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Esophageal squamous cell carcinomas (ESCC) is an aggressive disease with

five-year overall survival (OS) <15%. The main cause is metastasis rather than

local tumor, and angiogenesis plays an important role. Angiogenesis has a

significant impact on tumor metastasis, treatment and prognosis. However, the

expression pattern of angiogenic genes, its effect on treatment and its

relationship with prognosis in ESCC have not been systematically reported.

We performed the first and most comprehensive multi-omics analysis of

angiogenic genes in patients with ESCC and identified four angiogenic

phenotypes that vary in outcome, tumor characteristics, and immune

landscape. These subtypes provide not only patient outcomes but also key

information that will help to identify immune blocking therapy. In addition,

angiogenesis intensity score (AIS) was proposed to quantify tumor

angiogenesis ability, and its accuracy as a predictor of prognosis and

immunotherapy was verified by external cohort and corresponding cell lines.

Our study provides clinicians with guidance for individualized immune

checkpoint blocking therapy and anti-angiogenic therapy for ESCC.

KEYWORDS

esophageal squamous cell carcinoma, angiogenesis, multi-omics, TME,
immunotherapy, prognosis
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1 Introduction

ESCC is a disease with a high incidence and high

malignancy, of which >30% of patients have occur

recurrence and metastasis (1). Most patients have insidious

symptoms, leading to local infiltration and lymph node

metastasis at the first time of diagnosis. Endoscopy

indicates that early stage of ESCC can be accompanied by

angiogenesis and morphological changes of microvessels (2).

Angiogenesis can supply oxygen and nutrients for tumor,

while providing opportunities for tumor cells to enter the

circulation. Neocapillaries are more easily penetrated than

mature vessels (3). In turn, tumors release and induce

multiple angiogenic and anti-angiogenic factors, such as

vascular endothelial growth factor (VEGF) and IL-8, which

regulate the proliferation, migration, and apoptosis of

endothelial cell (EC). Thus, angiogenesis plays an important

role in growth and metastasis of many solid tumors (2–4).

Tumor vasculature is involved in various aspects of cancer

activities, such as response to tumor microenvironment

(TME), metabolism and drug resistance. Innate immune

cells, as a component of the TME, can alter their phenotype

that can release proangiogenic cytokines (5). ECs have been

reported to become an important origin of cancer-associated

fibroblasts, and transforming growth factor-b is responsible

for such ECs conversion in endothelial-mesenchymal

transition (6). Sterol regulatory element-binding proteins,

t ranscr ip t ion fac tors that mainta in ce l lu lar l ip id

homeostasis, are crucial for regulating angiogenesis in

re sponse to VEGF (7) , wh ich pre sen t me tabo l i c

characteristic during angiogenesis. Drug inhibition of

angiogenesis is an area of intense research and more than

300 angiogenesis inhibitors have been discovered (8).

Angiogenesis inhibitors can be divided into direct and

indirect inhibitors. The direct inhibitors target vascular

ECs, such as endostatin, and indirect inhibitors disturb the

pro-angiogenic communication between tumor, stroma, and

ECs, such as epidermal growth factor receptor inhibitors and

vascular endothelial growth factor receptor antibodies (8).

Nowadays, more studies have shown that the combination of

angiogenesis inhibitors that target different pathways may be

more effective than single agents.

The genomic comprehensive analyses of ESCC have been

sequenced recently, and researchers reported numerous key

genomic aberrations, including mutations, amplifications or

deletions (9). ESCC is a disease with both inter- and intra-

tumor heterogeneity (9, 10), the diversity in the molecular profile

of ESCC governs the tumor development including

angiogenesis. Several genes, such as PLCE1, AKIP1 and Sox2,

have been proved to regulate angiogenesis in ESCC (2, 11, 12),

and blockade of the NF-kb pathway can suppresses angiogenesis

(13, 14). Therefore, it is important to discover the major genes
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that regulate angiogenesis in ESCC and their association with

other cancer activities.

Here, we perform the genetic and epigenetic studies of

angiogenesis in ESCC for the first time. Firstly, a multigene

model to classify ESCC using angiogenic genes expression

profiling is built based on The Cancer Genome Atlas (TCGA)

and Gene Expression Omnibus (GEO). Then we analyze the

prognosis and other cancer activities among different subtypes

and these results are validated in vitro finally.
2 Materials and methods

2.1 Datasets

In this study, we downloaded two data sets, GSE53624 and

GSE53625, from GEO database. Among them, GSE53624 data

set was composed of 119 ESCC samples and 119 adjacent,

matching non-tumor tissues; the GSE53625 dataset consisted

of 179 ESCC samples and 179 adjacent, matching non-tumor

tissues. In addition, RNA-seq data and clinical information of 78

ESCC patients were downloaded from TCGA. Somatic mutation

data, copy number variation (CNV) and methylation data were

obtained from TCGA. Because TCGA had multi-omics data, it

was used for multi-omics analysis. ESCC patients with

GSE53625 were classified as the training cohort, and patients

within GSE53624 were used as the external validation cohort.

The clinical characteristics of all patients were shown in Table 1.

In order to make the gene expression profiling comparable

between different platforms, the Trans Per Million values of

RNA-Seq, robust multichip analysis processed values of

miacroarry. The qRT-PCR data were log2 transformed and

then normalized with the scale method by using the limma

package in R. The “maftoofs” software package in R analyzes the

mutation profiles and the “GenVisR” software package visualize

the results. The CNV is defined as the total number of genes

whose copy number changes in each sample, and the results are

visualized using the “RCircos” software package in R. Gene

methylation level is estimated by the average beta value of

specific probe. Tumor related transcription factors (TF) were

obtained from Cistrome cancer database.
2.2 Gene set variation analysis (GSVA)

To assess different tumor characteristics including

angiogenesis, we downloaded the Hallmark gene set from the

Molecular Signature Database (MSigDB). In order to study the

potential mechanism of different subtypes, twelve canonical

biological processes (15) are also assessed, including (1) DNA

damage repair; (2) TGF-b response signature (Pan-F-TBRS); (3)

antigen processing machinery; (4) immune checkpoint; (5)
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FGFR3-related gene; (6) cell cycle; (7) DNA replication; (8)

nucleotide excision repair; (9) homologous recombination; (10)

mismatch repair; (11) epithelial-mesenchymal transformation

(EMT) markers, EMT1, EMT2 and EMT3; (12) WNT pathway.

Additionally, we downloaded 10 canonical cancer pathways

from the study of Sanchez-Vega et al. (16). The differences of

scores between different phenotypes were analyzed by limma

package in R. All gene sets were analyzed by ssGSVA

package (17).
2.3 TME

Using the expression data, the matrix and immune

components in each sample were scored by ESTIMAT

algorithm, and the total score was calculated to explore the

microenvironment differences between different groups. At the

same time, the CIBERSORT algorithm was used to evaluate the

proportion of twenty-two kinds of immune cells in each sample

to study the difference of immune cell infiltration.
2.4 Quantitative real-time PCR

According to the description of the Japanese Collection of

Research Bioresources (JCRB) cell bank and related literature,

TE1 is representative of cell lines derived from orthotopic

tumors (18–20), whereas EC9706 is representative of cell lines
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derived from metastatic tumor (21–23). So TE1 and EC9706

were selected as our research subjects. Het-1A, which is the

normal esophageal epithelial cell line are reference (all obtained

from the Institute of oncology, Chinese Medical College,

Shanghai, China). To validate the accuracy of the model in

predicting high- and low- risks, RT-qPCR was performed using

SYBR qPCRMaster Mix (Vazyme). RT-qPCR primer sequences:

PTK2 F: 5’CTACAGCCTTATGACGAAATGC 3’, R: 5’

CTTCTCTTCCTCCAGGATTGTG 3’; TIMP1 F: 5’CATCACT

ACCTGCAGTTTTGTG 3’, R: 5’ TGGATAAACAGGGAAA

ACCTGT 3’; GAPDH F: 5’GAAGGTGAAGGTCGAGAGTCA

3’; R: 5’AATGAAGGGGTCATTGATGG 3’.The gene expression

level of Het-1A was normalized by 2 DDCT, which was used to

quantify the expression levels of individual genes, to calculate a

score for cells of different degree of malignancy.
2.5 Cell colony formation assay

The cells were seeded into a 24-well plate at a density of 400

cells/well, and gently shaken to make the cells evenly

distributed. Each group had three replicates. The medium

was changed every 3 days, and cell colonies were observed

after 7 days. The cells were washed with PBS, fixed with 4%

paraformaldehyde for 30 minutes at room temperature, and

stained with 0.5% crystal violet for 20 minutes. The stains were

carefully washed with pure water and then dried. Each well was

photographed and counted.
TABLE 1 Clinical characteristics of the all patients.

Characteristics GSE53625 (n=179) GSE53624 (n=119) TCGA (n=78)
NO. (%) NO. (%) NO. (%)

Age (y)

< 65 127 (70.9) 85 (71.4) 85 (71.4)

≥ 65 52 (29.1) 34 (28.6) 18 (23.1)

Gender

female 33 (18.4) 21 (17.6) 12 (16.5)

male 146 (81.6) 98 (82.4) 66 (83.5)

Grade

poorly 49 (27.4) 32 (26.9) –

moderately 98 (54.7) 64 (53.8) –

well 32 (17.9) 23 (19.3) –

Stage

I-II 87 (48.6) 53 (44.5) 54 (68.4)

III-IV 92(51.4) 66 (55.5) 24 (31.6)

Survive state

alive 73 (40.8) 46 (38.7) 56 (70.9)

dead 106 (59.2) 73 (61.3) 22 (29.1)
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2.6 Statistical analysis

The independent Student’s t test for continuous data and

the c2 test for categorical data were utilized for pairwise

comparisons between groups. Comparisons of categorical

and non-normally distributed variables between two groups

were performed using the Mann-Whitney U test and Kruskal-

Wallis H test for multiple groups. The spearman correlation

test assessed the correlation between normally distributed

variables. A P-value <0.05 and |correlation – coefficient(R)| >

0.3| were considered significantly correlated. The threshold for

statistical analysis in this study was set at A two-tailed P-value

< 0.05. TFs of angiogenic genes were analyzed in combination

with human TF information (NetworkAnalyst, http://www.

networkanalyst.ca) and visualized using Cytoscape software

(24). Then Cytoscape’s plugin, iRegulon, was used to predict

TF regulatory networks.
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3 Results

3.1 Association of angiogenesis with
tumor characteristics and prognosis

The overall workflow of this study was shown in Figure 1.

ESCC scores for tumor characteristics including angiogenesis

were calculated using ssGSVA. To evaluate the accuracy of

the angiogenesis score, we selected several representative

angiogenic genes and observed good correlation between

the angiogenesis score and the expression levels of VCAN

and VEGFA (Figures 2A, B). The strong correlation of the

angiogenesis score with the TME and tumor purity further

demonstrated the importance of angiogenesis and the

reliability of the score (Figures 2C–F). The relationships

between immune cel ls and angiogenesis were also

investigated. CD8 + T cells and memory B cells inhibited
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angiogenesis, and macrophages and activated dendritic cells

greatly enhanced angiogenesis (Figure 2G). Tumor

angiogenesis underlies tumorigenesis and progression. We

found that angiogenesis is tightly associated with distinct

features of ESCC tumor (Figure 2H). More importantly, K-M

survival analysis showed that angiogenesis had a significant

impact on OS in ESCC patients, which was validated in

another dataset (Figures 3A, B).
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3.2 Multi-omics analysis of
angiogenic genes

To identify the multi-omics map and expression drivers of

angiogenic genes in ESCC, we firstly compared the expression

changes of angiogenic genes between paired normal and ESCC

samples. The results showed that the expression of angiogenic

genes was highly heterogeneous between normal and ESCC
B C

D E F

G H

A

FIGURE 2

Association between angiogenesis with tumor characteristics. (A, B) Association between angiogenesis score and representative angiogenesis
genes, A (VCAN), B(VEGFA). (C–F) Correlation of angiogenesis score with TME and tumor purity, C (StromalScore), D (ImmuneScore), E
(ESTIMATEScore), F (TumorPurity). (H) Association between angiogenesis score and immune cells, all p value < 0.05. (G) Association between
angiogenesis score and tumor characteristics, all p value < 0.05.
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tissues, and the mRNA levels of most angiogenic genes were

significantly increased in tumor tissues (Figures 3C, D), which

further indicated the important role of angiogenesis in ESCC.

We calculated the angiogenic intergenic spearman correlation in

ESCC to explore the intergenic relationships. The results

suggested that positive correlations were more frequent than

negative correlations. In particular, the expression of SLCO2A1

was negatively correlated with other angiogenic genes
Frontiers in Oncology 06
(Figure 3E). Synergy among different angiogenic genes may be

important for the regulation of angiogenesis in individual

tumors. It is important to systematically analyze the effects of

angiogenic genes on ESCC patients.

Next, we comprehensively analyzed the relationships among

somatic mutations, CNVs, methylation, transcription factors and

angiogenic gene expression. ESCC somatic mutations were

dominated by Single Nucleotide Polymorphism (SNP) and
B

C D

E F

A

FIGURE 3

Effects of angiogenesis on prognosis and analysis of angiogenesis genes, (p values were showed as: *p < 0.05; **p < 0.01; ***p < 0.001).
(A) Kaplan-Meier curve of OS for high- angiogenesis and low- angiogenesis groups in GSE53625. (B) Kaplan-Meier curve of OS for high-
angiogenesis and low- angiogenesis groups in GSE53624. (C) Expression levels of angiogenesis genes in GSE53625. (D) Expression levels of
angiogenesis genes in GSE53624. (E) Correlation between angiogenesis genes. (F) Landscape of somatic mutation in ESCC patients.
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involved six types of single nucleotide variations (SNV), of which C

> T was predominant and the missense mutations were the most

common, including angiogenic genes. Among the top ten mutated

genes, ATP1A1, C1orf159 have been reported to be associated with

ESCC development, and other novel mutated genes we identified,

such as AGRN, TNFRSF8, BRINP3, ATAD3A, ARHGEF16, ARF4,

AMY1A, AGO1, have been studied in some diseases, but lacking a

study with ESCC (Figure 3F). The SNP landscape of angiogenesis

genes was shown in Figure 4A. In addition, we also found the

correlation between VAV2 mutation and expression (Figure 4B).
Frontiers in Oncology 07
We then examined CNV of angiogenic genes and found that

SLCO2A1, PTK2, FGFR1, CXCL6, PF4 and VEGFA had

widespread frequency of CNV gain, while FSTL1, VCAN,

LUM and POSTN were CNV loss (Figure 4C). CNV generally

affects gene expression. We further explored to find that

angiogenic genes with CNV gains were more frequent in

ESCC and highly likely to regulate the expression of ITGAV,

JAG2 and KCNJ8 mRNA (Figures 4D–F). Some gene expression

is up-regulated, but CNV is loss, such as VEGFA (Figure 4G).

These genes may be influenced by other factors at the same time.
B

C

D E

F G

H

A

I

FIGURE 4

Multiomics analysis of angiogenesis genes. (A) Landscape of mutation of angiogenesis genes in ESCC patients. (B) Boxplot of the relationship
between VAV2 expression and SNP. (C) Landscape of CNV of angiogenesis genes in ESCC patients. (D–G) Boxplot of the relationship between
expression of angiogenesis genes and CNV, D(ITGAV), E(JAG2), F(KCNJ8),G(VEGFA). (H) Heatmap (blue: low expression level; red: high
expression level) of the TF with p < 0.05 between the normal and the tumor tissues. (I) The correlation network of expression between
angiogenesis genes and TF. (red line: positive correlation; blue line: negative correlation).
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Ultimately, we identified nine angiogenic genes that may be

affected by methylation (Supplementary Figure 1). In particular,

ITGAV is co-driven by both CNV and methylation. Genetic and

epigenetic alterations that drive ITGAV expression changes lead

to ESCC development. Further, we compared the expression of

TF between normal esophagus and ESCC, and there were

obvious differences between the two (Figure 4H). By them, we

constructed transcriptional regulatory network with fourth

edges and five nodes (Figure 4I). Notably, TCF21 was

predicted to regulate most angiogenic genes, such as POSTN,

FSTL1, LPL, COL5A2, KCNJ8, COL3A1, OLR1, TIMP1 and
Frontiers in Oncology 08
LUM. The value of TCF21 in ESCC has been reported, but there

is no mechanistic study, and our findings provide ideas for the

mechanism of TCF21 in ESCC.
3.3 ESCC typing based on angiogenesis

Univariate Cox regression analysis showed that PTK2

hazard ratio (HR) was 1.483 (95% confidence interval [CI]:

1.018-2.161) and TIMP1 HR was 1.340 (95% CI: 1.067-1.682),

which were risk factors for OS in ESCC patients (Figure 5A). The
B

C D

E F

A

FIGURE 5

Molecular typing of ESCC patients. (A) Univariate Cox regression analysis of OS according to angiogenesis genes expression in GSE53625.
(B) Multivariate Cox regression analysis of OS according to angiogenesis genes expression in GSE53625. (C) Kaplan-Meier curve of OS for four
subtypes in GSE53625. (D) Kaplan-Meier curve of OS for four subtypes in GSE53624. (E) PCA revealed that all ESCC patients were well divided
into four subtypes in GSE53625. (F) PCA revealed that all ESCC patients were also well divided into four subtypes in GSE53624.
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results of multivariate analysis still showed that PTK2 and

TIMP1 were risk factors for OS of ESCC patients (Figure 5B).

According to the median expression values of PTK2 and TIMP1,

ESCC patients were classified into subtype I: PTK2 high + TIMP1
high ; subtype II: PTK2high + TIMP1 low ; subtype III: PTK2 low +

TIMP1high ; subtype IV: PTK2low + TIMP1 low We observed

significant OS differences among the four subtypes (Figure 5C).

This result was verified in GSE53624 (Figure 5D). Based on

angiogenesis, Principal component analysis (PCA) compared

the differences among the four subtypes, and the results revealed

that the different subtypes were distributed in different directions

(Figures 5E, F). This typing method could correctly classify

ESCC patients into four subtypes. The univariate and

multivariate Cox regression analyses further indicated that

subtypes could independently predict the outcome of ESCC

patients (Figures 6A–D).
3.4 TME differences among
ESCC subtypes

Recent studies have shown that the tumor immune

microenvironment (TIME) plays a key role in cancer

prognosis and treatment response (25). We compared the
Frontiers in Oncology 09
ImmuneScore, StromalScore, EstimateScore and TumorPurity

of four subtypes. The results showed that the TME and

TumorPurity were significantly different among four subtypes

(Figure 7A). In addition, the immune cell composition was also

significantly different among four subtypes (Figure 7B).

Compared with subtype IV, subtype I had fewer activated NK

cells and B cells, but more resting NK cells, resting T cells and

M2 macrophages, suggesting that one of the reasons for the

worst prognosis of subtype I may be the lack of

immuneactivating cells and the increase of immunosuppressive

cells. Both activated and resting NK cells were higher in subtype

II than subtype III, whereas adaptive immunity, such as B cells,

and inflammatory cells, such as neutrophils, were higher in

subtype III than in subtype II. Then We hypothesized that

subtype III activated adaptive immunity.

We also found that biological process disorder may mediate

poor prognosis. In subtype I, Homologous recombination,

Mismatch repair and WNT target significantly higher than the

other three subtypes. FGFR3-related pathways, Cell cycle, DNA

replication and Cell cycle regulators are enhanced in subtype II.

Pan-fibroblast transforming growth factor-b response (Pan-F-

TBRS), Antigen processing pathway and Epithelial-

mesenchymal transition 2 (EMT2) are enhanced in subtype

III. The activation of the DNA damage repair and nucleotide
B

C D

A

FIGURE 6

The univariate and multivariate Cox regression analyses of OS according to subtypes. (A) Univariate Cox regression analysis of OS according to
subtypes in GSE53625. (B) Multivariate Cox regression analysis of OS according to subtypes in GSE53625. (C) Univariate Cox regression analysis
of OS according to subtypes in GSE53624. (D) Multivariate Cox regression analysis of OS according to subtypes in GSE53624.
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excision repair pathways may cause subtype III to have longer

OS than subtype II but shorter than subtype IV, with an

unobserved imbalance in biological process of subtype

IV (Figure 7C).
3.5 Immune landscape of ESCC subtypes

The mRNA levels of seventeen human leukocyte antigen

(HLA) genes were significantly different among the four types

(Figure 7D). The main function of MHC molecules is to bind

and present antigenic peptides for recognition by CD + and

CD4 + T cells. Earlier we hypothesized that immunity mediated

the difference in prognosis between the four subtypes, once again

validating our speculation.

The common 18 immune checkpoints (PD1, PD-L1, PD-L2,

BTLA, B7H3, CTLA4, IDO1, LAG3, VSIR, TIM3, CD27, CD28,

CD40, ICOS, IL2RB, GITR, OX40, 41BB) were matched to the

genes measured in 257 ESCC patients. Finally, 10 immune

checkpoints (PD1, PD-L1, B7H3, CTLA4, IDO1, LAG3, VSIR,
Frontiers in Oncology 10
CD28, CD40, IL2RB) were used for further analysis. Immune

checkpoint expression varied greatly among four subtypes

(Figure 8A). Compared with other subtypes, subtype III

expressed more immune checkpoint stimulatory genes, such as

CD28 and CD40, and inhibitory genes, such as CTLA4, IDO1,

LAG3, VSIR, to achieve escape after immune activation.
3.6 Cancer pathways in ESCC subtypes

Different molecular subtypes have differential cancer pathway

changes. Among ten recognized cancer pathways, nine have

significant differences among four subtypes. There were four

pathways in subtype I and subtype II that were significantly

enhanced compared with other pathways. The four pathways of

subtype I are Cell Cycle pathway, PI3K pathway, WNT pathway

and KRAS-Down. The four pathways of subtype II are HIPPO,

MYC, NOTCH and TGF-b . However, subtype III only has the

highest change in KRAS-Up pathway and subtype IV lacks

significantly changed pathways (Figure 8B).
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Comparison of four subtypes.(p values were showed as: *p < 0.05; **p < 0.01; ***p < 0.001. ****p < 0.0001). (A) Differences in TME and tumor
purity among four subtypes in GSE53625. (B) Differences in immune cells among four subtypes in GSE53625. (C) Differences in core biological
pathways among four subtypes in GSE53625. (D) Differences in HLA gene expression among four subtypes in GSE53625.
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3.7 AIS

Using PTK2 and TIMP1, we generated AIS to quantify

angiogenesis. AIS =(EL of PTK2×1.48295148776218)+(EL of

TIMP1× 1.33972979205648). As our predictions, patients in

the low-AIS group showed significantly better prognosis than

the high-AIS group, which was also verified in another data set

(Figures 9A, B). The univariate and multivariate analysis showed

that AIS as a risk factor can independently affect the prognosis of

ESCC patients (Figures 9C–F).
3.8 Validation of signature in vitro

The accuracy of the signature was verified in different risk

cell lines. The results showed that compared with normal

esophageal epithelial cell, both PTK2 and TIMP1 were highly

expressed in ESCC cell lines (Figure 10A). What’s more, the

higher the risk of cells is, the higher the AIS scores are

(Figure 10B). In order to further evaluate the degree of

malignancy of the two cancer cell lines and verify the

reliability of our model, the cell colony formation assay was

performed. As shown in Figures 10C, D, EC9706, which scored

higher, formed more colonies, compared with TE-1. That proves

all the results again.
4 Discussion

The vast majority of cancer-related deaths are caused by

metastatic rather than local cancers (26), where angiogenesis

plays an important role. Angiogenesis has been found to play an

important role in the formation, progression and treatment of
Frontiers in Oncology 11
tumors, such as breast cancer and kidney cancer (27, 28). More

evidence shows that angiogenesis is closely related to invasion,

metastasis and survival of esophageal cancer (29, 30). Esophageal

cancer is considered to be one of the main causes of cancer-

related death. Traditional chemoradiotherapy has poor efficacy

and severe side effects (31, 32). Anti-angiogenic therapy has

gradually become a new therapy in recent years. However, more

than half of patients cannot benefit from it and the five-year

survival rate of esophageal cancer patients is still unsatisfactory.

Therefore, it is necessary to study the expression patterns of

angiogenic genes, biomarkers in ESCC and help make more

accurate clinical decisions through multigene methods.

To explore meaningful prognostic indicators related to

angiogenesis, we collected 376 patients with ESCC from three

different cohorts in TCGA and GEO databases. For the first time,

we systematically studied the major changes and possible driving

factors of angiogenic genes in detail from the perspective of

multi-omics. Then we constructed the prognostic signature

related to two angiogenic genes, which were verified in the

external datasets and further in vitro. It is worth mentioning

that there are significant differences in OS, TME, immune and

cancer pathways among different subtypes classified by this

prognostic signature. Finally, we constructed a robust AIS to

distinguish clinical high- or low-risk patients and guide clinical

anti-angiogenic therapy and immunotherapy.

Some studies have shown that high expression of PTK2 and

TIMP1 is associated with poor progression-free survival in

patients with various cancers (33–36). But there is a lack of

research in ESCC. Therefore, this is the first that ESCC patients

are divided into four subtypes based on the expression levels of

PTK2 and TIMP1. PTK2 protein tyrosine kinase is the alias of

FAK, which is produced by PTK2 gene expression. In the

process of tumor metastasis, the abnormal adhesion function

between cells or between cells and matrix is of decisive
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significance, and Focal Adhesion Kinase (FAK) plays an

important role in this function (37) There is growing evidence

that truncation of FAK can reduce the mobility of cancer cells,

thereby significantly reducing the risk of metastasis (38). The

more activated PTK2, the higher the degree of involvement in

cell adhesion and spread, which has guiding significance for the

prognosis of multiple cancers, such as colorectal cancer, ovarian
Frontiers in Oncology 12
cancer and esophageal cancer (34, 39, 40). Li et al. (41)

demonstrated that membrane metalloendopeptidase (MME)

inhibits the transfer of ESCC by inhibiting FAK-RhoA signal

axis. As reported by Tavora et al, depletion of EC-FAK reduced

VEGF-induced Akt phosphorylation, inhibited angiogenesis and

slowed tumor growth. Cancer-associated ECs also expressed

more PTK2 and FAK protein as well as higher levels of
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phosphorylation (42, 43). Further studies revealed that reduced

phosphorylation levels caused by PTK2 mutations attenuated

endothelial cell proliferation, survival, migration and

vascularization in vitro (44). Li Mengqing et al. (45) also

demonstrated that, by inhibiting the FAK-RhoA signaling axis,

MMEs inhibited the metastasis of ESCC. The relationship

between PTK2 overexpression and metastasis has been

reported. Therefore, PTK2 is an important driver molecule in

tumor angiogenesis, and targeting PTK2 may be a promising

therapeutic strategy for cancer.

The TIMP1 gene belongs to the TIMP gene family, which is a

natural inhibitor of matrix metalloproteinases (MMPs). Normally,
Frontiers in Oncology 13
MMPs and TIMPs interact to keep the extracellular matrix (ECM)

in homeostasis. However, there is evidence that if there is excessive

TIMP1 in the tissue, it may activate other MMPs, such as MMP-3,

or promote tumor invasion and metastasis through other modes of

action (46, 47). The same tumor cells that secrete MMPs also

synthesize TIMPs, the imbalance of MMP-9: TIMP1 makes tumor

cells more invasive (36). TIMP1 may be a pluripotent protein with

important functions for cancers. It has been shown that elevated

TIMP1 expression in plasma and tumors of patients with breast

(48), colorectal (49), gastric (50) and ovarian cancer (51), is

associated with poor prognosis. Immunohistochemistry identified

a concordance between high TIMP1 levels and a high rate of distant
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metastasis in breast cancer (52) and TIMP1, in serum of ovarian

cancer patients with preoperative, is also associated with more

aggressive tumor behavior (50). TIMP1 has been recognized as an

anti-apoptotic protein that not only activates MMPs and regulates

angiogenesis, but also inhibits apoptosis (53). Davidsen et al. (54)

revealed that TIMP1 could inhibit chemotherapy-induced

apoptosis by comparing TIMP1 gene deficiency variant and wild-

type cells. Valsamma Abraham et al. (47) showed that PECAM-1,

through PECAM-1-dependent homophilic ligand interaction,

could induce TIMP1 release from the endothelium into the TME,

leading to enhanced tumor cell proliferation. Mumtaz V. Rojiani

et al. (55) demonstrated that overexpression of TIMP1 accelerated

brain metastasis in lung cancer and observed a pro-angiogenic

effect. The reason was speculated that MMPs would break down

ECM and release anti-angiogenic factors, while TIMP1, through

eliminating the action of matrix metallo proteinases, could promote

angiogenesis (56). All these together with our findings prove the

possibility of TIMP1 as a novel therapeutic target for ESCC and

provide evidence for the accuracy of the prognostic signature

we constructed.

Increasing evidence was reported that the TIME, including

immune cells and cytokines, played a critical role in the

induction of cancer and angiogenesis. Meanwhile, immune

cells were also targets for angiogenesis inhibitors (57–59).

Immunosuppressive cells not only secrete proinflammatory

cytokines, such as IL-1, IL-2, IL-15 and IL-18, but also

upregulate IL-8, an important chemokine in angiogenesis.

These are strong angiogenic mediators and play an important

role in regulating angiogenesis in TME (60–62). Macrophages

undergo functional reprogramming and then are divided into

two polarization states, M1 and M2. M2 macrophages promote

tumor vascular development under hypoxic environment by

inducing high expression of cytokines, including HIF-1, HIF-2,

VEGF, basic fibroblast growth factor, IL-8 chemokines and

lymphogenic factors. M1 macrophages promote inflammation

and suppress tumors by suppressing angiogenesis and tissue

remodeling (63). VEGFA/VEGFR2 or VEGFA pathway alone is

associated with T-regs promoting angiogenesis in a variety of

cancers (64). On the other hand, cancer-associated blood vessels

are abnormal and tortuous, which can impair immune effector

cells infiltration. TIME is shaped by changing tissue oxygen

content, then altering immune cell composition and regulating

various immune cells such as M2 macrophages, T-regs, MDSCs

and related cytokines in TIME (65, 66). VEGF is an important

angiogenic factor that is not only important for angiogenesis of

tumors, but also, through binding to VEGFR on immune cells,

upregulates the expression of immune checkpoints (PD-1,

CTLA-4, TIM-3, LAG-3), thereby leading to the impairment

of the function of effector T cells and T cells exhaustion (67).

Studies have been reported that, in TME, hypoxia caused by

abnormal tumor vasculature modulated the proportion of M2

macrophage population and decreased the proportion of M1

macrophage population (68).
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Currently, it is widely recognized that tumors can be classified

into three immune phenotypes: immune inflamed, immune

excluded, or immune desert (69). The inflammatory phenotype

shows the characteristics, such as high immune, inflammatory cell

infiltration, high immune checkpoint expression and intact

antigen status. Excluded types displayed properties related to the

TGF-b signaling pathway, such as the presence of reactive stroma,

myeloid-derived suppressor cells, and tumor angiogenesis. The

immune desert type, which is characterized by lack of immune cell

infiltration, lack of antigen presentation, and high tumor growth,

increase fatty acid metabolism and WNT/b -Catenin signaling

(70). We found that, among four subtypes of ESCC based on

angiogenesis, subtype I conforms to immune desert

characteristics, subtype II conforms to immune excluded, and

subtype III and subtype IV belong to immune inflamed, especially

subtype III. SanjeevMariathasan et al. found that inflamed tumors

responded most strongly to checkpoint blocking (15), which is

consistent with our findings. Our findings also provide ideas for

immune checkpoint blocking therapy in ESCC.

This study has several strengths. Firstly, we systematically

and comprehensively performed a multi-omics exploration of

expression signatures and drivers of angiogenic genes in ESCC.

Secondly, most of the current research and application of

angiogenic genes are based on a single gene, which is one-

sided. We focused on collecting all the angiogenic genes,

constructing multigene prognostic signature, and reasonably

dividing them into four subtypes to facilitate the formulation

of clinical programs. Thirdly, our prognostic signature can

independently assess the prognosis of ESCC patients and is

closely related to the TME, immunity and tumor-related

pathways. Fourthly, our findings are not only validated by

external datasets, but also demonstrated by cell experiments in

vitro. Importantly, immune checkpoints are significantly

different in the four ESCC subtypes, which may lead to greater

clinical benefits for immune checkpoint blocking therapy.

Anti-angiogenic therapy has been enduring and has shown

clinical benefit in a variety of tumors, such as non-small cell lung

cancer (71) chondrosarcomaa (72). Clinical research and data

during decades have confirmed that anti-angiogenic therapy

combined with PD-1/PD-L1 mAb immunotherapy can enhance

therapeutic efficacy (73). However, in esophageal cancer, the clinical

effects of anti-angiogenic therapy have been unsatisfactory. In

clinical practice, the drug resistance of anti-angiogenic therapy,

the lack of biomarkers for selecting potential patients and predicting

effective response are the main reasons for the unsatisfactory

efficacy of anti-angiogenic therapy in patients with ESCC. These

are closely related to the responsiveness of the TME (74). Further

development of biomarkers that can screen the dominant

population, predict treatment efficacy, the combination forms of

combination drugs and the mechanisms of resistance to anti-

angiogenic therapy are the future directions. Among them, the

relationship between TME and tumor angiogenesis is the research

focus. We constructed four molecular subtypes based on angiogenic
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genes, generated AIS, and proposed potential biomarkers related to

anti-angiogenic therapy. Our model can predict prognosis, help

clinicians select ESCC patients most likely to benefit from

anti-angiogenic therapy, guide clinicians in developing potentially

effective treatment strategies for other ESCC patients

and provide a basis for combination immunotherapy with

anti-angiogenic therapy.
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