dopamine 10.64% 37.39%

DOPAC 232.95% 464.06%

HVA 2100.00% 2100.00%

COMT
heterozygote+90% DAT
inhibition

dopamine 21.97% 14.57%

DOPAC 71.46% 89.78%

HVA 217.01% 243.36%

COMT knockout+90%
DAT inhibition

dopamine 30.58% 30.25%

DOPAC 447.50% 876.77%

HVA 2100.00% 2100.00%

VMAT2 LO# dopamine 285.42% 289.98%

DOPAC 258.00% 228.96%

HVA 258.17% 283.55%

#: VMAT2 LO mice show 95% reduction in the VMAT2 level compared to wild
type mice.

doi:10.1371/journal.pone.0002444.t001
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viewed as a toxic species that is potentially deleterious to neurons.
.NO is a reactive nitrogen species (RNS), while glutathione (GSH)

and ascorbate (ASB) are antioxidants that can alleviate oxidative

stress. The concentrations of these variables depend on diet and

the environment and are thus subject to repeated dynamic

changes. Other independent variables mainly represent enzyme

activities that are not directly linked to environmental or dietary

fluctuations, but are immediately affected by genetic variations

and possibly during disease.

Log gains were analyzed for all combinations of dependent and

independent variables and generally found unremarkable. The

entire set of gains is large, and Supplement Table S3 only shows

the most pertinent results. Of primary interest are gains of

important metabolites, reactive oxygen species (ROS), RNS, and

toxic species that are closely associated with the pathogenesis of

PD (Fig. 2). Metabolites of special interest include L-DOPA,

dopamine, dopamine in vesicles (DA-v), extracellular dopamine

(DA-e), DOPAC, extracellular DOPAC (DOPAC-e), HVA, and

melanin. ROS include O2
2., H2O2, extracellular H2O2 (H2O2-e),

and HO., while RNS comprise HO.—NO2
. and .NO2. Toxic

species in our model are dopaquinone (DOPA-Q), 3-MT,

DOPAL, extracellular DOPAL (DOPAL-e), DOPAC-Q, and

DA-Q.

As Supplement Table S3 indicates, all gains are relatively small

in magnitude, which is typically considered a positive sign of

model robustness, but also implies that it is difficult to change

concentrations (such as for dopamine) through induced alterations

in enzyme activities. Most of the gains are small in magnitude

(,,1) so that fluctuations are effectively attenuated in almost all

cases. Among the dozens of independent variables, only AADC

has a noticeable effect on DOPA concentration, with a log gain of

21.63%, which is to be interpreted as a 1.63% relative decrease in

response to a 1% increase in AADC activity. Dopamine in all

locations (intracellular, in vesicles, or extracellular) is negatively

affected by increases in the activities of MAO and semicarbazide-

sensitive amine oxidase (SSAO), which are enzymes catalyzing the

degradation of dopamine. Outside MAO and SSAO, the vesicular

monoamine transporter (VMAT2) also affects the concentration of

DA-v and DA-e, but with positive log gains; DAT and COMT

have a slightly negative effect on DA-e. With respect to DOPAC,

only Fe2+ has a relatively significant influence with a log gain of

20.74%. Increases in many independent variables, such as S-

Adenosyl-L-methionine (SAM), DAT, MAO, SSAO, and COMT,

negatively affect DOPAC-e. DOPAC-e is positively affected by

increases in VMAT2, extracellular monoamine oxidase (MAO-e),

and extracellular semicarbazide-sensitive amine oxidase (SSAO-e).

HVA is mainly influenced by SAM and COMT. Melanin, the

source of pigmentation in dopaminergic neurons, can be altered

by changing the concentration of MAO, SSAO, or COMT.

Oxidative stress may be assessed approximately by measuring

concentrations of ROS and RNS, and its association with

dopamine metabolism is reflected in the corresponding log gains

(Supplement Table S4). All are close to 1 or smaller in magnitude,

identifying them as unremarkable and difficult to affect.

One might ask to what degree it could be possible to reduce the

amounts of toxic species, such as DOPA-Q. Supplement Table S5,

exhibiting log gains with respect to these metabolites, indicates

that toxic species are difficult to remove. The relatively most

effective way of decreasing DOPA-Q would be an increase in the

activity of AADC with a log gain of 3.37. Reductions in Fe2+ or

increase of COMT activity would have a similar but weaker effect.

Unduly high values of 3-MT could possibly be alleviated by

activation of extracellular aldehyde dehydrogenase (ALDH-e) or

MAO-e, or through inhibition of SAM or COMT. Increases in

VMAT2, SAM, MAO, SSAO, or COMT could moderately lessen

content of DA-Q. According to the gain analysis, it would be very

Figure 2. Interrelationships between dopamine metabolism, VMAT2, DAT, the generation of toxic species, oxidative stress and
mitochondrial dysfunction in Parkinson’s disease.
doi:10.1371/journal.pone.0002444.g002
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difficult to reduce the concentration of DOPAC-Q, because all

gains are close to zero.

While all log gains are small, it is still worth exploring the effects

of combined and larger alterations in some of the variables with

relatively higher gains. Most metabolites of the dopamine pathway

have low concentrations in the human brain, so that even small

amounts of medication would evoke relatively large deviations and

could thereby be quite efficacious. Some results of such an

exploration are shown in Table 2.

Table 2 shows that increasing VMAT2 could elevate concentra-

tions of extracellular dopamine and total dopamine, but is less

efficacious than MAO inhibition. However, MAO inhibition has

the undesired side effect of elevating some of the toxic species, such

as 3-MT, DA-Q, and DOPA-Q. Severe increases in these toxic

species are deleterious to dopaminergic neurons and may induce

neuronal degeneration. The combined targeting of VMAT2 and

MAO shows a substantial increase of dopamine while keeping the

concentrations of toxic species under control. For example, 10%

MAO inhibition together with a 50% increase in VMAT2 is

predicted to elevate extracellular dopamine by 70%, while elevating

3-MT by only 32%. The latter has to be seen in contrast to 50%

MAO inhibition alone, which raises 3-MT more than 7-fold. The

other toxic species are actually lowered by the combination

regimen. While these results are based on a preliminary model,

they indicate how a computational systems approach may aid the

screening and selection of pharmacological therapies.

Parameter Sensitivity Analysis
The parameter set of the dopamine metabolic model is

comprised of kinetic orders and rate constants. Each kinetic order

is a reflection of the strength with which a variable affects the

corresponding process, while a rate constant determines the

turnover rate of a process [25,26]. As in the case of log gains, a

sensitivity value of (positive or negative) p indicates a p% change in

some outcome measure due to a 1% increase in the parameter of

interest.

Given the large number of dependent variables and parameters,

the full set of sensitivities is immense and rather uninteresting.

Indeed, most sensitivity values are small, indicating that moderate

perturbations in model structure are essentially inconsequential.

The highest sensitivities (in a range of magnitude 5 to 10) are found

with respect to DOPAC-e. A pertinent selection of somewhat large

sensitivities is presented in Supplement Table S6. As an example,

the kinetic orders associated with dopamine degradation show

negative gains for dopamine [23.8 to 25.4], as well as for DOPA

[22.1 to 22.9], DA-v [23.8 to 25.4], DA-e [24.5 to 26.4],

DOPAC-e [27.3 to 210.2], and melanin [23.8 to 25.3]. As

another example, the sensitivity profile of DA-e ranges from 0 to

about 6.4 in absolute magnitude. DA-e is the actual transmitter of

nerve signals for movement control. Its only noteworthy sensitivities

(with respect to DA-e self-degradation and dopamine degradation

toward DOPAL) are negative. Hence, measures to decrease the

effects of dopamine, MAO, or SSAO on the reaction between

dopamine and DOPAL could potentially constitute efficacious

interventions to increase DA-e concentrations. DOPAC-e is

negatively influenced by dopamine degradation and positively by

increases in the reaction between DA-e and DOPAL-e.

As with kinetic orders, most of the sensitivities with respect to

rate constants are negligible (Supplement Table S7). An exception

is rate constant c1_0, which represents the exogenous input flux

into the dopamine metabolic system. As one might expect,

enhancements in this flux yield increases in the concentrations of

most primary metabolites especially that of melanin, with the

exception of DOPAC, which slightly decreases. Almost all other

rate constant sensitivities are of magnitude 1 or smaller.

The kinetic order and rate constant sensitivities of ROS and

RNS are shown in Supplement Tables S8 and S9. As with

enzymes and antioxidants within the cell defense system, such as

CAT, SOD, GPx, and GSH, their kinetic order sensitivities show

moderate or higher capability of scavenging those ROS and RNS.

As before, the influx to the system generally has an enhancing

effect. Not surprisingly, the sensitivities suggest that increased

degradation of dopamine would increase all ROS and RNS except

for H2O2-e, while most of ROS and RNS could be moderately

alleviated by enhancing their own degradations.

Parameter sensitivities with respect to toxic species are presented

in Supplemental Tables S10 and S11. Changes in quite a few kinetic

orders could yield decreases in the concentration of DOPA-Q,

especially those parameters associated with L-DOPA conversion to

dopamine and DOPA-Q degradation to pyrrolo-quinoline quinine

(PQQ). 3-MT, DOPAL, and DOPAC-Q are most strongly affected

by changes in kinetic orders associated with their own degradations.

Increases in kinetic orders for the conversion of dopamine to

DOPAL could result in a substantial reduction of toxic DA-Q.

Table 2. Alterations in metabolite concentrations, relative to wild type, in response to MAO inhibition and increase of VMAT2.

Metabolites
50% MAO
Inhibition

50% VMAT2
Increase

50% MAO Inhibition+50%
VMAT2 Increase

10% MAO Inhibition+50%
VMAT2 Increase

10% MAO Inhibition+100%
VMAT2 Increase

DA-i 131.30% 28.72% 116.47% 5.29% 22.15%

DA-e 160.98% 43.99% 275.86% 69.83% 115.41%

DA# 131.51% 36.38% 223.69% 57.34% 94.59%

H2O2 230.64% 28.92% 236.22% 212.85% 219.33%

H2O2-e 26.61% 17.95% 44.04% 21.64% 36.45%

HO. 252.51% 217.48% 259.98% 224.57% 235.60%

.NO2 215.17% 29.25% 221.99% 210.98% 217.51%

DOPA-Q 145.25% 227.94% 87.68% 213.49% 233.52%

3-MT 732.53% 25.49% 719.03% 31.73% 27.26%

DOPAC-Q 242.17% 28.72% 245.88% 214.72% 220.74%

DA-Q 142.15% 227.35% 85.97% 215.16% 234.87%

#: Total amount of dopamine (intracellular, intravesicular, and extracellular).
doi:10.1371/journal.pone.0002444.t002
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Changes in the rate constant c1_0 of the input flux have

concomitant effects on DOPA-Q, DOPAL-e, and DA-Q and

increasing the rate of the degradation of toxic species would

moderately alleviate their concentrations. Other than that, the

system is by and large buffered against changes in turnover rates.

Discussion

The ability of dopamine replacement to restore the primary

movement deficit in PD is striking. Unfortunately, the success of

this treatment is temporary with side effects limiting the

effectiveness. An improved understanding of the dynamics and

control of dopamine metabolism is necessary for improving

approaches to dopamine restoration therapy. The main challenge

of this endeavor is the sophistication and complexity of the

dopamine pathway, which is further confounded by the enormous

difficulties in laboratory measurement in vivo. Our education and

Western culture have trained us to subdivide complicated

problems into manageable tasks, and this strategy is very successful

if the system under investigation is linear. However, for systems

containing many nonlinear processes, as it is the case with

dopamine metabolism, dissection of the integrated system becomes

problematic, because our brain is not able to weigh the relative

importance of parallel or counteracting processes against each

other in a quantitative fashion, or to assess the strength of a control

signal against the magnitude of the flux through a pathway.

Drawing from the fields of neuroscience, neurology, and

biochemistry, we collected a large body of information character-

izing the connectivity and regulation of the dopamine pathway

and converted this information into a BST model. As described

before, we then numerically configured this model in accordance

with expert knowledge on neurochemistry of the dopamine

metabolism. Even though this procedure was at best semi-

quantitative, it allowed us to set up a BST model that was

consistent with expert knowledge. As a first step of model

diagnosis, we analyzed systemic properties at the steady state. By

design, the steady-state concentrations and fluxes reflected the

input suggested by the experts. Not as automatic, but also not very

surprising, the model turned out to be locally stable, and while

some variables exhibited oscillations, these were of small amplitude

and strongly damped. Much more interestingly, simulations of

scenarios not used for model design and implementation turned

out to be surprisingly close to experimental and clinical

observations. Some examples are revisited below.

Our model results showing that the dopamine concentration in

the brain increases if the enzyme MAO is inhibited are consistent

with clinical observations. Selegiline, a MAO inhibitor, has long

been used as a therapeutic treatment for PD [56–59]. Beyond the

prediction on ultimate effects of MAO inhibition, our results also

suggest that inhibition of MAO may have undesired side effects. In

addition to augmenting dopamine levels, reduction of MAO

activity increases the amounts of toxic species, which in turn may

contribute to the degeneration of dopaminergic neurons. It is

tempting to speculate that the less than expected beneficial effects

of Selegiline seen in the DATATOP study [60] were due to these

unforeseen deleterious effects of MAO inhibition.

Our results suggest that a combination of targets could be

considered in the development of improved drugs for PD. The

predicted adverse effects of lowering VMAT2 suggest that

increases in VMAT2 or decreases of DAT in combination with

MAO inhibition seem to have the potential of efficiently increasing

extracellular dopamine levels while minimizing side effects caused

by elevated toxic species such as 3-MT, DA-Q, and DOPA-Q

induced by sole MAO inhibition (see Table 2). Such an example is

just a small indication of the capability of a mathematical model in

exploring potential pharmacological interventions.

According to our results, a reduction in VMAT2 activity causes

DA-e and DA-v to decline. Meanwhile, the toxic species DOPA-Q

and DA-Q are elevated. These findings were confirmed by a

recent paper from our laboratory that showed mice with low

VMAT2 expression display increased formation of toxic dopamine

metabolites, increased oxidative damage in dopamine-rich areas,

and a Parkinson’s disease-like phenotype [54], again supporting

the idea that increased VMAT2 could be beneficial in the

treatment of Parkinson’s disease. Indeed, a recent human study

showed that genetic polymorphisms associated with increased

VMAT2 expression reduced the incidence of PD in women [47].

According to the model, down-regulation of VMAT2, as well as

up-regulation of DAT, can elevate the amount of melanin. This

prediction is consistent with studies of Matsunaga and others

showing that neuromelanin content is inversely correlated with

neurological degeneration in PD patients [61,62]. Neuromelanin

has the ability to bind a variety of metal ions, especially iron.

Elevation of iron, in turn, may lead to increasing concentrations of

ROS and RNS, as predicted by our model, and especially to an

elevated concentration of highly reactive hydroxyl radicals. Our

predictions on the adverse effects of iron are also supported by

several recent studies [63,64].

An immediate use for the model is the determination of ‘‘choke

points.’’ These are features of the system that, if slightly

‘‘loosened,’’ permit a higher flux of material. Primary targets of

such an analysis in our case are extracellular dopamine, which

should be increased to counteract the motor symptoms of PD, and

toxic species, which should be minimized, for instance by means of

decreased production or increased degradation. The starting point

for the identification of choke points is the analysis of sensitivities

and log gains. Essentially all sensitivities and gains in our model

are small in magnitude, which is usually viewed as a good sign,

because it affirms robustness of the model. However, low

sensitivities and gains also imply that it is difficult to alter the

system through subtle manipulations, for instance, of some of the

enzymes in the system. The model analysis identified several

kinetic orders with relatively high sensitivities, but because these

reflect structural features of enzymatic processes, they are unlikely

to present accessible targets for drug treatment. Among the rate

constants, the rate of influx to the system (into the tyrosine pool)

stands out as most significant. It remains to be seen whether this

influx can be affected efficaciously by dietary or pharmaceutical

intervention. However, its deleterious side effects, similar to those

from L-DOPA administration, must be taken into account.

The most direct targets for intervention are exogenously

supplied substrates and enzyme activities, which could at least

theoretically be altered through inhibition or other mechanisms.

These targets are usually represented in the model through

independent variables, so that log gains are more important

indicators than parameter sensitivities. In the model, almost all

gains are relatively low, which again confers a certain degree of

robustness and implies that small changes are not particularly

consequential. However, pharmaceutical or dietary treatments do

not have to be in the low-percent range, especially for brain

metabolites that are present in very small concentrations. Thus, it

could be possible to effect beneficial changes, for instance by a

combined inhibition of MAO and DAT, or inhibition of MAO

together with activation of VMAT2 (see Table 2).

It is clear that the model presented here is very preliminary. In

addition to the uncertainties during parameter estimation, the

model is based on a number of simplifying assumptions. For

instance, several metabolites are treated as independent variables,
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even though they are certainly regulated at a different organiza-

tional scale and must be expected to change over long time

horizons. These variables include tetrahydrobiopterin, Glu, SAM,

prostaglandin G2, .NO, GSH, ASB, N-acetylcysteine, Fe2+, Fe3+,

NADH, NAD+, NADPH, NADP+, VMAT2, DAT, and ATP.

Furthermore, some metabolites are not taken into account, even

though they might be of importance for the proper functioning of

the nigrostriatal dopamine pathway. Finally, some processes and

enzymes within dopamine metabolism may be missing or are not

fully understood (as indicated by question marks in Fig. 1). Thus,

the proposed model is to be considered a starting point for more

detailed and refined estimations. It may also be used as a

preliminary input module for modeling approaches elucidating

phenomena further downstream, as they are, for instance, related

to DARPP-32 signaling [14,20].

Although the model is preliminary, it exhibits a number of good

features, such as robustness and consistency with diverse

experimental and clinical observations. Its main utilization at this

point is as an exploratory tool for generating hypotheses that are to

be screened and tested later in animal models. These hypotheses

may refer to the discovery of environmental exposures, biochem-

ical or genetic variations, and different disease trajectories toward

PD. Because manipulations are infinitely easier in the model than

in an animal experiment, numeric simulations and model analyses

can be executed in a very short period of time, permitting

comprehensive screening of possible scenarios and responses [65].

Our model was initially formulated for the nigrostriatal

dopamine pathway and with emphasis on PD. However, with

slight modifications it could be applicable to other disorders in

which dopamine homeostasis is altered, as for instance in attention

deficit hyperactivity disorder. The concepts and methodology in

these cases will be unchanged, but adjustments are likely to be

necessary with regard to the numerical properties of the model and

possibly the topology of the underlying biochemical network.

Supporting Information

Materials S1 Supplements without tables

Found at: doi:10.1371/journal.pone.0002444.s001 (0.06 MB

DOC)

Table S1 Metabolite concentrations and fluxes at steady state

(relative units)

Found at: doi:10.1371/journal.pone.0002444.s002 (0.06 MB

DOC)

Table S2 List of independent variables (include environmental

factors and enzymes)

Found at: doi:10.1371/journal.pone.0002444.s003 (0.06 MB

DOC)

Table S3 Among dozens of independent variables, only DOPA

decarboxylase (AACD) significantly affects DOPA concentration,

with a log gain of 21.63%, which means that DOPA is predicted

to exhibit a 1.63% decrease in response to 1% increase in AADC

activity. Dopamine, no matter where it is located (intracellular, in

vesicles, or extracellular) is negatively affected by enhancement of

MAO or semicarbazide-sensitive amine oxidase (SSAO), which

are enzymes catalyzing the degradation of dopamine. Except for

MAO and SSAO, the vesicular monoamine transporter (VMAT2)

also influences the concentration of DA-v and DA-e, but with

positive log gains, while DAT has a negative effect on DA-e. Only

Fe2+ has a significant influence on DOPAC, with a log gain of

20.74%. Increases in many independent variables, such as S-

adenosyl-L-methionine (SAM), DAT, MAO, SSAO, and COMT

are predicted to affect DOPAC-e negatively, while VMAT2,

extracellular monoamine oxidase (MAO-e), and extracellular

semicarbazide-sensitive amine oxidase (SSAO-e), DOPAC-e have

positive log gains. HVA is mainly affected by SAM and COMT.

Melanin, the source of pigment in dopaminergic neurons, is

affected by changes in the concentrations of SAM, Fe2+, VMAT2,

DAT, MAO, SSAO, or COMT. # Gain values are given in

percent change due to a 1% percent change in an independent

variable. * Gain s with absolute values less than 0.5 are discarded.

Found at: doi:10.1371/journal.pone.0002444.s004 (0.05 MB

RTF)

Table S4 Log gains of ROS and RNS in response to alterations

in independent variables#*. Only some ROS and RNS show

significant log gains with respect to the up-regulation of

independent variables. For instance, the gain of O2
2. indicates a

1.29% relative decrease upon 1% elevation of SOD. H2O2 and

H2O2-e could not be effectively changed by alterations in any of

the independent variables. HO. increased 1.46%, 1.13%, and

1.13% in response to 1% up-regulation of Fe2+, MAO, and SSAO,

respectively. Increasing .NO or Fe2+ could promote formation of

HO.—NO2
. and .NO2, while increases in ASB, CAT, SOD,

COMT, or GPx alleviate HO.—NO2
.. # Gain values are given in

percent change due to a 1% percent change in an independent

variable. * Gains with absolute values less than 0.5 are discarded.

Found at: doi:10.1371/journal.pone.0002444.s005 (0.04 MB

DOC)

Table S5 Log gains of toxic species with respect to alterations in

independent variables#*. The most effective way of decreasing toxic

DOPA-Q is increasing the activity of AADC; lowering Fe2+ has a

similar but lesser effect. 3-MT could be alleviated by elevation of

extracellular aldehyde dehydrogenase (ALDH-e) or MAO-e, or

reduction of SAM or COMT. DOPAL is mainly affected by Fe2+,

NAD+, NADH, NADP+, NADPH, and ALDH. Elevation of DAT,

MAO, or SSAO has the most significant negative effect on the

concentration of DOPAL-e, while increases in VMAT2, MAO-e, or

SSAO-e could promote generation of DOPAL-e. None of these

primary metabolites could significantly reduce the concentration of

DOPAC-Q. To lessen content of DA-Q, Fe2+ should be decreased

or VMAT2, SAM, MAO, SSAO, or COMT increased. However,

all effects are only moderate. # Gain values are given in percent

change due to a 1% percent change in an independent variable. *

Gains with absolute values less than 0.5 are discarded.

Found at: doi:10.1371/journal.pone.0002444.s006 (0.05 MB

DOC)

Table S6 Sensitivity of primary metabolites in response to

alterations in kinetic orders#*. DOPA shows negative gains with

respect to kinetic orders for its degradation processes, except for

the inhibition from dopamine. The sensitivity of DOPA in

response to alteration of dopamine inhibition is 3.24%, which

means 1% up-regulation of dopamine inhibition is predicted to

cause a 3.24% relative increase in DOPA. Dopamine and DA-v

have very similar sensitivity profiles for kinetic orders, with positive

values associated with DOPA degradation and negative values

associated with degradative processes of dopamine and DA-e

(especially for fluxes from dopamine to DOPAL and from DA-e to

3-MT). DA-e is the actual transmitter of nerve signals for

movement control. Its only noteworthy sensitivities (with respect

to DA-e self-degradation and dopamine degradation toward

DOPAL) are negative. Hence, measures to decrease the effects

of dopamine, MAO, or SSAO on the reaction between dopamine

and DOPAL could potentially constitute efficacious interventions

to increase DA-e concentrations. DOPAC is mainly affected by

kinetic orders for H2O2 degradation. Sensitivities of DOPAC-e

are negatively influenced by dopamine degradation and positively
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by increases in the reaction between DA-e and DOPAL-e. HVA

and melanin show several significant sensitivity values, mostly

associated with kinetic orders related to the degradation of DOPA,

dopamine, and DA-e. # Sensitivity values are given in percent

change due to a 1% percent change in a parameter * Sensitivities

with absolute values less than 0.5 are discarded.

Found at: doi:10.1371/journal.pone.0002444.s007 (0.08 MB

DOC)

Table S7 Sensitivity of primary metabolites in response to

alterations in rate constants#*. As with kinetic orders, most of the

sensitivities with respect to rate constants are negligible in

magnitude. Of note is rate constant c120, which represents the

exogenous input flux into the dopamine metabolic system. As one

might expect, enhancements in this flux yield increases in the

concentrations of most of the primary metabolites especially that of

melanin, with the exception of DOPAC, which slightly decreases.

Almost all other rate constant sensitivities are of magnitude 1 or

smaller. DOPA is negatively affected by rate constants for

degradation of DOPA and dopamine. Dopamine, DA-v, and DA-

e have negative sensitivities with respect to the rate constant for the

reaction between dopamine and DOPAL. Increasing the transport

of dopamine into vesicles could increase the concentrations of DA-v

and DA-e, while enhancing degradation of DA-v and DA-e is

expected to lead to decreases in their concentrations, respectively.

DOPAC, DOPAC-e and HVA are mainly affected by rate

constants related to their synthesis and degradation. DOPAC-e

also has significant sensitivities with respect to rate constants for

dopamine reactions. Many rate constants influence melanin to some

extent but much less than c120. # Sensitivity values are given in

percent change due to a 1% percent change in a parameter. *

Sensitivities with absolute values less than 0.5 are discarded.

Found at: doi:10.1371/journal.pone.0002444.s008 (0.06 MB

DOC)

Table S8 Sensitivities of ROS and RNS in response to

alterations of kinetic orders#*. Enhancing the degradation of

dopamine increases all ROS and RNS except H2O2-e, while

elevation of kinetic orders for effluxes out of DA-e reduce the

concentrations of most ROS and RNS. O2
-., H2O2, and H2O2-e

decrease upon up-regulation of their relevant degradation

processes. Increasing kinetic orders for degradation of DOPAC,

DOPAC-e, O2
-., H2O2, or HO. alleviates HO. concentration. HO.

—NO2
. and . NO2 could be decreased by enhancing the

degradation of O2
-. or H2O2. Enzymes and antioxidants within

the cell defense system, such as CAT, SOD, GPx, and GSH,

exhibit kinetic order sensitivities that show moderate capability of

scavenging these reactive species.

Found at: doi:10.1371/journal.pone.0002444.s009 (0.05 MB

DOC)

Table S9 Increasing rate constant c120 would raise the

concentrations of all ROS and RNS, especially those of HO.

and HO.—NO2
.; the rate constants for degradation of dopamine

to DOPAL have similar but lesser effects. Most of ROS and RNS

could be significantly alleviated by enhancing their own degrada-

tion. HO. could also be reduced through enhancement of H2O2

degradation. Increasing the rate constant for DOPAC autoxida-

tion would elevate HO.—NO2
. and .NO2, while rate constants for

O2
-. and HO. degradation have the opposite effect.

Found at: doi:10.1371/journal.pone.0002444.s010 (0.04 MB

DOC)

Table S10 Sensitivity of toxic species in response to alteration of

kinetic orders#*. Quite a few kinetic orders could efficaciously

decrease the concentration of DOPA-Q, especially those related to

L-DOPA conversion to dopamine and DOPA-Q degradation to

Pyrrolo-quinoline quinine (PQQ). 3-MT, DOPAL, and DOPAC-Q

have significant sensitivities with respect to kinetic orders related to

their degradation. Reduction in kinetic orders for DA-e degradation

to 3-MT could also effectively alleviate the concentration of 3-MT.

Increasing the effect of dopamine, MAO, or SSAO on dopamine

degradation could greatly alleviate the concentration of DOPAL-e;

decreasing the kinetic order for the reaction between DA-e and

DOPAL-e has a similar effect. Increases in DOPAL-e degradation

could somewhat reduce its own concentration. DA-Q shows

significant sensitivities mostly with respect to kinetic orders for the

conversion of dopamine to DOPAL. Elevation of the action of GSH

on H2O2 could indirectly result in great reductions of toxic DA-Q. #

Sensitivity values are given in percent change due to a 1% percent

change in a parameter. * Sensitivities with absolute values less than

3.0 are discarded.

Found at: doi:10.1371/journal.pone.0002444.s011 (0.05 MB

DOC)

Table S11 Sensitivity of toxic species in response to alteration of

rate constants#*. Rate constant c120, which accounts for the

exogenous input flux into the dopamine system has a strong

positive effect on the concentrations of DOPA-Q, DOPAL-e, and

DA-Q. Enhancing the degradation of DOPA could decrease

DOPA-Q moderately compared with that from c120. To

effectively reduce the concentrations of 3-MT, DOPAL, and

DOPAC-Q, their relevant rate constants for degradative processes

should be raised. DOPAL-Q could be reduced by increasing the

rate constant for conversion of dopamine to DOPAL or slowing

down degradation of DA-e to DOPAL-e. The rate constant for

DA-Q degradation has a negative effect on the concentration of

DA-Q but with smaller magnitude in comparison with c120. #

Sensitivity values are given in percent change due to a 1% percent

change in a parameter * Sensitivities with absolute values less than

0.5 are discarded.

Found at: doi:10.1371/journal.pone.0002444.s012 (0.06 MB

DOC)
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