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Oenococcus oeni, the main lactic acid bacteria responsible for malolactic fermentation

in wine, has to adapt to stressful conditions, such as low pH and high ethanol

content. In this study, the changes in the transcriptome and the proteome of O. oeni

PSU-1 during the adaptation period before MLF start have been studied. DNA

microarrays were used for the transcriptomic analysis and two complementary proteomic

techniques, 2-D DIGE and iTRAQ labeling were used to analyze the proteomic response.

One of the most influenced functions in PSU-1 due to inoculation into wine-like

medium (WLM) was translation, showing the over-expression of certain ribosomal

genes and the corresponding proteins. Amino acid metabolism and transport was

also altered and several peptidases were up regulated both at gene and protein level.

Certain proteins involved in glutamine and glutamate metabolism showed an increased

abundance revealing the key role of nitrogen uptake under stressful conditions. A strong

transcriptional inhibition of carbohydratemetabolism related genes was observed. On the

other hand, the transcriptional up-regulation of malate transport and citrate consumption

was indicative of the use of L-malate and citrate associated to stress response and as an

alternative energy source to sugar metabolism. Regarding the stress mechanisms, our

results support the relevance of the thioredoxin and glutathione systems in the adaptation

of O. oeni to wine related stress. Genes and proteins related to cell wall showed also

significant changes indicating the relevance of the cell envelop as protective barrier

to environmental stress. The differences found between transcriptomic and proteomic

data suggested the relevance of post-transcriptional mechanisms and the complexity

of the stress response in O. oeni adaptation. Further research should deepen into

the metabolisms mostly altered due to wine conditions to elucidate the role of each

mechanism in the O. oeni ability to develop MLF.

Keywords: Oenococcus oeni, malolactic fermentation, transcriptomic, proteomic, stress, wine

INTRODUCTION

Malolactic fermentation (MLF) occurs in wine spontaneously and, alternatively, can be induced
inoculating selected strains of lactic acid bacterium (LAB), mainly Oenococcus oeni, usually after
alcoholic fermentation (Betteridge et al., 2015). The wide range of physiological characteristics and
the ability to cope with several environmental stresses make O. oeni the main responsible for MLF.
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This process consists in the conversion of L-malate to L-(+)-
lactate and CO2 and is required in wine, mainly from red grape
varieties, because it confers positive sensory traits and improves
wine’s microbiological stability (Lonvaud-Funel, 1999;Mills et al.,
2005).

Wine is a harsh environment for O. oeni due to its
physicochemical characteristics, such as low pH, ethanol and
SO2 content, which can negatively affect bacterial survival and
consequently MLF development. In contrast to the diversity of
stress response mechanisms described in Bacillus subtilis (Hecker
et al., 1996; Hecker and Völker, 1998), the model organism for
Gram-positive bacteria, no gene encoding an alternative sigma
factor or any other known regulator of stress response, such as
HrcA, could be identified in O. oeni. Grandvalet et al. (2005)
described in O. oeni the CtsR as the regulator for most of
molecular chaperone genes. Different studies have characterized
some of the stress response genes in O. oeni, such as clp, grpE,
groES, hsp18, hdc, ftsH, omrA, cfa, atpB, and trxA, among others
(Jobin et al., 1997; Guzzo et al., 2000; Bourdineaud et al., 2003,
2004; Beltramo et al., 2004, 2006; Bourdineaud, 2006; Spano and
Massa, 2006; Olguín et al., 2009, 2010). These studies revealed
thatO. oeni has developed cellular mechanisms that make it more
resistant to adverse conditions than other LAB species (Beltramo
et al., 2006). The knowledge of the stress response machinery
of this bacterium is key to understand the ability of adaptation
to wine environment of each strain and select the best starter
culture.

Thanks to the publication over the recent years of the
genomes of different O. oeni strains in the National Center for
Biotechnology Information (NCBI), nowadays it is possible the
global study of stress response by “omics” technologies. There are
two published studies of O. oeni combining transcriptomic and
proteomic analysis, applying DNA microarrays and 2DE or 2D-
DIGE: Olguín et al. (2015) studied the effect of ethanol addition
during growth (after 1 h), and Costantini et al. (2015) studied
wine like media adaptation during 24 h. The first proteomic
study was from Silveira et al. (2004) and showed that both
ethanol stress and adaptation significantly changed the protein
profiles of O. oeni cells. Later, Cecconi et al. (2009) performed
a proteomic study using 2DE examining O. oeni adaptation to
wine conditions. Other authors have studied oenological starters
to determine their proteomic profile (Cafaro et al., 2014; Napoli
et al., 2014).

In this work, we combined a transcriptomic and proteomic
approach to elucidate the changes involved in the adaptation
of O. oeni PSU-1 to wine-like conditions, evaluating the period
between the inoculation and the beginning of MLF. The
transcriptomic analysis was developed using DNA microarrays
designed for PSU-1 strain and the results obtained were validated
by real-time qPCR. For the proteomic study two complementary
techniques were employed: 2D-DIGE and iTRAQ labeling. 2D-
DIGE technique (Unlü et al., 1997) relies on a pre-electrophoretic
labeling, allowing sample multiplexing in the same gel. This
gel-dependent technique has been used in several studies with
other LAB species (Mehmeti et al., 2011; Koponen et al., 2012;
Genovese et al., 2013). However, the variable reproducibility of
this technique along with the difficult automation and detection

of low abundance and membrane hydrophobic proteins have
led to a wide variety of off-gel methodologies for protein
quantification. In order to complement DIGE analysis, in
this work it was used a tandem mass spectrometry (MS/MS)
coupled with isobaric tags for relative and absolute quantification
(iTRAQ) (Ross et al., 2004) labeling to enable the identification
and quantification of differentially expressed proteins in specific
times. The combination of liquid chromatography (LC) and
electrospray ionization MS/MS analysis is an emerging powerful
methodology enabling quantification and comparison of protein
levels directly from samples with greater efficiency and accuracy.
This is the first proteomic analysis using this gel-free technique
with O. oeni.

MATERIALS AND METHODS

Growth Conditions and MLF Monitoring
The strain used in this study was O. oeni PSU-1, the only in
its species with the genome fully annotated (Mills et al., 2005).
Stock cultures (kept frozen at −80◦C) were grown in MRS
broth medium (De Man et al., 1960) supplemented with 4 g/L
L-malic acid and 5 g/L fructose at pH 5.0 at 28◦C in a 10% CO2

atmosphere. Cells were collected at the end of the exponential
phase (OD600nm = 1.4 − 1.6) and inoculated into the medium.
Then, cells were harvested at the end of the exponential phase
and inoculated (2% v/v) into 5 L screw-cap bottles of wine-
like medium (WLM). WLM was prepared following (Bordas
et al., 2015) containing 12% ethanol (v/v) at pH 3.4. The bottles
were incubated at 20◦C. The assays were run in triplicate.
Measurements of L-malic acid consumption were performed
with the multianalyser Miura One (I.S.E. S.r.l, Guidonia, Italy)
and the enzymatic kit ready to use (TDI SL, Barcelona, Spain) in
order to determine the beginning and evolution of MLF.

RNA and Protein Extraction
After the inoculation into WLM, samples at different times
(0, 0.5, 1, 2, 4, 6, and 8 h) were taken for RNA and protein
extraction. For RNA extraction, 20mL were collected from
WLM, or 0.3mL from MRS culture used for inoculation
(0 h). Samples were centrifuged at 10,000 × g for 5min at
4◦C, supernatant was removed and pellet was washed with
10mM Tris-HCl prepared with diethylpyrocarbonate-treated
water (DEPC), and then frozen in liquid nitrogen and kept
at −80◦C until RNA extraction. High Pure RNA Isolation Kit
(Roche, Mannheim, Germany) was used for RNA extraction
following the instructions of the manufacturer with some
modifications, such as lysis with lysozyme dissolved in 10mM
Tris-HCl buffer DEPC, at 50mg/mL during 30min at 37◦C.
RNA was treated with Turbo DNA-free (Life Technologies,
USA). Total acid nucleic concentrations were calculated using
a Nanodrop 1000 spectrophotometer (Thermo Fisher Scientific,
Bremen, Germany).

For protein extract preparation, 800mL of WLM, or 35mL
from MRS culture used for inoculation (0 h), were centrifuged at
5000 × g rpm for 15min. Supernatant was removed and pellet
was washed twice with 10mM Tris-HCl buffer at pH 8, frozen
in liquid nitrogen and kept at −80◦C until protein extraction.
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Cell pellets were then resuspended to a final OD600 = 30 in
a solution of 0.1M Tris-HCl at pH 7.5, mixed with protease
inhibitor cocktail from Roche. Cells were disrupted using One-
shot disruptor (Constant Systems Ltd.) at 5◦C, applying twice a
2.7 kbar pressure. Protein suspension was centrifuged at 4500 ×

g for 15min at 4◦C to remove cell debris and the supernatant was
frozen in liquid nitrogen until protein analysis.

Transcriptomic Analysis
DNA Microarray Description, Labeling, and

Hybridization
Microarrays (090324_Oenococcus oeni expression 4-plex array),
based on PSU-1 genome, were developed by Roche NimbleGen
(Madison, WI, USA) and samples were analyzed at the
Functional Genomics Core of the Institute for Research in
Biomedicine (IRB, Barcelona, Spain) as described by Olguín et al.
(2015). The results were submitted to GEO (Gene Expression
Omnibus Database, NCBI) under accession number GSE85137.

Microarray Results Validation by Real-Time qPCR
Nucleotide sequences of O. oeni strain PSU-1 (NC_008528) were
obtained from theNCBI. Several genes were selected for real-time
qPCR validation of the microarray data. The primers used for
these analyses are shown in Table 1. Some genes were selected
due to their involvement in stress response according to previous
studies (Jobin et al., 1999b; Beltramo et al., 2006; Olguín et al.,
2009; Bordas et al., 2013; Margalef-Català et al., 2017) and others
were randomly selected with the sole objective of validating the
methodology. Reverse transcription, real-time qPCR and primer
design were performed according to Olguín et al. (2009). The
Primer Express R© Software was used to select primer sequences
and analyze secondary structures and dimer formation. The
absence of chromosomal DNA contamination was confirmed by
qPCR. For the normalization of qPCR data (Vandesompele et al.,
2002; Sumby et al., 2012; Cafaro et al., 2014) four genes (ldhD,
dpoIII, gyrA, and gyrB) were evaluated as internal controls, using
the primers described in Table 1. Of these, ldhD and gyrA genes
showed the lowest variation under the experimental conditions
used (data not shown) and were chosen as internal controls. The
amplification efficiency was calculated as in Olguín et al. (2015).

Proteomic Analysis
2D-DIGE
Protein extracts were analyzed in the Center for Omic Sciences
from Servei de Recursos Científics i Tècnics of University
Rovira i Virgili (Reus, Spain). Proteins were precipitated using
TCA/Acetone, and the pellet was resuspended in 200µL of
rehydration buffer (7M urea, 2M thiourea, 4% CHAPS, 30mM
Tris-base) at final pH 8.5. The samples were quantified using
Bradford and stored at −20◦C. Fifty microgram of each protein
sample was minimally labeled with 400 pmol of either Cy3 or Cy5
(N-hydroxy succinimidyl ester-derivatives of the cyanine dyes).
To facilitate image matching and cross-gel normalization, an
internal standard was made pooling all samples and labeling with
Cy2 at the same ratio (50µg:400 pmols). Hence, two samples and
the internal standard could be run in the same gel and quantified
on multiple 2-DE. Labeling reactions were performed on ice and

darkness during 30min and quenched using an excess of free
L-lysine.

Isoelectrofocusing (IEF) was carried out using 24 cm
Immobiline Dry-strips (pH interval 4–7, nonlinear, GE
Healthcare), and sample was loaded by two rehydration steps
(passively for 5 h at 20◦C, and actively at 50V during 12 h in an
Ettan IPGphor 3 system from GE Healthcare). IEF migration
program started focusing 500V for 7 h, ramping until 1 KV
during 4 h and ramping again until 10 KV during 3 h, and finally
a step maintained at 10 KV to reach 70 KVh. Strips were then
equilibrated for 15min in a 50mM Tris–HCl (pH 8.8) 6M urea,
30% glycerol and 2% SDS buffer, adding first 1% DTT, and in a
second time supplemented with 4% iodoacetamine (Görg et al.,
2004).

Imaging and data processing
Gels were scanned using a PharosFXTM Plus Molecular Imager
and analyzed using Progenesis Same Spots Analysis Software
v4.5 (Totallab). Spots displaying a ≥1 average-fold increase or
decrease in abundance with a p < 0.05 were selected for protein
identification. Features detected from non-protein sources (e.g.,
dust particles and dirty backgrounds) were filtered out. Picking
analysis was carried loading 720µg of the internal standard mix
without labeling in a 2DE gel as described above. Gels were
stained with Coomassie blue G250 and imaged using Pharos
FXTM Plus Molecular Imager from BioRad using Quantity One
version 4.6.9 software.

In gel-trypsin digestion and MS-Based protein identification
Spots of interest were automatically excised from 2-DE gels
using the ExquestTM Spot Cutter with the PDQuestTM
Advanced 2D Analysis Software V8.0.1 both from Bio-Rad.
Excised spots were de-hydrated by extensive washings with
25mM ammonium bicarbonate and acetonitrile. All gel pieces
were incubated with 15 ng/µL sequencing-grade trypsin in
50mM ammonium bicarbonate at pH 7.9 overnight at 37◦C.
Following digestion, the peptides were desalted using C18 zip-
tip (Millipore), and eluted with 75% ACN+ 0.1% Trifluoroacetic
acid.

Peptides were spotted onto an HTP BigAnchor 384 (Bruker)
target using α-cyano-4-hydroxy-cinnamic acid as matrix and
were analyzed on a MALDI TOF/TOF (Ultraflextreme, Bruker
Daltonics, Bremen, Germany) instrument operated in the
positive ion mode. All mass spectra were calibrated externally
with the Peptide Calibration Standard I from Bruker. The
analyzed mass range was 600–3500 Da. MS and MS/MS
analyses were performed automatically. For MS analysis, 3100
satisfactory shots were accumulated by recording 100-shot steps
at 20 random positions using fuzzy control laser attenuation
between 40 and 100% at initial and maximal power respectively.
For MS/MS 3100 satisfactory shots were accumulated by
recording 100-shot steps and 4000 for the fragment ion
spectra.

MS and tandem MS/MS spectra were searched by Protein
Scape v: 3.0.0 446 using MASCOT (Matrix Science Inc., MA,
2.4.0) against NCBInr database (46742655 entries) restricted
to Bacteria (Eubacteria). The search parameters were set to:
MS accuracy 20 ppm, MS/MS accuracy 0.5 Da, two missed
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TABLE 1 | Gene descriptions and the corresponding primer sequences used for validation of microarray results by real-time qPCR.

Gene symbol and Sequence Amplicon References Microarraya qPCRb

old tag (OEOE_) (5′–3′) length (bp)

1 h

RS04745/0988

diacylglycerol kinase

Fw-TTGGGTCGGCATTTACTTTC

Rv-CCAACCGTAACCCATAACCA

57 This work −1.05 0.71

RS06455/1342

PTS sugar transporter subunit IIA

Fw-TGGTCGGAAATCAAGAAAGC

Rv-TCGGAAACTCCGTAATCGAC

104 This work −1.61 −0.40

RS02005/0417

citrate lyase

Fw-GCACGTGAACTGCTGAAAAA

Rv-TGAGTGTTCCGATTCCACAA

94 This work 1 3.28

RS02030/0422

Citrate lyase (citE)

Fw-CCGCACGATGATGTTTGTTCC

Rv-GCTCAAAGAAACGGCATCTTCC

108 Olguín et al., 2009 1.49 3.69

RS01385/0289

heat-shock protein Hsp20 (hsp18)

Fw-CGGTATCAGGAGTTTTGAGTTC

Rv-CGTAGTAACTGCGGGAGTAATTC

102 Beltramo et al., 2006 −0.42 1.13

RS02715/0570

ATP dependent Clp protease proteolytic

subunit (clpp)

Fw-CGGTACCAAAGGCAAGCGTTTTAT

Rv-CTCTTCCGAGTCTTCAAAAGTTGAT

131 Beltramo et al., 2006 0.41 0.15

RS05660/1176

cyclopropane-fatty-acyl-phospholipid

synthase (cfa)

Fw-TGGTATTACATTGAGCGAGGAG

Rv-CGTCTTTGAGATCACGATAATCC

113 Beltramo et al., 2006 −1.11 −0.17

2 h

RS01480/0310

phosphoglycerate mutase

Fw-CCGAAACCGCACAAAAGTAT

Rv-CTTCGTGACCCAAAAGTGGT

87 This work 1.22 3.66

RS04220/0881

Acyl carrier protein phosphodiesterase

Fw-GATCTCCCGAAGGATCAACA

Rv-AAAATTCATCCAGCCATTCG

61 This work 1.51 3.90

RS06410/1332

2-dehydro-3-deoxyphosphooctonate

aldolase

Fw-CCAAAATCGACCCAATTACG

Rv-TCCCTCATCTCGATCAGACC

106 This work 1.05 4.03

4 h

RS04710/0981

peptidase

Fw-GAATTGGCTCCCGACACTAA

Rv-TGACGATCCTTTGGAGCAAT

71 This work 1.15 3.72

8 h

RS00900/0189

disulfide bond formation protein

Fw-GCTGTTGGTGTTTCGGTTTT

Rv-GCTCCAGGCAAAGTTTGAAG

83 This work 1.00 3.60

RS01290/0269

phosphonate ABC transporter ATP-binding

protein

Fw-TTTTCAGGATCCGAAGATGG

Rv-GCAACAAATTTTCGGCAACT

59 This work 2.65 4.38

RS02980/0624

cobalt ABC transporter

Fw-ACTTTGGCTCCTCTGGTTGA

Rv-CAGCATTCATCGGTTTGCTA

100 This work 1.24 2.77

RS04600/0959

Xaa-Pro aminopeptidase

Fw-GTGGAAGTGGTGAAGGGATG

Rv-GGTCGACTCCATTTGGAAGA

108 This work 1.93 3.82

RS05245/1092

oligoendopeptidase F

Fw-CGGCAAATACTGGCAAAGAT

Rv-TGGACCCCATATGGAAATGT

55 This work 1.90 3.82

RS06245/1296

branched-chain amino acid aminotransferase

Fw-TTTCCCAGAAGACCGTTTTG

Rv-AAGTTGCACCGGAACCATAC

89 This work 3.02 5.71

RS07835/1625

Thiol-disulfide isomerase trxA2

Fw-TGGCAGTCTTTGAAACCTGA

Rv-CCAAGGGTCGCAATTTAATG

105 Margalef-Català et al.,

2017

−1.07 0.44

RS08215/1702

Thioredoxin trxA3

Fw-GCCACTTGGTGTACCCCTTGT

Rv-TCCATTTGCCGTTTCCTGGTTT

120 Margalef-Català et al.,

2017

−0.81 0.92

RS02695/0566

Thioredoxin reductase trxB

Fw-ATGCCAGCTCAACTCGTTTT

Rv-GTCGCTCCGCTAGCAACTAT

139 Margalef-Català et al.,

2017

1.23 3.45

RS00770/0163

Ferredoxin-NADP reductase fdr

Fw-AGCGAAGTTGCCGATAAAGA

Rv-TATCACGCCGATGAATCAAA

115 Margalef-Català et al.,

2017

1.35 3.54

RS05740/1191

glutathione reductase (gshR)

Fw-GGCATTATCACCGAGCTGTT

Rv-TCCCGAAGAAGCAAAGAAGA

106 Bordas et al., 2013 −0.98 −0.76

qPCR CONTROL GENES

RS01985/0413

D-lactate dehydrogenase (ldhD)

Fw-GCCGCAGTAAAGAACTTGATG

Rv-TGCCGACAACACCAACTGTTT

102 Desroche et al., 2005

(Continued)
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TABLE 1 | Continued

Gene symbol and Sequence Amplicon References Microarraya qPCRb

old tag (OEOE_) (5′–3′) length (bp)

RS04805/1000

DNA polymerase III subunit alpha

(dpoIII)

Fw-AATTCGCACGGATTGTTTTC

Rv-GCGAACCAGCATAGGTCAAT

103 Stefanelli, 2014

RS04780/0995

DNA primase (dna G)

Fw-TGTGGACGGAGTGGCAATGT

Rv-CAGTATTTTCTGTATATTTACTATCG

127 Desroche et al., 2005

Margalef-Català et al.,

2017

RS00030/0006

DNA gyrase subunitA (gyrA)

Fw-CGCCCGACAAACCGCATAAA

Rv-CAAGGACTCATAGATTGCCGAA

95 Desroche et al., 2005

RS00025/0005

DNA gyrase subunitB (gyrB)

Fw-GAGGATGTCCGAGAAGGAATTA

Rv-ACCTGCTGGGCATCTGTATTG

107 Desroche et al., 2005

Margalef-Català et al.,

2017

RNA samples were taken at signaled times, where maximum over- or under- expression had been observed in microarray assay.
aMicroarray.
bRT-qPCR fold changes between: t = 0 h and t in which there is the maximum expression or inhibition after the inoculation.

cleavage by trypsin allowed, carbamidomethylation of cysteine as
fixed modification and oxidation of methionine and N-terminal
amino acid conversion of glu and gln to pyroglutamic acid as
variable modification. Significant protein hits (for peptide mass
fingerprinting p ≤ 0.05 and for MS/MS at least two peptides with
p ≤ 0.05, and protein scores greater than 30) were considered
significant.

iTRAQ Labeling

Protein digestion and iTRAQ labeling
On a SDS-PAGE gel (12% resolving gel and 4% stacking gel)
at 20mA/gel 40µg total protein per sample were run. The
electrophoresis was stopped when the front dye had barely
passed from the stacking gel into the resolving gel, and a unique
concentrated band was obtained for every sample, which was
stained using Coomassie Brilliant Blue G-250, excised, cut into
small pieces and stored at 4◦C in ultrapure water.

Protein digestion was performed according to Shevchenko
et al. (1996) with minor variations as described before. Proteins
were reduced using 5mM tris(2-carboxyethyl)phosphine
(TCEP) in 50mM triethylammonium bicarbonate pH 7.9 during
1 h at 60◦C and alkylated with 10mMmethyl methanethiosulfate
(MMTS) in the same buffer during 30min at room temperature.
To digest the samples, they were incubated with 15.4 ng/µL
sequencing-grade trypsin in 50mM triethylammonium
bicarbonate at pH 7.9 overnight at 37◦C. After digestion,
the peptides were extracted from gel by elution in a mixture of
50% acetonitrile 5% formic acid. Tryptic peptides were dried by
SpeedVac and re-suspended in 30µL TEAB 0.5M at pH 8.5.

iTRAQ-8plex labeling reagents (AB SCIEX) were added to
each peptide samples according manufacturer’s instructions and
incubated at room temperature for 120min. Mixtures of labeled
samples were washed from unreacted reagents using SCX column
(Strata R© SCX 55µm, 70 Å, Phenomenex) in 10mM phosphoric
acid, 25% acetonitrile, pH 3 as binding buffer and 5% ammonium
hydroxide, 25% acetonitrile for the elution. After the elution,
samples were vacuum dried and re-suspended in water for the
next step.

Sample fractionation and mass spectrometry analysis

(LC-MS/MS)
Pooled peptides were separated in an Agilent 3100 OFFGEL
Fractionator (Agilent Technologies, Santa Clara, CA) through
24-well IPG strips (linear gradient from pH 3–10) according
to the supplier’s protocol. After separation, fractions were
desalted and concentrated throughC18 Sep-Pak column (Waters,
Bedford, MA) previously to LC-MS/MS detection.

A nano LC II coupled to an LTQ-Orbitrap Velos Pro mass
analyzer, both from Thermo Scientific (Bremen, Germany), was
used for peptide analysis. The chromatographic separation was
achieved using a nanoLC C18 trap column (100µm I.D.; 2 cm
length; 5µmparticle diameter, Thermo Fisher Scientific) coupled
to a nanoLC C18 analytical column (75µm I.D.; 15 cm length;
3µm particle diameter, Nikkyo Technos Co. LTD, Japan) under
gradient elution conditions. Ultrapure water with 0.1% HCOOH
(solvent A) and acetonitrile with 0.1% HCOOH (solvent B) was
the mobile phase and the gradient consisted of 0–5% B during
5min, 5–35%B 30min, 35–80%B 15min and 80–100%B 12min,
and finally is maintained at 100% B during 10min. A flow rate of
300 nL/min was used to elute peptides for real time ionization
on a nanoFlex electrospray ion source from Thermo Fisher
Scientific.

MS measurements detected intact peptides in a full scan
(m/z 350–2000), with the Orbitrap at FT-resolution spectrum
(R = 30,000 FHMW), followed by data dependent MS/MS
scan from most intense 10 parent ions with a charge state
rejection of one. The signal threshold for triggering an MS/MS
event was set to 10,000 counts. The low mass cutoff was set to
100m/z. Dynamic exclusion of 30 s and activation time of 0.1 s
was used. For efficient fragmentation and detection of iTRAQ
reporter ions, HCD normalized collision energy of 45 was used.
All fragment ions were detected in the Orbitrap (R = 7500
FHMW). Internal calibration was performed using the ion signal
of (Si(CH3)2O)6H+ at m/z 445.120025 as a lock mass. Maximal
ion accumulation time allowed on the LTQ Orbitrap was 1 s
for all scan modes; automatic gain control was used to prevent
over-filling of the ion trap.
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Database searches and quantitative proteome analysis
Tandem mass spectra were extracted and charge state
deconvoluted by Proteome Discoverer v1.4.0.288 (Thermo
Fisher Scientific). All MS/MS samples were analyzed using
Mascot (v 2.4.1.0) as search engine node. Mascot was set up to
search in NCBInr database (46,742,655 entries), following the
application of the restriction for Firmicutes taxonomy. Two
missed cleavages were allowed for trypsin digestion, and an
error of 0.80 Da for fragment ion mass and 10.0 ppm for a
parent ion were tolerated. Oxidation of methionine, acetylation
of N-termini and ITRAQ 8-plex modifications were specified
as variable modifications, whereas methylation of cysteines
was set as static modification. The false discovery rate (FDR)
and protein probabilities were calculated by Target Decoy
PSM Validator working between 0.01 and 0.05 for strict and
relaxed, respectively. For proteins identified with only one single
peptide meeting these criteria, we required the Mascot score to
be at least 30, and visual verification of fragmentation spectra
was done. Identified proteins were grouped by the software
to minimize redundancy. For quantitative analysis centroided
iTRAQ reporter ion signals were computed and only unique
peptides were used for relative protein quantification. iTRAQ
reporter ion intensities were normalized to sample 113, that were
replicated in the two ITRAQmixtures.

The statistical analysis was performed on Mass Profile
Professional software v. 12.6 from Agilent Technologies. To
find differential proteins, a paired 1-way ANOVA test was
used selecting a p < 0.05 and fold change >1.5 as cut-off
values. Principal component analysis (PCA) was used to evaluate
variations in the mean quantity of spots.

Bioinformatic Tools
On-line databases like NCBI information of each gene,
Computational Biology at Oak Ridge National Laboratory
(ORNL; http://compbio.ornl.gov/public/section/), DAVID
database (https://david.ncifcrf.gov/), KOBAS 2.0 (KEGG
Orthology Based Annotation System; http://kobas.cbi.pku.edu.
cn/) (Xie et al., 2011) were used to assess all the Clusters of
Orthologous Groups (COGs) described for O. oeni genes and
proteins and metabolic pathways. We analyzed the expression
data of arrays with MEV (Multi Experiment View) cluster
software using Quality Threshold Clustering (QTC) tool (Heyer
et al., 1999). Pearson correlation and a minimum cluster
population of the number of genes representative of 10% were
used and a maximum cluster diameter of 0.9. For construction
of Venn diagrams, Venny (an interactive tool for comparing lists
with Venn’s diagrams, http://bioinfogp.cnb.csic.es/tools/venny/
index.html) was used.

RESULTS AND DISCUSSION

Functional analysis using comparative transcriptomics and
proteomics can provide deeper insight into the molecular
mechanisms of adaptation of O. oeni to wine stress conditions.
The aim of this work was to evaluate which genes and proteins
were affected during the adaptation period occurring before the
start of MLF. The study was performed with the reference strain

PSU-1 using wine-like medium (WLM) at pH 3.4 and with
12% of ethanol (v/v). Under these conditions, PSU-1 showed an
adaptation period of 8 h from inoculation until the beginning of
MLF. Once L-malate consumption started, MLF was successfully
finished in 72 h. The viability of PSU-1 did not decrease during
the adaptation period, indicating that there was no detectable
cell death of the inoculated population (6.87·107 ± 1.70·107

CFU/mL).

Global Analysis of Functions Affected
during Acclimation to WLM
In the transcriptomic analysis 1611 expressed sequence tag
(EST) were detected. Among the EST that were differently
expressed during adaptation, 27 were classified as discontinued
or pseudo genes in NCBI, and they were not included in
the analysis. Among the analyzed genes showing significant
changes along the assay, 314 were over-expressed, whereas 308
genes were down-regulated. They can be consulted in Table S1
in the Supplementary Data. It is worth noting that 52 over-
expressed genes and 51 down-regulated genes were annotated as
hypothetical proteins (Table S2 in the Supplementary Data).

These 622 genes differently expressed were classified in
Clusters Orthologous Groups (COGs) in order to identify the
main biological processes influenced by adaptation to wine
conditions (Figures 1A,B). Besides, the QTC analysis grouped
the differentially expressed genes into six transcriptional profiles
(Figure 2). The main functions transcriptionally activated due
to inoculation in WLM in O. oeni PSU-1 were translation,
ribosomal structure and biogenesis (J) and amino acid transport
and metabolism (E) (Figure 1B). The QTC analysis (Figure 2)
showed two expression profiles, I and III (65.9 and 13.6% of
over-expressed genes, respectively), in which translation (J) was
the most represented function. These two profiles are indicative
of an adaptive response since gene transcription increases
progressively along adaptation process. The profile II (17.5%
of over-expressed genes) included mostly genes of amino acid
metabolism showing an increase in their transcription level
between 0.5 and 1 h which was later decreased. This behavior
is indicative of an early-response to WLM stress conditions.
Regarding the genes showing an inhibited transcription,
carbohydrate metabolism (G) was the main negatively regulated
function in PSU-1 during adaptation to WLM (Figure 1B). The
genes related to this metabolismmostly showed a constant down-
regulation and were present in profile IV (Figure 2), representing
62.2% of total down-regulated genes. Fewer genes were clustered
into profile V (15.3%), showing transcriptional repression only
at the beginning of the assay (0.5–1 h). Finally, the profile VI
grouped 19.8% of down-regulated genes which had a progressive
repression during the adaptation period.

Proteomic analysis of O. oeni PSU-1 adaptation to WLM
conditions was conducted using two techniques: 2D-DIGE and
iTRAQ. The PCA analyses to evaluate the variability among
samples clearly indicated the presence of three different protein
populations 0, 1, and 6 h (data not shown). The 2D-DIGE
results showed between 27 and 62 protein spots along the assay
exhibiting differential abundance with statistical significance
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FIGURE 1 | (A) Clusters of Orthologous Groups (COGs) definitions. (B) Percentage of genes of each representative COG significantly over or under-expressed

according to transcriptomic analysis. (C) Percentage of proteins of each representative COG showing significant abundance changes, detected by 2D-DIGE or iTRAQ.

(p ≤ 0.05). The maximum differences were observed comparing
the samples from 1 and 6 h after inoculation vs. 0 h. For this
reason, the protein identification was carried out only for these
samples and also these samples were analyzed using iTRAQ
labeling in order to complement 2D-DIGE results. Using 2D-
DIGE, 33 different proteins could be determined which were not
found with iTRAQ. On the other hand, the off-gel technique
detected 71 proteins exclusively. At 1 h there were detected more
proteins up regulated than at 6 h, revealing a fast stress proteomic

response of the cell against the new environment. All proteomic
identification and COG classification from 2D-DIGE and iTRAQ
analysis can be consulted in Table S3 (Supplementary Data).

A high percentage of the significantly down-regulated proteins
(Figure 1C) belonged to the COG associated to translation,
ribosomal structure and biogenesis (J). This is in accordance to
previous studies that described the lower abundance of proteins
involved in protein synthesis during acid stress in Lactobacillus
species (Koponen et al., 2012; Heunis et al., 2014). On the other

Frontiers in Microbiology | www.frontiersin.org 7 September 2016 | Volume 7 | Article 1554

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Margalef-Català et al. Omic Analysis of O. oeni during Wine-Related Stress

FIGURE 2 | Representative gene expression profiles according to

Quality Threshold Clustering (QTC) based on transcriptomic data. An

example of each profile is shown. Profile I: OEOE_RS07930

(UDP-N-acetylmuramoyl-tripeptide-D-alanyl-D-alanine ligase); Profile II:

OEOE_RS03595 (amino acid ABC transporter substrate-binding protein);

Profile III: OEOE_RS05245 (oligoendopeptidase F); Profile IV: OEOE_RS07040

(glycerol-3-phosphate ABC transporter permease); Profile V: OEOE_RS03155

(F0F1 ATP synthase subunit A); Profile VI: OEOE_RS01045 (PTS sugar

transporter subunit IIA).

hand, some ribosomal proteins of 50S and 30S subunits showed
an increased abundance in O. oeni PSU-1 after inoculation into
WLM. This increase in protein concentration was coincident
with an up-regulated gene transcription (Tables 2, 3). Huang
et al. (2011) and Koponen et al. (2012) also described the
increased abundance of 50S and/or 30S ribosomal proteins in
Lactobacillus species as a mechanism of response to acidic stress.
Therefore, certain ribosomal proteins involved in the regulation
of translation may play a role in stress response as suggested by
Dressaire et al. (2010).

A relevant number of proteins related to amino acid and
carbohydrate metabolism (E, G) showed significant variations
in abundance (Figure 1C) both increasing or decreasing, being
some of them in accordance to the transcriptional response
(Tables 2, 3). On the other hand, detected proteins related to
defense mechanism (V) and secondary metabolites (Q) showed
mostly an increased abundance (Figure 1C).

Main Metabolisms Modified by Wine-Like
Conditions
Malate and Citrate Metabolism
Three out of the five malate related genes annotated in O. oeni
PSU-1 genome were over-expressed: one of the permeases
(mleP), the transporter OEOE_RS06985 -which had a 4-
fold expression at 1 h after the inoculation-, and the malate
dehydrogenase (mae) (Table 2). The observed transcriptional
activation of malate transporters under wine-related conditions
were in accordance with previous studies (Labarre et al., 1996)
and were indicative of the induction of MLF as a part of stress
response. In Augagneur et al. (2007) a significant increase was
observed in the abundance of mRNA encoding MleP derived
from cells incubated in presence of L-malate at pH 4.5 and 3.2.
Similarly, mleP was over-expressed in the microarray performed
by Costantini et al. (2015) due to adaptation (1 day) to ethanol 8
and 12%.

In this work it was detected the over-expression of the citrate
lyase operon, observing the highest expression 1 h after the
inoculation into WLM (Table 2). The transcriptional activation
of O. oeni citrate lyase in response to ethanol stress has been
previously reported by Olguín et al. (2009). The transcriptional
up-regulation of malate transport and citrate consumption could
be indicative of the use of L-malate and citrate associated to stress
response and as an alternative energy source to sugarmetabolism.
Significant changes were also observed for genes involved in
diacetyl utilization. Diacetyl is the main aromatic compound
associated to MLF and is derived from citrate consumption.
Diacetyl reductase showed transcriptional inhibition, while its
protein abundance increased 6 h after inoculation into WLM.
On the other hand, acetoin reductase was inhibited both at
gene and protein level. Diacetyl and acetoin reductases are
involved in two reactions of transformation of diacetyl, first into
acetoin and then into 2,3-butanediol as the final product. These
two reactions involve the oxidation of NAD(P)H and would
participate in the maintenance of the cofactor redox balance.
Diacetyl metabolism has been described as strain-dependent
(Bartowsky and Henschke, 2004). In the studied conditions
with PSU-1 strain, diacetyl and acetoin reductases would be
initially inhibited, however proteomic data showed the increase
in abundance of diacetyl reductase toward the beginning of
MLF, which could be correlated to the activation of citrate
consumption and the consequent production of diacetyl.

ATPase Activity
ATPase activity has been associated to MLF (Salema et al.,
1996). Cox and Henick-Kling (1989) proposed a chemiosmotic
mechanism where energy is produced by the efflux of L-lactate
from L-malate degradation. Fortier et al. (2003) described the
increase of F0F1-ATPase β subunit mRNA in response to low
pH. However, in this work several genes codifying for other
ATPase subunits (α, δ, γ, and ε) were down-regulated before the
beginning of MLF (Table 2). Although, in the proteomic study
the subunit α was initially down-regulated (1 h), its abundance
increased at 6 h. This could indicate that when cells are longer
acclimated toWLM (6 h after inoculation), and closer to the start
of L-malate consumption, ATPase activity is increased.

Amino Acid Transport and Metabolism
It is worth to note the activation of several genes related with
peptidase activity and amino acid transport (Table 2). Also, five
peptidases were identified in the proteomic analysis, but their
abundance varies depending on the protein and the analyzed
time. Liu et al. (2010) reported that many of the peptidases seem
to be essential for bacterial growth or survival as they are encoded
in all LAB genomes, such as PepC, PepN, and PepM, and proline
peptidases PepX and PepQ. Currently in PSU-1 genome there
are annotated 29 peptidases. Also, related to nitrogen uptake,
three permeases involved in nitrogen compounds transport
are strongly over-expressed (Table 2) after the inoculation into
WLM, reaching the maximum activation at 2 h. Since peptides
account for the largest proportion of total nitrogen in wine
(Feuillat et al., 1998), these results suggest the relevance of wine
nitrogen composition and the ability of O. oeni to cope with its
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TABLE 2 | Selection of genes related with relevant metabolisms or functions, differently regulated after inoculation into WLM from the microarray analysis.

Related metabolism Gene annotation Gene symbol Relative expression

0.5 h 1 h 2 h 4 h 6 h 8 h

Malate metabolism Malate dehydrogenase OEOE_RS02010 2.20 2.51 2.25 1.77 1.68 1.61

Malate permease OEOE_RS02015 2.25 2.45 2.08 1.74 1.71 1.67

Malate transporter OEOE_RS06985 3.28 4.03 4.19 3.84 3.68 3.69

Citrate metabolism Citrate lyase OEOE_RS02005 0.82 1.01 0.76 0.63 0.55 0.49

[citrate [pro-3S]-lyase] ligase OEOE_RS02020 1.85 2.22 1.77 1.23 1.20 1.17

Citrate lyase ACP OEOE_RS02025 1.68 1.96 1.88 1.44 1.24 1.45

Citrate lyase OEOE_RS02030 1.25 1.50 1.25 0.95 0.91 1.07

Citrate lyase subunit alpha OEOE_RS02035 0.73 1.13 0.93 0.59 0.54 0.64

Acetoin reductase OEOE_RS03325 −0.96 −1.32 −1.53 −1.80 −1.82 −2.01

Diacetyl reductase OEOE_RS07730 −0.63 −1.01 −1.25 −1.35 −1.37 −1.43

ATPase activity F0F1 ATP synthase subunit A OEOE_RS03155 −1.03 −1.08 −0.42 −0.31 −0.35 −0.37

ATP synthase subunit delta OEOE_RS03170 −0.92 −1.16 −0.92 −0.90 −0.91 −0.91

ATP synthase subunit gamma OEOE_RS03180 −1.28 −1.25 −0.97 −0.93 −0.84 −0.83

F0F1 ATP synthase subunit

epsilon

OEOE_RS03190 −1.35 −1.26 −1.45 −1.49 −1.56 −1.69

Amino acid transport and

metabolism

4-aminobutyrate

aminotransferase

OEOE_RS01860 2.98 3.30 3.27 3.20 3.21 3.30

Amino Acid Permease OEOE_RS01865 2.81 3.11 3.12 3.08 3.01 3.05

Peptide ABC transporter

permease

OEOE_RS02110 4.02 4.40 4.48 4.19 4.00 4.07

Spermidine/putrescine import

ATP-binding protein PotA

OEOE_RS03010 0.69 0.61 0.99 1.27 1.21 1.20

Spermidine/putrescine ABC

transporter permease

OEOE_RS03015 0.53 0.65 0.84 1.14 1.08 1.03

Spermidine/purescine ABC

transporter permease

OEOE_RS03020 0.68 0.78 0.97 1.32 1.28 1.31

Carboxypeptidase OEOE_RS04315 1.15 1.45 1.14 1.14 1.14 1.14

Glutamine synthetase OEOE_RS04565 1.88 2.08 2.20 2.01 1.83 1.81

Xaa-Pro aminopeptidase OEOE_RS04600 0.58 0.47 1.16 1.75 1.90 1.93

Oligoendopeptidase F OEOE_RS05245 0.56 0.66 0.83 1.17 1.59 1.90

Spermidine/putrescine ABC

transporter ATP-binding protein

OEOE_RS07070 1.69 1.40 1.21 1.06 0.97 0.99

Spermidine/putrescine ABC

transporter ATP-binding protein

OEOE_RS07075 1.66 1.16 1.01 0.92 0.91 0.86

Spermidine/putrescine ABC

transporter permease

OEOE_RS07080 1.27 0.75 0.71 0.51 0.41 0.49

Amino acid permease OEOE_RS07900 2.93 3.16 3.18 2.98 2.90 2.81

Peptidase M20 OEOE_RS08295 0.89 1.14 1.08 1.35 1.49 1.53

Aspartate carbamoyltransferase OEOE_RS01235 −1.14 −1.75 −2.00 −2.27 −2.56 −2.50

Carbohydrate transport

and metabolism

Mannose-6-phosphate

isomerase

OEOE_RS00125 −2.56 −2.56 −2.56 −2.56 −2.58 −2.81

Phosphoglyceromutase OEOE_RS00565 −1.37 −1.60 −1.51 −1.40 −1.37 −1.42

Sugar phosphate isomerase OEOE_RS00595 −1.71 −1.98 −2.05 −1.72 −1.58 −1.71

6-phospho-beta-glucosidase OEOE_RS01060 −1.04 −1.23 −1.58 −1.81 −2.02 −1.94

PTS fructose transporter subunit

IIA

OEOE_RS01110 −1.85 −2.20 −2.60 −2.90 −2.69 −2.79

PTS mannose transporter

subunit IIAB

OEOE_RS02230 −0.73 −1.02 −1.31 −1.38 −1.06 −1.00

(Continued)
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TABLE 2 | Continued

Related metabolism Gene annotation Gene symbol Relative expression

0.5 h 1 h 2 h 4 h 6 h 8 h

PTS mannose transporter

subunit IID

OEOE_RS02240 −0.76 −1.08 −1.43 −1.43 −1.23 −0.97

Phosphocarrier protein hpr OEOE_RS03075 −2.19 −2.16 −2.20 −2.33 −2.25 −2.32

Lactate dehydrogenase OEOE_RS05695 −1.20 −0.93 −1.10 −1.22 −1.14 −1.37

PTS sugar transporter OEOE_RS05805 −2.37 −2.45 −2.68 −2.86 −2.87 −2.90

Glycerol-3-phosphate ABC

transporter ATP-binding protein

OEOE_RS07030 −1.42 −1.92 −2.10 −2.34 −2.51 −2.54

Glycerol-3-phosphate ABC

transporter permease

OEOE_RS07035 −0.90 −1.36 −1.53 −1.65 −1.72 −1.76

Glycerol-3-phosphate ABC

transporter permease

OEOE_RS07040 −1.03 −1.54 −1.64 −1.81 −2.01 −1.93

Glycerol-3-phosphate ABC

transporter substrate-binding

protein

OEOE_RS07045 −1.16 −1.47 −1.86 −2.13 −2.20 −2.22

UDP-phosphate galactose

phosphotransferase

OEOE_RS07255 −1.98 −1.96 −1.96 −2.01 −1.94 −1.96

Ribokinase OEOE_RS07775 −1.53 −1.87 −2.32 −2.18 −1.64 −1.57

D-ribose pyranase OEOE_RS07780 −1.27 −1.82 −2.09 −2.08 −1.59 −1.33

Sugar:proton symporter OEOE_RS07785 −1.28 −1.75 −2.22 −2.19 −1.73 −1.56

Enolase OEOE_RS07960 −0.76 −0.76 −0.75 −1.06 −1.07 −1.12

Sugar phosphate isomerase OEOE_RS08055 −1.35 −1.33 −1.79 −2.11 −2.02 −2.24

Fructokinase OEOE_RS08245 −1.42 −2.08 −2.15 −2.28 −2.40 −2.46

Lipid transport and

metabolism

Tannase OEOE_RS05040 1.88 2.26 2.72 2.22 1.89 1.90

Cyclopropane-fatty-acyl-

phospholipid

synthase

OEOE_RS05660 −0.90 −1.11 −0.98 −0.90 −0.86 −0.83

Glycerophosphoryl diester

phosphodiesterase

OEOE_RS07050 −1.49 −1.64 −2.08 −2.51 −2.57 −2.56

Cell

wall/membrane/envelope

biogenesis

Glucosamine–fructose-6-

phosphate

aminotransferase

OEOE_RS03035 2.94 3.14 3.65 3.92 3.99 3.97

D-alanyl-D-alanine

carboxypeptidase

OEOE_RS03435 5.53 5.83 6.01 5.82 5.61 5.64

Peptidoglycan interpeptide

bridge formation protein

OEOE_RS06965 0.95 1.87 2.52 2.39 1.85 1.70

Sortase OEOE_RS06970 1.46 2.00 2.48 2.27 1.94 1.91

Peptidoglycan interpeptide

bridge formation protein

OEOE_RS06975 1.55 2.27 2.77 2.52 2.24 2.19

Glycosyl transferase OEOE_RS07820 1.78 1.90 2.86 3.39 3.35 3.08

D-alanyl-D-alanine

carboxypeptidase

OEOE_RS07530 −0.96 −1.45 −1.49 −1.60 −1.75 −1.70

Translation, ribosomal

structure and biogenesis

Serine–tRNA ligase OEOE_RS02120 1.44 1.93 2.07 1.93 1.77 1.72

Elongation factor 3 OEOE_RS02460 1.48 1.97 2.28 1.95 1.83 1.82

30S ribosomal protein S10 OEOE_RS02840 1.88 1.82 1.88 1.92 1.93 1.90

30S ribosomal protein S8 OEOE_RS02910 2.07 2.04 2.35 2.57 2.45 2.42

50S ribosomal protein L15 OEOE_RS02935 1.00 1.18 1.41 1.70 1.64 1.63

50S ribosomal protein L17 OEOE_RS02970 0.56 0.93 1.41 1.75 1.83 1.75

50S ribosomal protein L32 OEOE_RS03680 −0.14 0.59 0.78 0.87 0.88 1.07

Acetyltransferase OEOE_RS04010 2.37 2.70 2.99 3.18 3.07 2.77

(Continued)
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TABLE 2 | Continued

Related metabolism Gene annotation Gene symbol Relative expression

0.5 h 1 h 2 h 4 h 6 h 8 h

30S ribosomal protein S20 OEOE_RS06185 0.29 0.84 1.07 1.29 1.32 0.83

50S ribosomal protein L7/L12 OEOE_RS06825 0.63 1.16 1.71 2.00 1.74 1.46

Stress response Ferredoxin–NADP reductase OEOE_RS00770 0.93 1.14 1.24 1.35 1.39 1.35

Multidrug ABC transporter

ATP-binding protein

OEOE_RS02115 3.69 4.43 4.75 4.45 4.26 4.08

Thioredoxin reductase OEOE_RS02695 1.06 1.66 1.60 1.23 1.20 1.23

N-acetylmuramoyl-L-alanine

amidase

OEOE_RS02805 1.85 2.06 2.14 2.01 1.79 1.71

Acetyl esterase OEOE_RS03440 3.23 3.72 4.21 4.03 3.69 3.61

Multidrug ABC transporter

atpase

OEOE_RS03445 1.72 1.69 2.02 2.16 1.93 2.02

Multidrug ABC transporter

permease

OEOE_RS03450 2.15 2.01 2.34 2.48 2.35 2.18

Multidrug ABC transporter

permease

OEOE_RS03640 0.88 1.23 1.10 1.03 1.06 1.17

Multidrug MFS transporter OEOE_RS04200 2.39 2.77 3.14 3.51 3.73 3.75

Molecular chaperone dnaj OEOE_RS06305 1.56 1.76 1.61 1.36 1.32 1.10

Molecular chaperone dnak OEOE_RS06310 1.03 1.35 1.38 1.04 1.03 0.95

Protein GrpE OEOE_RS06315 0.93 1.41 1.59 1.11 1.02 0.94

Multidrug ABC transporter

ATP-binding protein

OEOE_RS07890 1.07 0.93 0.72 0.69 0.59 0.65

Peptidylprolyl isomerase OEOE_RS07905 2.23 2.74 2.62 2.30 2.10 1.97

Multidrug ABC transporter

ATP-binding protein

OEOE_RS08260 1.48 1.54 1.68 1.80 1.47 1.05

Multidrug ABC transporter

ATP-binding protein

OEOE_RS08265 1.01 1.04 1.25 1.40 1.10 0.76

General stress protein OEOE_RS00325 −2.18 −2.10 −2.46 −2.54 −2.60 −2.58

Glutaredoxin OEOE_RS00645 −1.04 −0.44 −0.27 −0.64 −0.82 −0.86

Heat-shock protein Hsp20 OEOE_RS01385 −0.92 −0.43 −0.55 −0.89 −0.88 −1.13

Glutathione reductase OEOE_RS05740 −0.63 −0.78 −0.83 −0.96 −1.00 −0.98

Cold-shock protein OEOE_RS06620 −1.75 −1.14 −1.30 −1.49 −1.73 −1.81

Thiol-disulfide isomerase OEOE_RS07835 −1.17 −1.32 −1.18 −1.03 −1.01 −1.07

Thioredoxin OEOE_RS08215 −1.10 −0.71 −0.71 −0.70 −0.68 −0.81

Nucleotide transport and

metabolism

Adenylate kinase OEOE_RS02945 1.21 1.08 1.22 1.36 1.44 1.22

Deoxyadenosine kinase OEOE_RS04085 −1.23 −1.25 −1.08 −1.07 −1.13 −1.24

Coenzyme transport and

metabolism

Thiamine pyrophosphokinase OEOE_RS03790 −0.93 −1.07 −1.05 −0.96 −0.93 −0.84

Pyridoxal biosynthesis protein OEOE_RS04980 −0.89 −1.10 −1.22 −1.19 −1.23 −1.15

Genes which regulation is coincident with proteomic results are gray highlighted. For each gene, time sample with maximum over- or under-expression is bold highlighted.

environment as reported by Manca de Nadra et al. (1999) and
Ritt et al. (2008).

Some genes and proteins related to glutamine and glutamate
synthesis, involved in the assimilation and re-distribution
of nitrogen within the cell, were up-regulated revealing
the key role of nitrogen uptake for O. oeni in a poor
nutrient media, such as WLM. Glutamine synthetase was up-
regulated both at gene and protein level. The 4-aminobutyrate
aminotransferase gene (OEOE_RS01860), which transforms

GABA into succinate semialdehyde and L-glutamate, was
threefold over-expressed during the 8 h of O. oeni PSU-1
adaptation to WLM. GABA can be assimilated as a nitrogen
and/or carbon source in bacteria such as Escherichia coli (Bartsch
et al., 1990) and Corynebacterium glutamicum (Zhao et al.,
2012), but no information is available about LAB in this
respect.

Six genes involved in the transport of spermidine/putrescine
were over-expressed (Table 2). The uptake of these two
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TABLE 3 | Selection of relevant proteins detected by 2D-DIGE and iTRAQ analysis differently regulated after WLM inoculation at 1 and 6h.

Related metabolism Protein annotation Gene symbol Fold change Theoretical

Mr (KDa)

Pi

DIGE iTRAQ DIGE/iTRAQ DIGE/iTRAQ

1 h 6 h 1 h 6 h

Malate metabolism Malate dehydrogenase OEOE_RS02010 − − −1 −0.8 41.4

Citrate metabolism Acetoin reductase OEOE_RS03325 − − −1.7 −0.9 27.4

Diacetyl reductase OEOE_RS07730 ND 1.237 − − 27.4 5.26

ND 1.626 − − 27.4 5

ATPase activity F0F1 ATP synthase subunit

alpha

OEOE_RS03175 − − −1.3 0.7 56.7

Amino acid transport

and metabolism

Aspartate

carbamoyltransferase

OEOE_RS01235 −1.31 1.53 (2) − − 35/38.9 6.11

Aminopeptidase C OEOE_RS02220 ND −1.1 − − 50.5 5.2

Dipeptidase OEOE_RS02735 − − 1.1 −0.8 41.2

Glutamine synthetase OEOE_RS04565 − − 0.6 1 49.9

Peptidase M20 OEOE_RS04760 1.3 1.36 1.3 0.7 44.1/42.1 4.4

Glutamine amidotransferase OEOE_RS04955 − − −1 0.7 27.4

Aminopeptidase N OEOE_RS05080 ND −2.14 0.9 −1.1 95.1 5.1

Succinate-semialdehyde

dehdyrogenase

OEOE_RS06260 − − 1.6 1.1 51.5

S-ribosylhomocysteine lyase OEOE_RS07535 1.51 (3) 1.57 (2) 1.8 1.5 17.7 5.3

Peptidase C69 OEOE_RS08595 − − 1.9 0.9 53.5

Carbohydrate transport

and metabolism

Phosphoglycerate mutase OEOE_RS00565 −1.57 −1.53 − − 27.1 5.4

Aldehyde dehydrogenase OEOE_RS01550 1.21 (3) 1.59 (2) − − 52.5 4.9

Lactate dehydrogenase OEOE_RS01985 − − 1.5 1.1 36.5

PTS mannose transporter

subunit IIAB

OEOE_RS02230 −0.73 −1.02 −1.31 −1.38 −1.06 −1.00

PTS mannose transporter

subunit EIIAB

OEOE_RS02230 − − −2.4 −0.7 35.6

HPr kinase/phosphorylase OEOE_RS02680 1.6 1.9 − − 35.4 5.3

Phosphocarrier protein HPr OEOE_RS03075 − − −0.7 2.3 9.0

Phosphoenol pyruvate-protein

phosphotransferase

OEOE_RS03095 −1.2 ND − − 63.2 5

Galactose mutarotase OEOE_RS04920 − − 0.7 −1.1 34.1

D-lactate dehydrogenase OEOE_RS05695 −1.3 ND − − 36.5 5.74

UDP-glucose 4-epimerase OEOE_RS06755 − − 1.1 0.7 36.9

Enolase OEOE_RS07960 1.54 1.387 0.7 1.8 48.4/47.3 4.6

Fructokinase OEOE_RS08245 −1.2 ND − − 32.1 6.44

Lipid transport and

metabolism

ACP S-malonyltransferase OEOE_RS07670 − − −0.8 1.1 33.6

2-nitropropane dioxygenase OEOE_RS07675 − − −1.5 0.7 33.5

Cell

wall/membrane/envelope

biogenesis

Glucosamine–fructose-6-

phosphate

aminotransferase

OEOE_RS03035 − − 1.7 1.1 66.2

Rod shape-determining

protein MreB

OEOE_RS03200 − − −1.2 −1.1 40.1

UDP-N-acetylmuramate–L-

alanine

ligase

OEOE_RS06110 − − 0.6 −1.6 48.1

(Continued)
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TABLE 3 | Continued

Related metabolism Protein annotation Gene symbol Fold change Theoretical

Mr (KDa)

Pi

DIGE iTRAQ DIGE/iTRAQ DIGE/iTRAQ

1 h 6 h 1 h 6 h

Peptidoglycan interpeptide

bridge formation protein

OEOE_RS06975 − − −1.1 −1 39.4

D-alanyl-D-alanine

carboxypeptidase

OEOE_RS07530 − − −0.8 −1.5 31.0

UDP-N-acetylglucosamine

1-carboxyvinyltransferase

OEOE_RS08605 − − 0.7 1 45.7

Translation, ribosomal

structure and biogenesis

Threonyl-tRNA synthase OEOE_RS02215 −2.02 −3.3 −0.7 −1.1 76.3

30S ribosomal protein S8 OEOE_RS02910 − − −1.5 1 14.6

50S ribosomal protein L15 OEOE_RS02935 − − 0.7 2.3 16.5

50S ribosomal protein L17 OEOE_RS02970 − − −0.7 1.2 14.9

50S ribosomal protein L32 OEOE_RS03680 − − 0.7 1.2 6.7

Elongation factor Tu OEOE_RS03795 −1.3 −1.6 −1.6 −0.9 43.6 4.9

Elongation factor Ts OEOE_RS04685 − − −2.3 −0.9 31.8

30S ribosomal protein S20 OEOE_RS06185 − − 0.7 1 9.8

Elongation factor G (fusA) OEOE_RS06335 −1.67 1.015 − − 77.9

Valyl-tRNA synthase OEOE_RS06700 − − 0.8 −1.9 104.6

50S ribosomal protein L7/L12

(rplL)

OEOE_RS06825 ND 1.99 − − 12.2 4.20

Methionyl-tRNA synthetase OEOE_RS08425 − − −0.7 −1.1 77.0

Stress response Glutathione reductase OEOE_RS05740 − − 2 1 48.6

Cold-shock protein OEOE_RS06620 1.28 ND − − 7.4 4.7

Molecular chaperone GroEL OEOE_RS06725 1.1 1.35 (2) − − 57.5 5.02

Co-chaperonin GroES

(HSP10)

OEOE_RS06730 1.67 1.82 (2) − − 9.7 4.7

Thiol reductase thioredoxin OEOE_RS07835 − − −0.6 1.4 12.6

Thiol reductase thioredoxin OEOE_RS08215 − − −0.7 1.3 11.5

DNA-binding ferritin-like

protein

OEOE_RS08440 1.64 1.78 − − 18.3 4.4

Nucleotide transport

and metabolism

Adenylate kinase OEOE_RS02945 − − −0.9 1.1 20.7

Deoxynucleoside kinase OEOE_RS04085 −2.4 −2.7 − − 25.8 5.6

Coenzyme transport

and metabolism

Thiamine pyrophosphokinase OEOE_RS03790 −2.1 ND − − 25.4 4.7

Pyridoxal biosynthesis lyase

PdxS

OEOE_RS04980 − − −2.5 1 31.4

Proteins which regulation is coincident with transcriptomic results are gray highlighted.

polyamines has been associated with an energy-producing
state/membrane potential of the cell in E. coli (Kashiwagi
et al., 1997). Both putrescine and spermidine protect against
oxidative stress (Tkachenko et al., 2001). Olguín et al. (2015)
reported that this protective mechanism may also be a target
of ethanol damage in an ethanol shock, which would inhibit
the uptake of these polyamines. In this case, the adaptation to
conditions of WLM resulted in an over-expression of six out of
the eight transporters of these polyamines annotated in PSU-1
genome.

Carbohydrate Transport and Metabolism
Microarray data revealed that sugar transport was repressed
(Table 2) in response to WLM conditions. In particular,
glycerol-3-phosphate ATP-binding cassette ABC transporters
andmannose phosphotransferase transporters (PTS) were down-
regulated. This inhibition is probably due to the lower availability
of sugars in WLM with respect to rich growth medium in which
inocula were prepared. A strong transcriptional inhibition of
sugar metabolism and transport in response to ethanol was also
observed by Olguín et al. (2015).
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Enolase, among others, were strongly up-regulated at low
pH compared with the optimal growth at pH 6.8 (Lee et al.,
2008). In this assay, the enolase protein increased in abundance
1 h after inoculation. On the contrary, the transcriptomic data
reported in this work and by Costantini et al. (2015) show
the inhibition of enolase gene under wine-like conditions. This
suggests that enolase, might be up-regulated at translational level
in response to stress. This protein, besides being involved in
sugar fermentation, has been related to host tissue adhesion in
probiotic bacteria including Lactobacillus plantarum (Castaldo
et al., 2009).

Lipid Transport and Metabolism
The regulation at gene and protein level of lipid metabolism
was scarce and, in most of the cases, was down-regulated. For
instance, the gene cfa (OEOE_RS05660) which is involved in
the conversion of monounsaturated fatty acids to cyclopropane
fatty acids (CFAs) was inhibited at 1 h. The increase in cfa
transcription was observed in acid- and ethanol-grown cells
(Grandvalet et al., 2008; Olguín et al., 2010) after a longer period
of stress exposure than in this work, once MLF had started.

Cell Wall/Membrane/Envelope Biogenesis
Several genes and proteins related to cell envelope biogenesis
were over-expressed. One of the genes annotated as D-alanyl-
D-alanine carboxypeptidase (OEOE_RS03435) was 6-fold over-
expressed at 2 h and its sharp over-expression started 0.5 h after
the inoculation into WLM. This gene and OEOE_RS06975 (for
peptidoglycan interpeptide bridge formation protein) were also
over-expressed in transcriptomic analysis by Costantini et al.
(2015), both after adaptation with 12% of ethanol. However, in
the present study, another D-alanyl-D-alanine carboxypeptidase
(OEOE_RS07530) showed an opposite behavior, being down-
regulated both at gene and protein level. Peptidoglycan (PG) is
an essential component of the bacterial cell envelope, required
for cell shape and stability (Vollmer et al., 2008). A supply
of D-amino acids is essential for peptidoglycan synthesis;
moreover, D-Ala is the main constituent of wall teichoic
acids and lipoteichoic acids, which are polyanionic polymers
exclusively found in Gram-positive bacteria (Wecke et al.,
2009). Another activated function, both at gene and protein
level, was glucosamine:fructose-6-phosphate aminotransferase,
which is also involved in cell wall biosynthesis. Cecconi et al.
(2009) found a major concentration of glucosamine 6-phosphate
aminotransferase in O. oeni cells acclimated to ethanol than in
not acclimated cells. These results point out the specificity and
relevance of some enzymes involved in cell envelope protection
against stress challenge.

Three proteins related to cell wall biogenesis were down-
regulated. Among them, the rod shape-determining protein
(MreB), with an actin-like role, was less abundant at 1 and
6 h. These results correlate with the reported information for
proteinsMreB1 and B2 determining cell shape from L. plantarum
423 which were less abundant in acid-stressed cells (Heunis
et al., 2014) and the transcriptional inhibition due to ethanol of
other rod shape-determining proteins, such as MreB, in O. oeni
(Olguín et al., 2015). Also, microarray analysis revealed the

inhibition of three genes (OEOE_RS07265, OEOE_RS03340, and
OEOE_RS07010) involved in cell-wall biogenesis, encoding one
of them a capsular polysaccharide biosynthesis protein, gene
which was described as well by Dimopoulou et al. (2012) as
wzd. All these down-regulated functions would be targets of the
damage caused by factors such as ethanol and low pH.

Translation, Ribosomal Structure, and Biogenesis
One of the categories showing more significant changes in
O. oeni PSU-1 transcriptome and proteome due to WLM
conditions was translation related functions. It is worth noting
that several 30S and 50S ribosomal genes were over-expressed
like their correspondent proteins. Several ribosomal proteins
were up-regulated in Lactobacillus rhamnosus under acidic stress
(Koponen et al., 2012). Moreover, in O. oeni in agreement
with these observations, Cecconi et al. (2009) reported that
adaptation in half strength wine-like medium correlates with
the up regulation of some transcription/translation proteins as
elongation factor Ts and ribosomal protein 30S. A gene codifying
for a ribosomal protein was differentially over expressed between
0 and 1 h after ethanol addition in O. oeni PSU-1 (Olguín et al.,
2015). As well in samples of O. oeni adapted to 12% ethanol,
a ribosomal protein was up-regulated (Costantini et al., 2015).
Studies with Lactococcus lactis suggest that the regulation of
translation has a major role in stress response (Dressaire et al.,
2010). According to our results this would also happen inO. oeni.

Stress Response
As expected, it was observed the activation of chaperon function
in response to WLM stress conditions. Some genes, such as
grpE, dnaJ, and dnaK, and proteins, like GroEL and GroES
(Hsp10), showed up-regulation in PSU-1 after inoculation into
WLM (Tables 2, 3). The latter chaperone, Hsp10, is conserved
along LAB (Sugimoto et al., 2008). However, Hsp20, the most
characterized stress protein in O. oeni (Guzzo et al., 1997, 2000),
showed transcriptional inhibition in our assay and no changes in
protein concentration. This is in accordance with Costantini et al.
(2015), that described the transcriptional activation of hsp20 only
in mild ethanol stress (8%) but the under-expression of this gene
with 12% ethanol, as found in our work. A cold shock protein
(OEOE_RS06620) showed increased abundance 1 h after O. oeni
PSU-1 inoculation, but its gene expression was inhibited along
the assay. This protein could play a role in the early response
to wine-related stress but not in the long term adaptation
process.

Our data revealed that wine-like conditions caused an increase
of proteins involved in oxidative stress protection, related to
thioredoxin and glutathione systems. Two out of the three
thioredoxins (trxA) annotated for PSU-1, OEOE_RS07835, and
OEOE_RS08215, were up-regulated 6 h after inoculation. Also
thioredoxin reductase (trxB), OEOE_RS02695, and a ferredoxin
reductase gene (fdr: OEOE_RS00770), annotated in NCBI as
trxB until February 2015, were activated under wine stress
conditions. Glutathione reductase (GshR) was significantly more
abundant in O. oeni PSU-1 after inoculation into WLM.
However, transcriptomic data revealed that some of these genes
were inhibited; indicating that translational regulation of these
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FIGURE 3 | Venn diagram of the number of proteins and genes showing significant changes in abundance and expression, respectively, according to

transcriptomic, and proteomic analysis 1 and 6h after the inoculation of O. oeni PSU-1 into WLM. (A) over-expressed genes and up-regulated proteins, (B)

under-expressed genes and down-regulated protein. The color of diagram petals match with the colored legends in the figure.

functions would be prevalent under the studied conditions. Our
results support the relevance of the thioredoxin and glutathione
systems in the adaptation of O. oeni to wine related stress. There
are few studies regarding thioredoxin in O. oeni (Jobin et al.,
1999a; Guzzo et al., 2000; Margalef-Català et al., 2017), thus the
role of this mechanism and glutathione system against wine stress
is quite unknown.

Among the genes over-expressed related to defense
mechanism there were eight multidrug transport genes.
ABC transporters are a major part of the efflux systems involved
in the transport of harmful-compounds and cell detoxification
(Leverrier et al., 2004).

Evaluation of Omic Data Correlation
Real-Time qPCR Validation
In order to validate the results obtained from the microarray
analysis, real-time qPCR was performed with the same RNA
from the original microarray experiment. Twenty-two genes,
some related to stress response, were selected, taking the RNA
sample of time where maximum over- or under- expression
had been observed in microarray (Table 1). There was a
general accordance between microarray and real-time qPCR
data for all the genes tested. Of the 22 genes, 17 were
clearly correlated using both techniques. For hsp18 gene higher
values by qPCR were obtained than for microarray data.
Finally the four remaining genes (diacylglycerol kinase, PTS
sugar, cfa and trxA2) displayed lower numerical values by
qPCR, indicating no significant changes using this technique,
while with microarray they were slightly inhibited. Overall,
the correlation between real-time qPCR and microarray
was good, suggesting that the microarray gene expression
measurements were valid. Moreover, the validation of two
thioredoxins (trxA2 and trxA3) was useful for the proteomic
identification.

Integration of Transcriptomic and Proteomic Analysis
It has been largely reported that the correspondence of
transcriptomic and proteomic data is low due to the numerous
and complex regulatory mechanisms involved in gene
transcription and protein synthesis (Dressaire et al., 2010;
Haider and Pal, 2013). In this work, 19 genes presented a
correlation with proteomic results (Tables 2, 3). The most
relevant, in terms of understanding O. oeni stress response,
have already been discussed in the text. Venn diagram shown
in Figure 3 shows the number of coincident modifications of
genes and proteins at different analyzed times vs. time zero. It is
worth to note the highest number of coincidences was observed
for genes up/down regulated (166 and 158, respectively) 1 and
6 h after inoculation in WLM. This indicates that most of the
transcriptional changes were sustained along the 8 h assay, before
MLF start. However, some genes were only modified at one of
the analyzed times, indicating its specific role in early (1 h) or
adaptive (6 h) response, respectively. Regarding protein changes,
the observed pattern was different and many proteins showed
modifications only at one of the two analyzed times. However,
some proteins maintained the up or down regulation along the
assay. Altogether, the data reported illustrates the complexity
of O. oeni cell regulation and the difficulty of finding specific
marker genes and/or proteins associated to stress response.

CONCLUSIONS

The combined transcriptomic and proteomic study was useful
to identify the metabolisms mostly altered due to wine-like
conditions. The use of two complementary proteomic techniques
allowed the detection of a major number of proteins influenced
by stress factors. Our results revealed the relevance of translation
regulation and nitrogen uptake as key metabolisms involved in
the adaptation of O. oeni PSU-1 to wine related stress. Cell wall
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biosynthesis and redox maintenance mechanisms seem to play
also a relevant role in the protection of O. oeni against cell
damage. Finally, sugar metabolism is inhibited in contrast to
the transcriptional activation of L-malate transport and citrate
consumption before the beginning of MLF.

Most of the molecular modifications occurring during O. oeni
adaptation to wine will depend on the strain and/or fermentation
conditions. However, the omic analysis allows the identification
of the most relevant functions affected by wine-related stress, on
which should be focused future research.
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