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Abstract

The National Surgical Quality Improvement Project (NSQIP) is widely recognized as “the best in 

the nation” surgical quality improvement resource in the United States. In particular, it rigorously 

defines postoperative morbidity outcomes, including surgical adverse events occurring within 30 

days of surgery. Due to its manual yet expensive construction process, the NSQIP registry is of 

exceptionally high quality, but its high cost remains a significant bottleneck to NSQIP’s wider 

dissemination. In this work, we propose an automated surgical adverse events detection tool, 

aimed at accelerating the process of extracting postoperative outcomes from medical charts. As a 

prototype system, we combined local EHR data with the NSQIP gold standard outcomes and 

developed machine learned models to retrospectively detect Surgical Site Infections (SSI), a 

particular family of adverse events that NSQIP extracts. The built models have high specificity 

(from 0.788 to 0.988) as well as very high negative predictive values (>0.98), reliably eliminating 

the vast majority of patients without SSI, thereby significantly reducing the NSQIP extractors’ 

burden.
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Introduction

The American College of Surgeons (ACS) National Surgical Quality Improvement Project 

(NSQIP) is widely recognized as “the best in the nation” surgical quality improvement 

resource in the United States [1]. NSQIP helps member hospitals to track outcomes 

associated with surgical patients, by collecting data on over 150 variables, including 

preoperative characteristics, intraoperative factors, and postoperative morbidity occurrences. 

In particular, postoperative morbidity outcomes are rigorously defined surgical adverse 
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events occurring within 30 days of surgery, such as surgical site infection (SSI), urinary tract 

infection (UTI), and acute renal failure (ARF). NSQIP uses collected data elements to 

calculate relative performance regarding postoperative morbidity and mortality and to 

compare each member hospital’s performance with benchmarking, which is risk stratified, 

including providing an observed to expected (O/E ratio) for every surgical adverse event [2]. 

With this feedback, member hospitals are able to focus attention and resources to areas of 

opportunity for improving the care of patients, which may also result in achieving reduced 

length of stay and readmission rates [3].

Unfortunately, less than 20% of hospitals in the United States currently participate in 

NSQIP, in large part due to its associated costs to implement. In addition to the participation 

fee, hospitals must employ a formally trained surgical clinical reviewer (SCR). An SCR 

ensures the reliability of clinical data abstraction, selects operation cases following NSQIP 

inclusion criteria, manually reviews and extracts data elements, and documents surgical 

postoperative occurrence outcomes. This manual yet expensive approach leads to high-

quality clinical data, but the associated cost remains a significant bottleneck to NSQIP’s 

wider dissemination.

An SSI is an infection occurring after surgery in the part of the body where surgery took 

place. While most surgical patients do not experience an SSI [4], SSIs are very expensive 

and morbid. According to the depth and severity of infection, SSIs are categorized into 

superficial, deep, and organ/space. Definitions for SSIs have been standardized by the 

Centers for Disease Control and Prevention (CDC) and are used by NSQIP SCR to identify 

and document each SSI category [5–6].

Previous work has explored risk factors associated with SSI, but few studies have focused on 

the detection of SSI. Most papers examining detection have relied heavily on administrative 

data or claims databases (such as age, gender, principal diagnosis, and billing information 

about medications and procedures) [7–8]. Since EHR data contains more detailed and richer 

clinical data (e.g. vital signs, lab results, and social history), compared with claims data it 

would provide additional significant indicators and signals to SSI and thus enhance the 

detection performance. In addition, most studies are procedure-specific, only processing 

SSIs following certain types of operation, such as hip and knee arthroplasty [9–10], instead 

of the current approach which is broadly inclusive of different types of surgery. To help 

reduce the labor and cost in reviewing patient records for postoperative surgical occurrences, 

we hypothesized that we could leverage both electronic health record (EHR) data and 

historic NSQIP registry data to develop and validate an automated approach with supervised 

machine learning algorithms to detect NSQIP occurrence outcomes. In particular, we 

focused on the postoperative SSI occurrences to develop a classifier of three SSI categories 

(superficial, deep, and organ/space) and the total SSI, and to reduce the SCR’s burden by 

eliminating the vast majority of patients associated with surgeries that did not result in SSI.

Materials and Methods

Our overall methodological approach for this study included four steps as outlined in Figure 

1: (1) identification of the patient cohort and associated patient EHR data, (2) data 
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preprocessing, (3) iterative supervised learning model development, and (4) evaluation of the 

final models using gold standard outcome data from the NSQIP registry. Institutional review 

board approval was obtained and informed consent waived for this minimal risk study.

Data Collection and Patient Cohort Identification

The University of Minnesota Academic Health Center Information Exchange platform 

includes access to the clinical data repository (CDR) which contains University of 

Minnesota Medical Center (UMMC) clinical data. UMMC has been a member of NSQIP 

since 2007 and has used the inpatient instance of Epic since April 2011. CDR and NSQIP 

registry, two different data sources, were linked through the patient medical record number 

and the date of surgery. Subjects with no records in the EHR were eliminated. The patient 

cohort was divided into two datasets: data of patients with surgery from April 2011 to the 

end of 2012 (model development set) and data of patients with surgery in 2013 (evaluation 

set). The former dataset was used as the training set for model development. The evaluation 

dataset was held out fully for the overall evaluation of the developed models. Table 1 

describes the detailed demographic information. From April 1, 2011, through December 31, 

2013, a total of 6258 procedures with 405 SSIs were collected. The period of April 2011 to 

the end of 2012 comprised 3996 procedures and 278 SSIs (6.95% rate). About 79% 

procedures were patients no more than 65 years old, and 21% were patients more than 65 

years old. Approximately 83.8% were white, 8.6% were black, and 7.6% were other race/

ethnicity and unknown. The year of 2013 comprised 2262 procedures and 127 SSIs (5.6% 

rate), with similar patient characteristics, as shown in Table 1.

The clinical data utilized included six data types: demographics, diagnosis codes, orders, lab 

results, vital signs, and medications. Demographics included each patient’s gender, race, and 

age at the time of surgery. Diagnosis codes consisted of related ICD-9 codes generated 

during the encounter and hospital stay at the time of surgery from coding, as well as the 

diagnoses from the past medical history and problem list. Orders related with SSI diagnosis 

and treatment were also gathered from the EHR, including imaging orders, infectious 

disease consultation orders, and procedures with incision and drainage. The most recent lab 

values and vitals results before surgery and those during the postoperative 30-day window 

(since surgical adverse events defined as occurring within 30 days after surgery) were 

collected. Medications utilized for this analysis included antibiotics from the third day after 

surgery onwards.

Another two important data measures included were American Society of Anesthesiologists 

(ASA) physical status classification and surgical wound classification. ASA classification 

from 1 to 6 indicates a patient’s status from normal healthy to declared brain-dead; the 

surgical wound classification is used for postoperatively grading of the extent of microbial 

contamination, indicating the chance a patient will develop an infection at the surgical site. 

We dichotomized the wound classification as the bottom two (no or mild disturbance) versus 

the remaining levels (significant disturbance).
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Data Preprocessing

EHR data of interest were collected, cleaned, and analyzed next. Identifying and removing 

outliers, and correcting inconsistent data were the very first tasks of data preprocessing. How 

to transform clinical data into meaningful features was our main interest. Most clinical data, 

such as lab test results and vitals, tended to be longitudinal with repeated measures. 

Traditional methods to summarize those variables by calculating the moments (mean and 

standard deviation) or extremes tended not to be sufficient to describe the temporal behavior 

of such variables. To better summarize individual tests, we explored other features like the 

change of values during an “elevating period”. An elevating period is a time period during 

which the measurement in question is near-monotonously increasing from a low level 

(trough point) to a high level (peak point). For patients with SSI, some lab results, like serum 

glucose (GLC), platelet count (PLT), and white blood cells (WBC), have significant 

increases in the measurement from the third day after operation.

As shown in Figure 2, GLC increased in three time periods: (I) day 3~7, GLC increased 

from 116 to 128; (II) day 7~9, from 104 to 140; and (III) day 15~28, from 87 to 148. Such 

elevation may indicate the onset of SSI. To capture the elevating period, a feature defined as 

the postoperative increase from a trough to its nearest peak was included in our tentative 

model. In the case of multiple elevating periods, the feature was computed by using the 

period with the highest peak. For measures where low values could indicate SSI, a 

“descending period” can be defined analogously.

Figure 3 depicts the flowchart of the algorithm to compute this feature. The algorithm first 

searches for the maximum value (pm) from all results at least two days after the operation 

({pi, i=0, …,n}), (e.g., in Figure 2, point B is the maximum GLC value, which was 

measured nineteen days after the operation). Then the algorithm proceeds by searching for 

the trough point backward from point B. The algorithm is robust in its filtering of the 

abnormal point that temporarily breaks the rule of monotone. For example, in Figure 2, the 

elevating period is from day 15 to 19, however, there is an abnormal point A which breaks 

the monotone increasing trend between day 15 and 17; to overcome the problem and identify 

the real trough, the algorithm further compares day 15 and day 17 in order to determine 

whether the criterion of monotone increasing is satisfied.

For other data like antibiotic use and specific orders, we created binary variables to indicate 

whether a relevant element was observed. For example, a value of 1 for Interventional 

Radiology signifies that an abscess drainage order was placed for a patient; while a value of 

0 signifies that no such test was ordered.

Model Development

To build our SSI detection model, we utilized multivariate logistic regression models. We 

constructed one model for total SSI and one model for each of the three SSI subtypes. 

Binary variables were entered as dummy indicator variables and continuous variables were 

entered unmodified. We used stepwise construction to select significant features and Akaike 

Information Criterion (AIC) for model selection.
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Evaluation

In assessing detection of surgical adverse event outcomes like SSI, since these events are 

relatively rare, overall detection accuracy percentage is not an optimal criterion for 

evaluating model validity. Instead, we report specificity, as well as the the area under the 

curve (AUC), in evaluation of our automated detection system. Our aim was to maximize the 

specificity under the constraint that the negative predictive value remains above 98%. This 

aim is reflective of our original expectation of actual use of the detection models: to assist a 

NSQIP chart extractor to eliminate patients who clearly did not suffer the adverse event and 

then to accelerate the process of data abstraction from clinical charts.

Results

Significant Variables Selected

Tables 2 through 5 show the results for the multivariate detection models for the three kinds 

of SSI and the total SSI, selected by AIC. The two most common variables included were 

diagnosis codes (the ICD-9 codes of SSI is 998.xx) and antibiotic use. Superficial SSI occurs 

just at the skin incision and thus relatively easily diagnosed. Therefore, imaging diagnostic 

orders tend to be unnecessary. Infection is sometimes diagnosed with microbiology cultures, 

however, frequently this diagnosis is based on the physical examination only. Actually only 

cultures ordered or not is a signal of SSI. According to table 3 and table 4, we can find that 

abscess culture, fluid culture and wound culture are significant factors for detecting deep and 

organ/space SSI. Since these two kinds of SSIs occur deep within or under the wound, 

imaging orders for both diagnosis and treatment are frequently required.

We also found the postoperative elevating period of GLC, for superficial and PLT for organ/

space, to be indicative of clinical suspicion. Clinically these lab values can be altered in the 

setting of infection. For a unit increase in postoperative increase of GLC, we expect to see 

approximately a 0.0112 increase in log-odds of superficial SSI. Similarly, for a unit 

postoperative increase of PLT, approximately a 0.0115 increase in the log-odds of organ/

space SSI is expected.

Model Performance

Four detection models exhibited excellent specificity to eliminate the majority of non-SSI 

patients, which greatly accelerate the process of extracting postoperative SSI occurrences. 

Table 6 presents the negative predictive value (NPV) for each of the SSI identification 

models. The highest specificity 0.988 was for detecting deep SSI at NPV equals to 0.99, and 

the lowest 0.787 was for detecting total SSI at NPV equals to 0.99. AUC values for the four 

models were 0.820, 0.898, 0.886 and 0.896, respectively.

Discussion

The current research is a pilot study to examine the feasibility of automatically detecting 

postoperative SSI occurrences based on EHR data. The aim of this study is to assist a 

NSQIP SCR to eliminate patients who clearly did not suffer the adverse event. Therefore, a 

very high NPV is desired, which could assist in the reliable identification of patients without 
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postoperative SSI. From the modeling results, we can see that all four models perform very 

well (with specificity ranging from 0.788 to 0.988) in eliminating the majority of patients 

without SSI based on the NPV equals to 0.99. Considering the nature of NSQIP SCR’s 

work, SCRs still need to review all clinical charts, even if the positive predictive value for a 

patient is 0.9 or higher, since they need to extract the clinical characteristics of patients with 

SSI. Therefore, achieving high NPV, and thus allowing SCRs to eliminate patients, rather 

than achieving a high positive predictive value, is the main focus of this research.

Among selected potential indicators, a few of them were found to be quite significant with 

very small p-values. Only the indicators that had p-value less than 0.0001 were employed in 

the logistic regression modeling, however, this did not improve the detection performance. 

Other modeling methods, like Random Forest and Support Vector Machine, were employed; 

however, logistic regression models were found to outperform these methods for detection of 

all types of postoperative SSI events.

The current study was limited by the fact that it was conducted with only complete cases 

over three years. This may have limited our ability to fully refine and optimize the 

automated detection model. In the future, more procedures will be included, and the 

treatment of missing data will be studied.

Large quantities of meaningful information are stored at the clinical notes, such as imaging 

reports and culture results, which we did not utilize in this study. For example, a positive 

abscess culture result could be recorded as “On day 2, isolated in broth only: Bacteroides 

fragilis group”. However, we merely considered whether the diagnostic and therapeutic 

imaging orders or cultures were placed, we did not use the actual results. Natural language 

processing (NLP) has played an important role in detecting adverse events [11–12]. In our 

future research, we will apply NLP techniques to extract additional important information 

from clinical notes.

Conclusion

In this study, to accelerate the process of extracting postoperative SSI outcomes from 

medical charts and reduce the workload of NSIQP SCR, an automated postoperative SSI 

detection model based on supervised learning was proposed and validated. The models 

exhibited good performance, they reduced the SCR’s burden by reliably eliminating the vast 

majority of patients with no SSI. The significant factors of detecting SSI identified by our 

models are in line with clinical knowledge. In addition, some useful patterns, (e.g. 

postoperative increase of PLT and GLC), were extracted from the longitudinal lab results.
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Figure 1. 
Overview of Materials and Methods

Hu et al. Page 8

Stud Health Technol Inform. Author manuscript; available in PMC 2017 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
GLC values within 30 days before and after surgery
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Figure 3. 
Finding the postoperative increase in GLC
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Table 2

Significant indicators for detecting superficial SSI

Significant variables Estimate P-value

Diagnosis codes 2.1126 <0.0001

Wound culture ordered 2.1941 <0.0001

Antibiotic use 1.1321 <0.0001

Encounter type (inpatient) 1.6007 0.0010

ASA Classification (significant disturbance) 0.4342 0.0058

Abscess culture ordered 1.5020 0.0050

Postoperative increase of GLC 0.0112 0.0687
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Table 3

Significant indicators for detecting deep SSI

Significant Variables Estimate p-value

Diagnosis codes 3.1959 <0.0001

Antibiotic Use 2.2276 <0.0001

Abscess culture ordered 1.2880 0.0868

Gram stain ordered 0.8040 0.0427

Imaging treatment ordered 1.5445 0.1107

Imaging diagnosis ordered 0.6254 0.0981

Tissue culture ordered 1.6516 0.1010
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Table 4

Significant indicators for detecting organ/space SSI

Significant Variables Estimate p-value

Imaging treatment 1.3999 <0.0001

Imaging diagnosis 1.2090 <0.0001

Antibiotic Use 1.1662 <0.0001

Abscess culture ordered 2.3041 <0.0001

Fluid culture ordered 1.4204 0.0003

Preoperative PLT 0.00332 0.0135

Drainage culture ordered 1.3760 0.0711

Diagnosis code 0.8259 0.0667

Postoperative increase of PLT 0.0115 0.0606
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Table 5

Significant indicators for detecting total SSI

Significant Variables Estimate p-value

Diagnosis codes 5.3940 <0.0001

Antibiotic use 1.3672 <0.0001

Abscess culture ordered 3.2565 <0.0001

Wound culture ordered 2.2926 <0.0001

Imaging diagnosis ordered 0.8741 <0.0001

Fluid culture ordered 1.2909 <0.0001

Encounter type (inpatient) 1.0185 0.0037

ASA Classification (significant disturbance) 0.4258 0.0031

Preoperative PLT 0.00214 0.0440

Post maximum pain 0.0775 0.0957
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Table 6

Negative predictive value and specificity for four SSI models

NPV Specificity

Superficial SSI 0.980 1.000

0.985 0.987

0.990 0.900

Deep SSI 0.980 1.000

0.985 1.000

0.990 0.988

Organ/space SSI 0.980 1.000

0.985 0.999

0.990 0.974

Total SSI 0.980 0.935

0.985 0.888

0.990 0.787
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