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Objective: Electrical impedance tomography (EIT) is a bedside tool for lung ventilation

and perfusion assessment. However, the ability for long-term monitoring diminished due

to interferences from clinical interventions and motion artifacts. The purpose of this study

is to investigate the feasibility of the discrete wavelet transform (DWT) to detect and

remove the common types of motion artifacts in thoracic EIT.

Methods: Baseline drifting, step-like and spike-like interferences were simulated to

mimic three common types of motion artifacts. The discrete wavelet decomposition was

employed to characterize those motion artifacts in different frequency levels with different

wavelet coefficients, and those motion artifacts were then attenuated by suppressing

the relevant wavelet coefficients. Further validation was conducted in two patients

when motion artifacts were introduced through pulsating mattress and deliberate body

movements. The db8 wavelet was used to decompose the contaminated signals into

several sublevels.

Results: In the simulation study, it was shown that, after being processed by DWT,

the signal consistency improved by 92.98% for baseline drifting, 97.83% for the

step-like artifact, and 62.83% for the spike-like artifact; the signal similarity improved

by 77.49% for baseline drifting, 73.47% for the step-like artifact, and 2.35% for

the spike-like artifact. Results from patient data demonstrated the EIT image errors

decreased by 89.24% (baseline drifting), 88.45% (step-like artifact), and 97.80% (spike-

like artifact), respectively; the data correlations between EIT images without artifacts and

the processed were all > 0.95.

Conclusion: This study found that DWT is a universal and effective tool to detect and

remove these motion artifacts.

Keywords: thoracic electrical impedance tomography, discrete wavelet transform, motion artifacts, chronic

obstructive pulmonary disease, acute respiratory distress syndrome
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INTRODUCTION

Electrical impedance tomography (EIT) images the internal
impedance distribution from current stimulations and voltage
measurements on the body surface (1). As it is a non-invasive
and radiation-free imaging modality that can be used in real-
time at the bedside, the medical community is very interested in
this technique and attempts to apply it into clinical practice, such
as monitoring lung ventilation of ICU patients (2), observing
the progress of brain injury (3), early detection of breast cancer
(4), etc. Among these medical applications, thoracic EIT for ICU
patients is one of the most active and promising areas (5), and
it focuses explicitly on several directions, including titration of
tidal volume or positive end-expiratory pressure, comparison
of various ventilation modes, evaluation of lung recruitability
and effect of recruitment maneuver, evaluation of suctioning
or rehabilitation, monitoring the ventilation distribution for
patients with spontaneous breathing, perioperative monitoring
and evaluation of regional lung function, etc. (6). In pulmonary
and critical care medicine, thoracic EIT is increasingly accepted
in hospitals because it can provide different measures of lung
function on a regional level and visualize their distribution
within the chest, which other established techniques cannot
substitute (7).

However, EIT is currently close to but not yet a routine
clinical examination method. One of the critical factors limiting
its daily use is that EIT might be inherently vulnerable to
the source of interference signals, especially to motion artifacts
in clinical settings (8). Motion artifacts caused by patients’
deliberatemovement, medical treatment or nursing are inevitable
and may often hinder acquiring, evaluating, and interpreting EIT
data (9).

FIGURE 1 | The common types of motion artifacts in clinical EIT. Left: baseline drifting, a slow-varying signal added to the EIT data, often generated by a source of

repetitive signals, e.g., an air suspension mattress. Middle and right: the step-like and spike-like artifacts, two types of abrupt varying artifacts, often caused by

patients’ deliberate body movements or nursing.

Specifically, for thoracic EIT, motion artifacts mainly include
three types: baseline drifting, step-like signal, and spike-like
signal. The baseline drifting is a slow-varying disturbance,
typically generated by repetitive interferences. The pulsating air
suspension mattress that repetitively inflates and deflates is a
common source of such artifact (9) (Figure 1, left). The step-
like signal is a frequent disturbance where the baseline of the
impedance signal changes suddenly due to the influence of
body movement (e.g., postural change) and does not return
to the previous level after the body movement (Figure 1,
middle). The spike-like signal is also a frequent disturbance
in which the baseline of the impedance signal does return
to the previous level after the movement (Figure 1, right).
However, to our knowledge, there is currently no study
focusing on eliminating motion artifacts in chest EIT for
clinical use.

Therefore, we aim to establish a universal signal processing
framework for removing these three common types of clinical
motion artifacts for chest EIT. The present study introduced
the engineering field’s discrete wavelet transform (DWT)
into our framework and validated it with simulation and
patient data.

METHODS

In this section, we introduced the EIT imaging formula and then
modeled EIT measured data, which were corrupted by motion
artifacts, with DWT; the motion artifacts were subsequently
removed by processing the coefficients of DWT. Our framework
of motion artifact removal was finally validated with simulation
and patient data.
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FIGURE 2 | The DWT scheme for EIT motion artifact removal. In the DWT decomposition, the noisy EIT signal is decomposed into a slow-varying signal a1 (n)and a

fast-varying signal d1(n) at the first level. This processing is repeated with respect to ai (n) until those three types of motion artifacts can be portrayed by ai (n) and di (n).

In the DWT rebuild, we first set these ai (n) and di (n) corresponding to motion artifacts to be zeros and then rebuild the EIT signal using the remaining ai (n) and di (n).

The reconstructed EIT signal would eliminate the motion artifacts.

EIT Imaging Formula
In EIT, 16 electrodes are usually employed to excite the currents
and measure the voltages. We used the “adjacent excitation”
mode in this study so that for each frame x, 16 × 13 = 208 data
could be measured. Namely, there are 208 channels of EIT data
against time. Next, we can present dynamic and linear EIT image
reconstruction by the following formula:

y = B(xc − xref )

where xc denotes the voltage measurements in the current
frame while xref represents the measurements of the reference
frame. y reflects the impedance variation distribution between
the current frame and the reference frame. B is the inversion of
sensitivity matrix (10).

Modeling Motion Artifacts With DWT
Given that xmeasured(n) is one channel of EIT data affected by
motion artifacts, we can represent it as (11–13):

xmeasured(n) = xbreathing(n)+ xmotion(n)

where xbreathing(n) is boundary voltage variation from breathings
and xmotion(n) is the motion-artifact component.

The DWT processing is shown in Figure 2. It is composed
of two parts: decomposition and rebuild (12, 14, 15). In

decomposition processing, using the so-called wavelet functions
and the scaling functions, DWT decomposes the noisy EIT
signal (corrupted by motion artifacts) into a relatively slow-
varying signal a1(n) (approximation coefficients) and a fast-
varying signal (detail coefficients) at the first step. Theoretically,
the obtained signals often represent a type of motion artifact. e.g.,
d1(n) may reflect the step-like artifacts. Next, we continued to
decompose a1(n) to obtain the second-level slow-varying signal
a2(n)and the fast-varying signal d2(n). We repeat decomposing
the slow-varying signal ai(n) at each level until all three types
of motion artifacts are correctly portrayed by ai(n) or di(n). In
addition, as the baseline drifting can be considered a slow-varying
signal, it would be depicted by as(n).

Conversely, in the rebuild processing, we constructed the EIT
signals with a bunch of ai(n) and di(n), also using the wavelet
function and the scaling function. Nevertheless, we need to set
ai(n) and di(n) in relation to the corresponding motion artifacts
to be zeros before rebuild. As such, those three types of motion
artifacts in EIT signals can be appropriately removed.

In this study, we empirically selected the db8 function as
mother wavelet by comprison, and the mathematical scheme is
described in detail in the Supplementary Material.

Simulation Validation
To evaluate the performance of the proposed framework for
motion artifact removal, we first carried out experiments
using simulated data with Matlab 2016b (MathWorks, Inc.,
Natick, USA).
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FIGURE 3 | Generation of the simulation data. The first row shows simulated respiratory and cardiac signals, the second row the simulated baseline drifting artifact,

the third row the simulated step-like artifact, the last row the simulated spike-like artifact.

We generate a 1-D sine wave signal containing typical
oscillations to simulate EIT breathing oscillations with additional
Gaussian noise:

xsimulate(t) =
1

2

2
∑

i=1

µi sin(ωit)+ λσ (t)

where ω = 2π f , µ represents the oscillation amplitude of the
sine wave, σ (t) denotes Gaussian white noise, λ represents the
amplitude of the Gaussian white noise, and the amplitude range
for xsimulate(t) is from −1 to 1. Here we include two sine waves
in the mixed signal: (1) respiratory signal, f = 0.25Hz, µ = 0.9;
(2) cardiac signal, f = 1Hz, µ = 0.2. The sampling frequency
of the simulated signal was set to 20Hz and the length was
5,000 samples.

Finally, three time-series data were mixed into xsimulate, which
mimics the three forms of motion artifacts: baseline drifting,
step-like signals and spike-like signals (As shown in Figure 3).

After the DWT rebuild, evaluations were carried out to
estimate the agreement between the processed signal y(t) and
the original simulated signal without motion artifacts x(t). The
parameters percent root difference (PRD) and coefficient of
determination (R2) were defined as follows (16). PRD evaluates
the consistency between x(t) and y(t); The greater PRD is, the
smaller the consistency is. R2 evaluates the similarity between x(t)
and y(t); the largerR2 means the greater similarity.

PRD = 100%×

√

√

√

√

√

N
∑

i=1

(x(ti)− y(ti))
2

(

N
∑

i=1

x2(ti)

)−1

R2 =

N
∑

i=1

(

y(ti)− x(t)
)2

N
∑

i=1

(

x(ti)− x(t)
)2
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FIGURE 4 | The processed signals in simulation using DWT. The first row shows the result about baseline drifting removal, the second row about step-like artifact

removal, the last row about spike-like artifact removal.

TABLE 1 | The evaluation parameters before and after being processed in the

simulation.

PRD R2

Drifting 1.8653 4.3202

Drifting-processed 0.1310 0.9726

Step-like artifact 1.6701 3.7737

Step-processed 0.0362 1.0011

Spike-like artifact 0.1578 1.0151

Spike-processed 0.0586 0.9913

Patient Data Validation
The clinical data were acquired in the pulmonary and critical
care department of Xijing Hospital, Fourth Military Medical
University, Xi’an, China. This study was approved by the
human research ethics committee of the Fourth Military
Medical University (KY20203282-1), and written informed
consent was obtained from patients’ nearest relatives. In this
scenario, two male patients were included. An EIT electrode
belt was attached around the thorax in the fourth intercostal
space. The EIT system (PulmoVista 500, Draeger Medical,
Luebeck, Germany) was used for recording at a sampling
rate of 20Hz. Image reconstruction was performed using the
Graz consensus reconstruction algorithm for EIT (GREIT)
algorithm (17).

Patient 1 had moderate acute respiratory distress syndrome.
He was mechanically ventilated under volume-control mode. In
the EIT data from Patient 1, baseline drifting by a pulsating
mattress and the typical step-like artifacts were observed.

Patient 2, with moderate chronic obstructive pulmonary
disease, undertook pulmonary rehabilitation. In the EIT data
from Patient 2, we found the typical spike-like artifacts caused
by his deliberate movements.

After the DWT rebuild, the EIT images before and after being
processed were quantitively evaluated for similarity as follows,

Imageerror =

∑

|Ai − Bi|
∑

|Ri|

where A and B represent two different EIT images and R denotes
the EIT image reconstructed using EIT data with no artifacts. The
smaller Imageerror is, the more similar the two images are.

Imagecorr =

∑

m

∑

n

(

Amn − Ā
) (

Bmn − B̄
)

√

(

∑

m

∑

n

(

Amn − Ā
)2
)(

∑

m

∑

n

(

Bmn − B̄
)2
)

where A and B represent two different EIT images; Amn and Bmn

denote the pixel values of mth row and nth column in the image
A and B, respectively; Ā and B̄ are the mean values of an image A
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FIGURE 5 | The DWT processing results for baseline drifting removal in patient data. The first row shows the DWT processing result in EIT measured data. The blue

line represents the drifting artifact in typical patient data, the red line the corrected data without drifting. The second row includes EIT images without the artifact, with

the artifact, and after being processed.

and B, respectively. The Imagecorr ranges from −1 to 1.1 means
the complete positive correlation.

RESULTS

Simulation Validation
The processing results for the simulated data are shown in
Figure 4 and Table 1. In baseline detrending, approximation
coefficients of Level 6 were excluded in the signal rebuild. In step-
like signal correction, only detail coefficients of Level 1 were used
to identify the exact location of abrupt changes. Finally, the detail
coefficients of Level 1 to the Level 4 were included to perform
spike removal. As shown in Figure 4, all three types of simulated
artifacts were effectively restrained after being processed. The
proposed framework yielded an improvement in signal quality in
all three cases. Specifically, it can be demonstrated that the data
consistency evaluated by PRD for the drifting removal improved
by 92.98%, for the step-like artifact by 97.83%, and for the spike-
like artifact by 62.86%; the data similarity assessed by R2 for the
drifting removal improved by 77.49%, for the step-like artifact by
73.47%, and for the spike-like artifact by 2.35%.

Patient Data Validation
Figure 5 shows the processed results of baseline drifting removal.
We can observe the significant artifacts caused by baseline
drifting from the boundary voltages and EIT images. After being

processed, the artifacts in the boundary voltages and EIT images
are notably reduced. In addition, due to the influence of baseline
drifting (the purple region in EIT images), we cannot identify
whether the ARDS patient’s regional lung ventilation distribution
only includes the ventral side, i.e., whether the patient’s lungs are
only ventilated on the ventral side. Nevertheless, we can confirm
this after EIT data was processed.

Similarly, Figure 6 and 7 show step- and spike-like artifact
removal processing, with improvement in the averaged
waveform of all channels of EIT data and reconstructed EIT
images, respectively. As expected, both measurements and
images were considerably improved by restoring intrinsic
ventilation distribution.

The evaluation parameters for EIT images before and after
being processed are listed in Table 2. The image errors decreased
by 89.24% (baseline drifting), 88.45% (Step-like artifacts),
and 97.80% (Spike-like artifacts). After being processed, the
correlations between EIT images without artifacts and the
processed ones were all > 0.95.

DISCUSSION

Thoracic EIT provides unique information on regional lung
ventilation and aeration changes of patients for clinicians at
the bedside. However, frequent movement interferences in
clinical environments would inevitably compromise EIT data
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FIGURE 6 | The DWT processing results for step-like artifact removal in patient data. The first row shows the DWT processing result in EIT measured data. The blue

line represents the step-like artifact in typical patient data, the red line the corrected data without the step-like artifact. The second row includes EIT images without

the artifact, with the artifact, and after being processed.

and consequently affect the assessment and interpretation of
pulmonary physiological or pathological status. In this study, for
three common types of motion artifacts in chest EIT, we, for the
first time, proposed to utilize the DWT as a universal framework
to remove them. The method was evaluated with both simulated
and real patient data. Reduction of ∼90% errors in most of the
tested scenarios suggested that the proposed method would be
potentially applicable and helpful in clinical practice.

The underlying reason for the DWT having a promise
to detect and remove these body movement interferences in
thoracic EIT is that the motion artifacts may have distinct
features in amplitude and duration from the normal ventilation
EIT signal. This difference is further highlighted in the wavelet
domain due to the inherent localization property of the DWT.
When performing DWT to decompose a specific channel of
EIT signal into sublevels, a segment of approximation wavelet
coefficients (corresponding to lower frequency signals) and
several segments of detail wavelet coefficients (corresponding to
higher frequency signals) were finally obtained. Furthermore,
it was shown that those three types of motion artifacts were
on the different sublevels. Namely, those motion artifacts
could be portrayed and rebuilt using the related sublevels
of wavelet coefficients. Therefore, we may attenuate them
efficiently by suppressing the corresponding wavelet coefficients
or abandoning them after detecting them. In fact, due to
DWT’s inherent advantages, it had not only been suggested for

removing the motion artifacts for brain EIT (18) but also for
other biosignals like functional near-infrared spectroscopy (11),
cardiac electrophysiology (19), magnetocardiography (14), etc.

Theoretically, those motion interferences may change the
external pressure exerted on the EIT electrodes and affect both
the current injection and voltage measurement through these
electrodes. It would eventually lead to changes in electrode-
skin contact impedance. Currently, there are two directions of
methods addressing this issue.

Several researchers attempted to improve EIT imaging
algorithms using complete electrode models. Their ideas are to
separate contact impedance changes from image reconstruction
and reduce their effects on specific elements in the finite
element models (20–22). These proposed methods to eliminate
contact impedance artifacts might also improve clinical data
quality affected by body movements. Also, some researchers
may consider updating the EIT reference data when motion
artifacts occur. They used synthetic reference data to replace the
actual EIT reference state to cancel those artifacts to a certain
extent (23).

Another direction to solve the issue is signal processing
methods on biosignals, which is the path we chose in this study.
The reason for choosing the DWT method in this study is that
DWT can portray three different body motion artifact signals
simultaneously in different wavelet domains; by one discrete
wavelet transform, the characteristics of three types of motion
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FIGURE 7 | The DWT processing results for spike-like artifact removal in patient data. The first row shows the DWT processing result in EIT measured data. The blue

line represents the spike-like artifact in typical patient data, the red line the corrected data without the spike-like artifact. The second row includes EIT images without

the artifact, with the artifact, and after being processed.

artifact signals can be presented simultaneously; furthermore,
by attenuating these wavelet coefficients that respond to those
artifacts and reconstructing the original signal, the effects of
those artifact signals can be reduced simultaneously. In short, one
DWT can filter out three kinds of motion artifacts at the same
time. Besides the wavelet-based approaches, Wiener filtering has
also been suggested for removing motion artifacts in fNIRS
if prior knowledge of the original signal’s power spectrum is
known (24). Kalman filtering has also been applied to fNIRS
and photoplethysmography with a prior assumption on the
distribution of noise that models the artifacts (25). Scholkmann
et al. also proposed an ad hoc algorithm in fNIRS, in which the
moving standard deviation scheme was used to detect motion
artifacts and spline interpolation was used to model and correct
them (16). Specifically, the signal processing method based on
sparse and redundancy representation, e.g., robust PCA,might be
a new direction to address the issue if we canmodel the measured
data as a low-rank matrix (26).

This study has several limitations. First, real-time processing
by DWTwas not considered, and all the analyses were performed
offline. The reason is that the purpose of this preliminary study
mainly focused on the feasibility of DWT to detect and remove
the motion artifacts. From the present results, we would continue
this work in an attempt to perform DWT in real-time. Second,
in this study, we dealt with only one type of movement artifact
at a time. Therefore, it is necessary to confirm whether the
DWT method could simultaneously detect and attenuate or

TABLE 2 | The evaluation parameters before and after being processed in the

patient data validation.

Error Correlation

Baseline drifting Data w. vs. w/o artifacts 1.58 0.45

Data w/o artifact vs. DWT 0.17 0.99

Step-like artifacts Data w. vs. w/o artifacts 0.94 0.23

Data w/o artifact vs. DWT 0.10 0.99

Spike-like artifacts Data w. vs. w/o artifacts 11.57 0.09

Data w/o artifact vs. DWT 0.25 0.96

remove three types of movement artifacts. Third, except for the
pulsatingmattress, the sources of interference from other nursing
and monitoring devices were not considered, e.g., impedance
pneumography, continuous cardiac output monitor. Therefore,
we need to determine whether these interferences could be
reduced or removed using the DWT in future studies.

CONCLUSION

Thoracic EIT in clinical practices may often be disturbed by
different body movements. The typical artifacts caused by body
movements include baseline drifting (by a pulsating mattress),
step-like and spike-like impedance signals. This study found that
DWT is a universal and effective tool to detect and remove or
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attenuate these motion artifacts. In future studies, simultaneous
processing of those three types of motion artifacts in real-time
needs further consideration.
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