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Synthesis, optical imaging, and 
absorption spectroscopy data for 
179072 metal oxides
Helge S. Stein, Edwin Soedarmadji, Paul F. Newhouse, Dan Guevarra & John M. Gregoire  

Optical absorption spectroscopy is an important materials characterization for applications such as 
solar energy generation. This data descriptor describes the to date (Dec 2018) largest publicly available 
curated materials science dataset for near infrared to near UV (UV-Vis) light absorbance, composition 
and processing properties of metal oxides. By supplying the complete synthesis and processing history 
of each of the 179072 samples from 99965 unique compositions we believe the dataset will enable the 
community to develop predictive models for materials, such as prediction of optical properties based 
on composition and processing, and ultimately serve as a benchmark dataset for continued integration 
of machine learning in materials science. the dataset is also a resource for identifying materials 
composition and synthesis to attain specific optical properties.

Background & Summary
The availability of scientific database systems1, fast measurement instruments2 and network infrastructures enable 
scientists to assemble ultra large datasets that enable to go beyond the answering of some original research ques-
tion and gain fundamentally new knowledge via learning on all data collected3. Currently, fields such as organic 
chemistry4, drug design5–7, ab-initio materials science8, and biology gain rapid pace through the availability of 
large datasets that enable predictive machine learning models but experimental materials science lacks such ultra 
large datasets (with the notable exception of the High-throughput Experimental Materials Database - HTEM1) as 
different synthesis procedures, processing conditions and analyses effectively block the assembly due to prohib-
itive inconsistencies in the data across experimental runs. Within the Joint Center for Artificial Photosynthesis, 
exploration of metal oxides for solar fuels generation included high throughput synthesis and optical characteri-
zation with tracking of synthesis and processing parameters. The exploration of the chemical space offered by the 
periodic table was not randomly or systematically explored as compositions spaces were chosen based on specific 
research directions.

Recently we published an algorithm paper that allows us to predict UV-Vis data based on a sample image9 via 
a neural net machine learning model that effectively hyper scales the low energy resolution RGB image to optical 
absorbance values at 220 energies between 1.32 to 3.2 eV. The herewith published dataset contains all images and 
spectra used for this model.

This dataset10 will enable materials scientists to continue developing algorithms that build upon recent 
advances including finding embeddings for materials composition11,12, predicting optical properties9 from com-
position, linking experimental findings to theory databases8,13, and extracting band gap energy from UV-Vis 
spectra14,15.

By making the dataset available as a hdf516 container we aim to make the dataset more amendable for scien-
tists who are not fluent in database query languages as all data is organized in tabular format where every entry 
corresponds to the same sample. In this manuscript we will give some background about how the dataset was 
acquired and is structured.
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Methods
These methods are expanded versions of descriptions in our related work, which is referenced below for each 
technique. All samples in this dataset were synthesized via ink-jet printing of precursor salts with subsequent 
thermal processing to form metal oxides17. Mostly this synthesis involves printing metal nitrate salts on a glucose 
coated FTO/Glass substrate. The general assumption is that any chosen metal precursor salt, e.g. Mn(NO3)2, will 
thermally decompose under oxidizing conditions into a metal oxide, e.g. Mn oxide, via removal of the precursor’s 
anion as a gas, e.g. NO2. A typical thermal processing is annealing at 500 °C for 1 h in air or synthetic air. Some 
compositions, especially pure elemental oxides, are duplicated many times in the dataset, which can be readily 
identified via the composition table.

Sample image generation. All sample images were taken using a commercially-available consumer flatbed 
scanner (EPSON Perfection V600) in reflection configuration at 1200 dpi corresponding to a rate of 2.0 cm2 s−1 
or 0.019 s per sample as described elsewhere18. We assumed no lamp drift over time as the scanner is equipped 
with LED light sources. The scanner takes an images of a complete plate that is diced into 2.1 mm × 2.1 mm or 
101 × 101 pixels with 24 bit color depth. Dicing of images was done semi automatically as scientists told the algo-
rithm where fiducials for alignment were subsequent to scanning. To reduce the data size all images were rescaled 
to 64 × 64 pixels via the python image library (pillow) with anti-aliasing. Sample images typically have a colored 
region in the center corresponding to the printed material surrounded by grey area that is the background signal 
of the glass in the scanner bed. Some images appear darker at the edge of the printed material due to the so-called 
coffee ring that forms during drying of the printed solutions.

UV-Vis spectra measurement. All optical absorption spectra were measured using an on-the-fly scanning 
UV-Vis dual-sphere spectrometer as described elsewhere19. Since the spectral range over which the data was 
acquired varied, we interpolated on the smallest common energy range, 1.31 to 3.1 eV, which we discretize into 
220 photon energies. We report fractional optical absorbance, which is the product of the absorption coefficient 
α and effective material thickness L, calculated via measurements of the fractional total reflectance R and total 
transmittance T:

α = −
−

.L T
R

ln
1

composition calculation. All samples are labelled with their intended metals composition. Various quality 
control methods, which are not annotated in the dataset, were employed to omit samples whose composition is 
believed to differ from the intended composition. These methods include optical inspection and X-ray fluores-
cence measurements of the elemental loadings. The oxygen concentration results from thermal processing and is 
unknown. To enable researchers to study thickness effects of materials the loading as well as atomic fractions are 
reported. The total loading is the sum of loadings for each sample from which the atomic fractions were calcu-
lated. Loadings are calculated from ink concentration and known deposited volumes.

code availability
Custom code for handling the dataset is available at https://github.com/helgestein/materials-images-spectra/. 
This python code enables users to easily download the dataset, pull specific or random images and accompanying 
spectra as well as processing and composition data. The code is intended to enable easy exploration of the dataset 
and to provide templates for use in machine learning models. The code requires python version 3.6.4 or higher 
with the following packages: h5py > = 2.7.1, numpy >  = 1.15.2, tqdm >  = 4.23.0.

Fig. 1 Data layout comparison between plate and data container. The logical layout is shown in (a) and the hdf5 
container layout is shown in (b). Each plate can contain one or multiple composition spaces where each sample 
is uniquely defined by its sample ID, and plate ID pair. The logical layout is flattened in the hdf5 container such 
that all samples are placed along a single index.
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Data records
During preparation of the hdf5 container we used the h5py library version 2.7.1 on a Windows 10 workstation. 
Images and spectra are compressed using the gzip option during creation of the file. The container has several 
attributes (see Fig. 1) that will be briefly described and are summarized in Table 1. The largest attribute in terms 
of data amount is the images that are 64 × 64 pixel containing each 3 colors corresponding to red, green, blue. All 
color values are floating point values between 0 and 1. In the spectrum dataset all spectra are placed in the same 
order as images. The composition of each sample is stored in the composition dataset as an array of concentra-
tions for 42 elements in the dataset (most concentration values are zero). It should be noted that not all compo-
sitions sum to unity due to rounding error. The element labels (loadings and normalized atomic fractions) are 
stored separately as a string dataset in the “loadings” and “atfrac” datasets. The loading array contains 1 additional 
dimension for the total loading. Tracking indices for each library plate and each sample within a plate are stored 
in the correspondingly named attributes. Other information such as the anneal conditions are described in the 
last 5 rows of Table 1.

Dataset Content Description Data Range Data Size Physical Units Method

Images Sample images 0–1 for every channel (64,64,3,180902) Color values for RGB platebead scanner

spectra fractional optical absorbance spectrum 0–ca. 0.5 (220,180902) fractional absorb. 
coefficient

dual-sphere optical 
spectrometer

loadings loading of each element 0–1 (43,180902) nmol calculated from loading 
and ink concentration

atfrac Atomic fractions 0–1 (42,180902) fractions calculated from loadings

plate_id Identifier index for plate integer (1,180902) none assigned

sample_id Identifier index for each sample integer (1,180902) none assigned

energy_eV Energy axis for spectra float (220,1) Electron Volt (eV) measured by spectrometer

loading_keys Identifier index for loading element String starting with 
Element String list 180902 entries Element names assigned

atfrac_keys Identifier index for loading element String starting with 
Element String list 180902 entries Element names assigned

substrate Substrate used string String list 108 entries none assigned

plate_id_anneal Maximum temperature during anneal integer (1,108) none assigned

max_temperature Maximum temperature the plate was 
annealed at float (1,108) Celcius anneal recipe

soak_time_at_max_
temperature Time at maximum temperature float (1,108) minutes anneal recipe

nominal_pressure Nominal pressure at maximum 
temperature float (1,108) Torr anneal recipe

gas_composition_string Composition of the annealing gas string 108 Strings none anneal recipe

intended_element Element intended to be added during 
anneal string 108 Strings none anneal recipe

Table 1. Summary of all attributes in the hdf5 container accompanying this manuscript. All attributes contain 
arrays of the tuple shape given in the data size column.

Fig. 2 Comparison of materials images and their spectra. (a) Example images from the dataset with their 
corresponding (b) fractional optical absorbance spectra. The energy range for all spectra is 1.32 eV (left end) to 
3.1 eV (right end).
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There are 180902 discrete samples, 1830 of which are “reference” samples where no material was deposited 
on the substrate, leaving 179072 materials samples. Due to duplication of compositions to enable exploration 
of different synthesis conditions, provide internal standards, and evaluate reproducibility, various compositions 
appear multiple times in the database, sometimes with variation in the synthesis conditions. Rounding to the 
nearest 1 at.% (although composition intervals are typically 5 at.%), there are 99965 unique compositions. The 
total number of plates is 108, each containing about 2000 samples.

technical Validation
Each sample in the dataset is part of a library plate that was visually inspected for printing quality during the 
materials synthesis phase. Detailed validation of the composition and other properties of individual samples 
have been performed on a small subset of the samples, with the only present availability of this data being journal 
publications describing specific libraries14,18,20–22. The array of materials in a library plate are indexed with sample 
location determined in each measurement using printed fiducials.

Standard data analysis software like the open source hdf5 library for python (https://www.h5py.org/) can read 
the container.

Example images and corresponding spectra are shown in Fig. 2.
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