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*e simultaneous effect of flexible wall and multiple stenoses on the flow and mass transfer of blood is investigated through
numerical computation and simulations.*e solution is obtained using theMarker and Cell technique on an axisymmetric model
of Newtonian blood flow. *e results compare favorably with physical observations where the pulsatile boundary condition and
double stenoses result in a higher pressure drop across the stenoses. *e streamlines, the iso-concentration lines, the Sherwood
number, and the mass concentration variations along the entire wall segment provide a comprehensive analysis of the mass
transport characteristics.*e double stenoses and pulsatile inlet conditions increase the number of recirculation regions and effect
a higher mass transfer rate at the throat, whereby more mass is expected to accumulate and cause further stenosis.

1. Introduction

Caro et al. [1] postulated that atherosclerosis, which is a
narrowing of the artery as a result of plaque build-up may
occur due to shear-dependent mass transfer mechanism
between blood cholesterol and the arterial wall. Choles-
terol exists in blood in the form of low density lipopro-
teins (LDLs) whose deposition along the walls of the
artery is a key step in atherogenesis, which would lead to
stenosis. Stenosis can affect the velocity of blood flowing
through the artery, affecting blood pressure, collapsing the
heart, which could in turn lead to disastrous conse-
quences. *us, an understanding of the behavior of local
mass transport in arterial stenosis is important in the
study of the formation and development of atherosclerotic
lesions for appropriate assessment on the possible cor-
relation between the site of atherosclerotic lesions and the
pattern of mass transport.

Ethier [2] carried out computational modelling of mass
transfer and studied its links to atherosclerosis. Other studies
on mass transport and fluid flow in stenotic arteries of
axisymmetric and asymmetric models have been carried out
by [3–6]. In these studies, the arterial wall was considered as
rigid and the artery is assumed to have single mild stenosis,
in which the geometry of the stenosis is represented by the
usual cosine curve along with a restriction that the ratio of
the severity of stenosis and the radius of the artery is very
small. In reality, this is not the case where in many medical
situations, the patient is found to have multiple stenoses in
the same arterial segment.

Investigations on the effect of multiple stenoses on blood
flow have been carried out amongst others by [7–10]. *ese
studies showed that from both experimental results and
theoretical calculations, the total effect of a series of non-
critical stenoses is approximately equal to the sum of their
individual effects where they can be critical and produce
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symptoms of arterial insufficiency. *e flow energy loss due
to the presence of the stenoses, which is directly related to
the pressure drop across them, increases with the number of
stenoses but is not strongly dependent on the spacing be-
tween them. *e authors of [11–19] have also investigated
blood flow through multiple stenoses; however, these studies
have not considered the mass transfer.

Another aspect to be considered in arterial blood flow is the
cyclic nature of the heart pump which creates pulsatile con-
ditions in the arteries, giving rise to unsteady flow. It is observed
that most CFD models of arterial hemodynamics make the
simplifying assumptions of rigid walls and fully developed inlet
velocities (cf. [13–19]). But the arteries are not rigid tubes. *ey
adapt to varying flow conditions by enlarging or shrinking. All
of these physiological conditions make the modelling and
consequently the solution to be almost impossible to be ob-
tained analytically and challenging computationally. Nanda-
kumar and Anand [20] studied steady and pulsatile flow of
blood through a channel with single as well as double stenoses
on the assumption that the pulsations of flow are damped in the
small vessels; thus the flow is effectively steady in the capillaries
and the veins while Liu and Tang [21] investigated the influence
of distal stenosis on blood flow through curved arteries with two
stenoses. But again, these studies on pulsatile flow have also not
considered the mass transfer. In another study, Layek et al. [22]
investigated the effect of multiple stenoses on the flow of
Newtonian fluid in a rigid tube and opined that the disturbance
created by the constrictions is mainly concentrated at the
downstream of the last constriction. Considering the flow of
Newtonian fluid in a two-dimensional channel having a single
constriction, Layek and Midya [23] concluded that the maxi-
mum stress and the length of the recirculation region associated
with two shear layers of the constriction do increase with the
increasing area reduction of the constriction. *ey further
concluded that the flow-field separates after the symmetry
breaking bifurcation, and the symmetry of the flow depends on
Reynolds’ number and the height of the constriction. *e flow
of a fluid having hematocrit-dependent viscosity past a tube
with partially overlapped constriction has been investigated by
Layek et al. [24]. *ey observed that the peak value of the wall
shear stress decreases with increasing haematocrit parameter
while a reverse trend is observed for the flow separation region.
*ey also opined that the deformability of the wall does reduce

the wall shear stress as compared to the rigid wall case. All these
studies [22–24] ignored the flow pulsatility and/or consider-
ation of multiple constrictions, and the mass transfer as well
which plays a pivotal role in the genesis and evolution of
atherosclerosis.

Based on the gap established above, with regard to
studies involving mass transfer, the following work seeks to
analyze the flow andmass transfer characteristics of pulsatile
blood flow through an artery with double stenoses. *e fluid
considered is Newtonian in an axisymmetric setting, while
the pair of stenoses vary in severities, lengths, and distances
between them. *e equation for stenoses is given in an
algebraic form which could represent both moderate and
severe stenoses instead of the usual cosine function which
could only describe mild stenosis. *e objective of the
present study lies in the consideration of the transport of
mass as well as momentum together through a tube with a
flexible wall, resembling the flexibility of the artery in the
presence of double stenoses. *e flow pulsatility cannot be
ruled out from the present investigation.

2. Formulation of the Problem

We consider a fully developed two-dimensional axisym-
metric flow of an incompressible Newtonian fluid of density
ρ in a tube. *e relevant equations of motions in vector
forms are the continuity, momentum, and mass as follows:

∇ · V � 0, (1)

ρ
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� − ∇P + μ∇2V, (2)
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� Dm∇

2
C, (3)

with D/Dt is the material derivative, V � (u, 0, w) where u

and w are the radial and axial velocity components, re-
spectively, p is the pressure, μ is the constant viscosity, C is
the mass concentration, and Dm is the coefficient of mass
diffusion.

In the cylindrical coordinate system, the corresponding
equations (1)–(3) are written in a conservative form as
follows:
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*e schematic diagram for the double stenoses is given
in Figure 1, where r � R(z, t) is the radius of the artery in the
stenotic region and R0 is the radius of the artery in the
nonstenotic regions. δ1, δ2 are the critical heights of the first
and second stenosis respectively; l0 is the inlet segment, l02 is
the distance between stenoses, l01, l03 are the lengths of
stenoses, and L is the length of the arterial segment under
consideration.

*e equations describing the stenoses are given by the
following:

R(z, t) �

R0a1(t), 0≤ z≤ l0,

R0 +
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l201

z − l01( 􏼁
2
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(8)

*e time-variant parameter a1(t) is given by a1(t) �

1 + k cos(ωt) with k representing the amplitude parameter
and ω the angular frequency is given by ω � 2πfp, fp being
the pulse frequency and d � l0 + l01 + l02. To the best of our
knowledge equation (8) is the first equation to address
double stenoses without any control on the severity of
stenoses which has not been considered before.

2.1. Boundary Conditions
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where U is the cross-sectional average velocity of the fluid
and Cs is a constant.

At z � L:
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3. Solution Procedure

*e solution procedure involves the nondimensionalization,
radial coordinate transformation, and the finite-difference
Marker and Cell method (MAC) initially proposed by Harlow
and Welch [25]. Sarifuddin et al. [26, 27] and Mustapha et al.
[15, 16] have used the method to solve blood flow problems.

3.1. Nondimensionalization of the Equations

*e nondimensional variables and parameters intro-
duced are as follows:
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Using (13), equations (4)–(7) have their respective
nondimensional forms as follows (omitting bar):
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Figure 1: Schematic diagram for the double arterial stenoses.
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*e boundary conditions (9)–(12) reduce to their re-
spective dimensionless forms:
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where Re is the Reynolds number, Sc is the Schmidt number
and α is the Womersley number defined as follows:
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3.2. Radial Coordinate Transformation. With the introduc-
tion of a radial coordinate transformation x � r/R(z, t),
equations (14)–(17) now become as follows:
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and the boundary conditions (18)–(21) become
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3.3. Finite-Difference Method. *e solution procedure
consists of discretization of the governing equations,
combining the discretized forms of the momentum and
continuity equations to obtain the Poisson equation for
pressure, the successive overrelaxation (SOR) method, and
the pressure and velocity corrections. *e schematic com-
putational domain is given in Figure 2. *e velocities and
pressure are calculated at different locations of the control
volume, as indicated in Figure 3. *e difference equations
are derived at three distinct cells, each corresponding to the
continuity, axial and radial momentum equations.

*e discretization of the time derivative terms is based
on the first-order accurate two-level forward time differ-
encing formula, while the convective terms in the mo-
mentum equations are discretized with a hybrid formula
consisting of central differencing and second-order
upwinding scheme (cf. Courant et al. [28]). *e diffusive

terms are discretized using second-order accurate three-
point central difference formula. *us in a finite-difference
formula with x � jΔx, z � iΔz, t � nΔt and p(z, x, t) �

p(iΔz, jΔx, nΔt) � pn
i,jwhere n refers to time and Δt is the

time increment. *e length and width of the (i, j)n cell of
the control volume are represented by Δz and Δx,
respectively.

*e discretized version of the continuity equation (24) at
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xljR
n
li

wn
i,j − wn

i− 1,j

Δz
􏼠 􏼡 − xlj􏼐 􏼑

2 wt − wb

Δx
􏼒 􏼓

zR

zz
􏼠 􏼡

n

li

+
xju

n
i,j − xj− 1u

n
i,j− 1

Δx
􏼠 􏼡 � 0,

(31)
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Here (zli, xlj) and (zi, xj) represent the respective co-
ordinates of the center of the cell and the cell faces as shown
in Figure 3, while wt and wb stand for w-velocities at the top
and bottom middle positions of the control volume of the
continuity equation. *e momentum equations (24) and
(25) are written in the following forms:
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where conwn
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i,j, diffw
n
i,j and diffu

n
i,j are the finite-dif-

ference representation of convective and diffusive terms of
the axial and radial momentum at the nth time level.
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*e Poisson equation for pressure is derived from
equations (31)–(33) which takes the final forms:
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where Dn+1
i,j represents the discretized form of the divergence

of the velocity field at the (i, j) cell and the expressions for
Ai,j, Bi,j, . . . , Hi,j, Si,j are the same asMustapha et al. [15, 16].
*e Poisson equation (34) for pressure is then solved using
the successive overrelaxation (SOR) method to obtain the
intermediate pressure field.

*e increment Δx is chosen to be 0.025 along x, while
Δz � 0.1 along z. Δt is chosen to be equal to or less than a
prescribed stability criterion as depicted in Figure 4, where
here c is taken to be 0.05. (cf. [25, 29]).

*e number of iterations is limited up to 10.*e pressure
and velocities then go through a correction stage to achieve
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Figure 2: Schematic computational domain.
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Figure 3: A typical MAC cell.
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better accuracy. *e process is described in [15, 16, 26, 27].
When the velocity field has been obtained, the mass con-
centration is calculated from the respective discretized

versions of equation (26) with the relevant boundary con-
ditions (equations (27)–(30)). *e values chosen for k, α, Sc
are 0.05, 2, and 3, respectively.
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4. Results and Discussions

*e influence of the pulsatile inlet is reflected in Figure 5
where the pressure drop in this case is higher than the one
generated with the parabolic inlet. It decreases with in-
creasing Re with a strong linear correlation between them in
both cases of parabolic and pulsatile conditions (cf. Sar-
ifuddin et al. [26]). Further, the pressure drop is seen to
increase with the number of stenoses, which agrees with the
experimental study of Talukder et al. [8].

*e behavior of the axial and the radial velocity at the
narrowest points (z � 10 and z � 19) for different Re are
shown in Figures 6(a), 6(b), 7(a), and 7(b). *e axial velocity
has positive values, and it is noted that the parabolic case
results in higher velocity. It is also observed that the axial
velocity near the wall increases with increasing Re; however,
there is a cross over at x � 0.65 and x � 0.73 for z � 10 and
z � 19, respectively. Figures 7(a) and 7(b) show that the
radial velocity corresponding to the pulsatile inlet assume
positive values at z � 10 except the value on the wall at
(x � 1) while negative values are observed at the narrowest
point (z � 19) and the flow velocity increases with increasing
Re near the centerline while it is reduced near the wall with
increasing Re. Both figures reveal that the velocities in the
case of the parabolic inlet are negative and substantially less
than that with the pulsatile inlet.

Figure 8(a) exhibits the axial velocity profiles at dif-
ferent locations of the stenosed arterial segment at Re� 300
for both parabolic and pulsatile inlet conditions. At
(z � 19), the velocity in the parabolic case is higher than in
the pulsatile case. A backflow occurs in the pulsatile case at
the downstream of the narrowest point (z � 19) near the
wall. *e curves decrease from their individual maximum
at the axis as one moves away from it and finally they
approach a minimum value (zero) on the wall surface. Note
that the curves of the axial velocity at (z � 10) and at (z �

15) are coincident. *e axial velocity at the critical height of
the second stenosis (z � 19) is considerably higher than
that of the first stenosis (z � 10). Figure 8(b) shows that the
radial velocity has positive values everywhere at (z � 5),

(z � 10), and (z � 25), excluding the position on the wall.
At (z � 15) and the narrowest point (z � 19), the radial
velocity is observed to have all negative values. *e nonzero
values of the radial velocity near the wall clearly reflect the
influence of the radial motion of the arterial wall in the
pulsatile case.

Figure 9(a) exhibits the distribution of the wall shear
stress (wss) along the arterial segment for different Re
considering pulsatile as well as parabolic inlet conditions.
*e results show that wss for both the parabolic and
pulsatile inlet conditions attain their peaks at the critical
heights of the stenoses (z � 10, 19). It is observed that

Mesh sizes

Reynolds number Mass diffusion 

Δt3 ≤ 1/2D (1/((1/Δz2) + (1/Δx2)))i,j

Δt1 ≤ Min((Δz/|w|), (Δx/|u|))i,j

Δt = cMin[Δt1, Δt2, Δt3]

Δt2 ≤ Min((Re/2)(Δx2Δz2)/(Δx2+Δz2))i,j

Figure 4: Schematic diagram for stability to obtain Δt.
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separation occurs (negative values of wss) only at the
downstream of the second stenosis for parabolic inlet
condition. In the pulsatile case, the separation zone oc-
curs between the two stenoses with multiple separation
regions at the downstream of the second stenosis. *en,
wss starts to increase slowly towards the wall surface
(reattachment point).

*e effect of different severities on wss is depicted in
Figure 9(b). In the pulsatile case, when the two stenoses have
the same severities (δ1 � δ2 � 0.2) and, (δ1 � δ2 � 0.4), flow
separation occurs at two specific places at the downstream of
the first and the second stenoses with different peak values.
In the case of stenoses with different severities
(δ1 � 0.2, δ2 � 0.4) and (δ1 � 0.4, δ2 � 0.2) a larger sepa-
rated region is formed at the downstream of the more severe
stenoses (cf. Johnston and Kilpatrick [12]). A smaller

separation region is produced in the case of pulsatile inlet
condition and the peak wss is much higher than the para-
bolic inlet condition.

Figure 9(c) determines the effects of the length of ste-
noses on wss. Peak wall shear stress decreases with in-
creasing the length of stenosis but it increases with the gap
between stenosis and at this position, there is a potential that
plaque would rupture whereas, at the low shear stress po-
sition, atherosclerotic development may be induced. *ese
phenomena of separation and reattachment are due to the
adverse pressure in these regions and are believed to be
responsible for the malfunctioning of the cardiovascular
system having atherosclerotic plaque.

Figures 10(a)–10(d) show the instantaneous patterns of
streamlines governing the flow of blood through the stenoses
in case of (δ1 � 0.4, δ2 � 0.2) for both parabolic and

100

102

150 200 250 300 350 400 450 500
Reynolds number

101

100
Pr

es
su

re
 d

ro
p

Present pulsatile inlet
Present parabolic inlet
Sarifuddin et al. (2008)

Figure 5: Comparison of the nondimensional pressure drop across the stenoses.
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pulsatile inlet conditions at Re� 300 and Re� 500. In the
parabolic case, only one recirculation zone developed be-
tween the two stenoses where separation occurs at z � 11 (c.f
Figure 9(b)). In the case of the pulsatile inlet, a multiple
recirculation region is noted in between the two stenoses
(separation point z � 11). *us, an increase in Re and a
consideration of the pulsatile flow increase the number of
the recirculation region.

Figure 11(a) exhibits the profiles of mass concentration
at different positions for both pulsatile and parabolic inlet
conditions at Re� 300. *e mass concentration at each axial
position converges to zero according to the wall condition.
*e mass concentration gets distorted at the downstream of
the stenoses which could be due to the separation of flow at
the downstream of the stenoses. Along the upstream of
stenoses, the flow velocity and wall shear stress (Figure 8(a))
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increase as the flow gets accelerated towards the throat
leading to the increase of solute concentration. It is also
observed that the concentration at the throat (z � 19) is
much higher for pulsatile flow than the parabolic one.
Figure 11(b) exhibits the evolution of mass concentration at
the throat of stenosis corresponding to single and double

stenosis for pulsatile inlet condition.*emass concentration
is higher at the throat in the case of double stenosis com-
pared to the single one.

*e mass flux to the arterial wall which is quantified
through the Sherwood number over the entire stenosed
arterial segment is examined and exhibited in Figures 12(a)–
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12(c).*e Sherwood number defined by ShD � 2R0cl/DmΔC
where cl is the local mass flux to the arterial wall and 2R0 is
the inlet diameter of the artery. It is observed that ShD

increases with increasing Re while ShD distribution ap-
preciably changes specifically at the throat, between the two
stenoses and at the downstream position. *e highest mass
transfer is experienced at the upstream, while the minimum
value occurs at the downstream of the stenoses. Note that
pulsatile flow increases the Sherwood number and that it is
much higher in the case of double stenosis.

*e iso-concentration lines considering pulsatile as well
as parabolic inlet conditions based on (δ1 � 0.2, δ2 � 0.4)

are displayed in Figures 13(a) and 13(b). *e iso-concen-
tration lines for parabolic and pulsatile inlets have different
distributions with multiple recirculation regions nearby the
downstream of the more severe stenosis in the pulsatile case.
*e general trend of the iso-concentration lines is that they
move away from the inlet region towards the upstream of the
stenosis and correspondingly impair the mass transport in
this region, while they adhere to the outline of the stenosis at
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both the upstream and downstream ends. At this region of
low wss (compare with Figure 9), cholesterol may tend to
accumulate and cause more severe stenosis.*is observation
conforms with Schneiderman et al. [30].

5. Conclusion

*e hemodynamics of the pulsatile flow and the transport of
mass in an arterial segment having a couple of stenoses have
been studied in relation to the distensibility of the vessel wall.
Predicted results show that the pulsatile inlet and double
stenoses with varying severity affect the flow characteristics
significantly, especially the development of the recirculation
zone and the peak value of the wall shear stress. It is also
predicted that the concentration at the throat (z� 19) is much
higher for pulsatile flow than the parabolic inlet condition.
Moreover, the pair of stenoses contributes much to the mass
concentration than the case of single stenosis. *e mass flux to
the arterial wall (Sherwood number) does increase with the
increasing values of Re and here too, mass flux increases with
the flow pulsatility and the presence of double stenoses. At the
downstream, cholesterol may tend to accumulate and causes
more severe stenosis. For severe stenoses, the peak value of the
wall shear stress is higher in the pulsatile flow case and the iso-
concentration lines showmore recirculation regions nearby the
downstream end and their lengths are longer. In conclusion,
the results presented agree well with physical observations and
provide an insight into the link between atherosclerosis, ste-
nosis, and the pattern of mass transport.

*ough the detailed knowledge of the dynamical vari-
ables is possible and provides useful elements, the mecha-
nism of influence of the haemodynamical factors in the
arterial disease is not clear.*e characteristics of the red cells
must be taken into consideration by including a shear-de-
pendent viscosity in the diffusion terms in time-dependent
flows highlighting the scope of further work. All these
mechanical and biochemical aspects related to the biofluid
dynamics are of some importance and demand further
investigation. A great deal of work is needed to establish the
rheological parameters for the physiological values and to
understand the connection of the issues with biological facts.
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