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OPEN Synthesis, optical imaging, and
pataDescripTor | absorption spectroscopy data for
179072 metal oxides
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solar energy generation. This data descriptor describes the to date (Dec 2018) largest publicly available
curated materials science dataset for near infrared to near UV (UV-Vis) light absorbance, composition
and processing properties of metal oxides. By supplying the complete synthesis and processing history
of each of the 179072 samples from 99965 unique compositions we believe the dataset will enable the
community to develop predictive models for materials, such as prediction of optical properties based
on composition and processing, and ultimately serve as a benchmark dataset for continued integration
of machine learning in materials science. The dataset is also a resource for identifying materials
composition and synthesis to attain specific optical properties.

: Background & Summary
: The availability of scientific database systems’, fast measurement instruments? and network infrastructures enable
. scientists to assemble ultra large datasets that enable to go beyond the answering of some original research ques-
: tion and gain fundamentally new knowledge via learning on all data collected®. Currently, fields such as organic
: chemistry*, drug design®~’, ab-initio materials science®, and biology gain rapid pace through the availability of
- large datasets that enable predictive machine learning models but experimental materials science lacks such ultra
. large datasets (with the notable exception of the High-throughput Experimental Materials Database - HTEM') as
: different synthesis procedures, processing conditions and analyses effectively block the assembly due to prohib-
itive inconsistencies in the data across experimental runs. Within the Joint Center for Artificial Photosynthesis,
exploration of metal oxides for solar fuels generation included high throughput synthesis and optical characteri-
. zation with tracking of synthesis and processing parameters. The exploration of the chemical space offered by the
. periodic table was not randomly or systematically explored as compositions spaces were chosen based on specific
research directions.
Recently we published an algorithm paper that allows us to predict UV-Vis data based on a sample image® via
a neural net machine learning model that effectively hyper scales the low energy resolution RGB image to optical
absorbance values at 220 energies between 1.32 to 3.2 eV. The herewith published dataset contains all images and
spectra used for this model.
This dataset'® will enable materials scientists to continue developing algorithms that build upon recent
. advances including finding embeddings for materials composition'"'2, predicting optical properties® from com-
© position, linking experimental findings to theory databases®!?, and extracting band gap energy from UV-Vis
spectra'®15,
: By making the dataset available as a hdf5'° container we aim to make the dataset more amendable for scien-
. tists who are not fluent in database query languages as all data is organized in tabular format where every entry
corresponds to the same sample. In this manuscript we will give some background about how the dataset was
acquired and is structured.
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Fig. 1 Data layout comparison between plate and data container. The logical layout is shown in (a) and the hdf5
container layout is shown in (b). Each plate can contain one or multiple composition spaces where each sample
is uniquely defined by its sample ID, and plate ID pair. The logical layout is flattened in the hdf5 container such
that all samples are placed along a single index.

Methods

These methods are expanded versions of descriptions in our related work, which is referenced below for each
technique. All samples in this dataset were synthesized via ink-jet printing of precursor salts with subsequent
thermal processing to form metal oxides'”. Mostly this synthesis involves printing metal nitrate salts on a glucose
coated FTO/Glass substrate. The general assumption is that any chosen metal precursor salt, e.g. Mn(NO3),, will
thermally decompose under oxidizing conditions into a metal oxide, e.g. Mn oxide, via removal of the precursor’s
anion as a gas, e.g. NO,. A typical thermal processing is annealing at 500 °C for 1h in air or synthetic air. Some
compositions, especially pure elemental oxides, are duplicated many times in the dataset, which can be readily
identified via the composition table.

Sample image generation. All sample images were taken using a commercially-available consumer flatbed
scanner (EPSON Perfection V600) in reflection configuration at 1200 dpi corresponding to a rate of 2.0 cm?s™!
or 0.019s per sample as described elsewhere'®. We assumed no lamp drift over time as the scanner is equipped
with LED light sources. The scanner takes an images of a complete plate that is diced into 2.1 mm X 2.1 mm or
101 x 101 pixels with 24 bit color depth. Dicing of images was done semi automatically as scientists told the algo-
rithm where fiducials for alignment were subsequent to scanning. To reduce the data size all images were rescaled
to 64 x 64 pixels via the python image library (pillow) with anti-aliasing. Sample images typically have a colored
region in the center corresponding to the printed material surrounded by grey area that is the background signal
of the glass in the scanner bed. Some images appear darker at the edge of the printed material due to the so-called
coffee ring that forms during drying of the printed solutions.

UV-Vis spectra measurement. All optical absorption spectra were measured using an on-the-fly scanning
UV-Vis dual-sphere spectrometer as described elsewhere!?. Since the spectral range over which the data was
acquired varied, we interpolated on the smallest common energy range, 1.31 to 3.1 eV, which we discretize into
220 photon energies. We report fractional optical absorbance, which is the product of the absorption coefficient
o and effective material thickness L, calculated via measurements of the fractional total reflectance R and total
transmittance T:

al = —In

1-R’

Composition calculation.  All samples are labelled with their intended metals composition. Various quality
control methods, which are not annotated in the dataset, were employed to omit samples whose composition is
believed to differ from the intended composition. These methods include optical inspection and X-ray fluores-
cence measurements of the elemental loadings. The oxygen concentration results from thermal processing and is
unknown. To enable researchers to study thickness effects of materials the loading as well as atomic fractions are
reported. The total loading is the sum of loadings for each sample from which the atomic fractions were calcu-
lated. Loadings are calculated from ink concentration and known deposited volumes.

Code Availability

Custom code for handling the dataset is available at https://github.com/helgestein/materials-images-spectra/.
This python code enables users to easily download the dataset, pull specific or random images and accompanying
spectra as well as processing and composition data. The code is intended to enable easy exploration of the dataset
and to provide templates for use in machine learning models. The code requires python version 3.6.4 or higher
with the following packages: h5py > =2.7.1, numpy > =1.15.2, tqdm > =4.23.0.
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Dataset Content Description Data Range Data Size Physical Units Method

Images Sample images 0-1 for every channel | (64,64,3,180902) Color values for RGB | platebead scanner

spectra fractional optical absorbance spectrum | 0-ca. 0.5 (220,180902) fractwpal absord. dual-sphere optical
coefficient spectrometer

loadings loading of each element 0-1 (43,180902) nmol calculated from loading

and ink concentration

atfrac Atomic fractions 0-1 (42,180902) fractions calculated from loadings

plate_id Identifier index for plate integer (1,180902) none assigned

sample_id Identifier index for each sample integer (1,180902) none assigned

energy_eV Energy axis for spectra float (220,1) Electron Volt (eV) measured by spectrometer

loading_keys Identifier index for loading element %§2$%rsltartlng with String list 180902 entries | Element names assigned

atfrac_keys Identifier index for loading element %tlx;rlllgersltartmg with String list 180902 entries | Element names assigned

substrate Substrate used string String list 108 entries none assigned

plate_id_anneal Maximum temperature during anneal | integer (1,108) none assigned

max_temperature Maximum temperature the plate was float (1,108) Celcius anneal recipe

annealed at

soak_time_at_max_ Time at maximum temperature float (1,108) minutes anneal recipe

temperature

nominal_pressure Nominal pressure at maximum float (1,108) Torr anneal recipe

temperature
gas_composition_string | Composition of the annealing gas string 108 Strings none anneal recipe
intended_element f’llienn;:f tintended to be added during string 108 Strings none anneal recipe

Table 1. Summary of all attributes in the hdf5 container accompanying this manuscript. All attributes contain
arrays of the tuple shape given in the data size column.
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Fig. 2 Comparison of materials images and their spectra. (a) Example images from the dataset with their
corresponding (b) fractional optical absorbance spectra. The energy range for all spectra is 1.32 eV (left end) to
3.1eV (right end).

Data Records

During preparation of the hdf5 container we used the h5py library version 2.7.1 on a Windows 10 workstation.
Images and spectra are compressed using the gzip option during creation of the file. The container has several
attributes (see Fig. 1) that will be briefly described and are summarized in Table 1. The largest attribute in terms
of data amount is the images that are 64 x 64 pixel containing each 3 colors corresponding to red, green, blue. All
color values are floating point values between 0 and 1. In the spectrum dataset all spectra are placed in the same
order as images. The composition of each sample is stored in the composition dataset as an array of concentra-
tions for 42 elements in the dataset (most concentration values are zero). It should be noted that not all compo-
sitions sum to unity due to rounding error. The element labels (loadings and normalized atomic fractions) are
stored separately as a string dataset in the “loadings” and “atfrac” datasets. The loading array contains 1 additional
dimension for the total loading. Tracking indices for each library plate and each sample within a plate are stored
in the correspondingly named attributes. Other information such as the anneal conditions are described in the
last 5 rows of Table 1.
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There are 180902 discrete samples, 1830 of which are “reference” samples where no material was deposited
on the substrate, leaving 179072 materials samples. Due to duplication of compositions to enable exploration
of different synthesis conditions, provide internal standards, and evaluate reproducibility, various compositions
appear multiple times in the database, sometimes with variation in the synthesis conditions. Rounding to the
nearest 1at.% (although composition intervals are typically 5at.%), there are 99965 unique compositions. The
total number of plates is 108, each containing about 2000 samples.

Technical Validation
Each sample in the dataset is part of a library plate that was visually inspected for printing quality during the
materials synthesis phase. Detailed validation of the composition and other properties of individual samples
have been performed on a small subset of the samples, with the only present availability of this data being journal
publications describing specific libraries'*!#20-22, The array of materials in a library plate are indexed with sample
location determined in each measurement using printed fiducials.

Standard data analysis software like the open source hdf5 library for python (https://www.h5py.org/) can read
the container.

Example images and corresponding spectra are shown in Fig. 2.
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