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A B S T R A C T   

Tumor-infiltrating immune cells (TICs) play a central role in the tumor microenvironment, which 
can reflect the host anti-tumor immune response. However, few studies have explored TICs in 
predicting the prognosis of lung adenocarcinoma (LUAD). In our study, we enrolled 2470 LUAD 
patients from TCGA and GEO databases, and the normalized enrichment scores for 65 immune 
cell types were quantified for each patient. An immune-related risk score (IRRS) was built on the 
basis of 17 selected TICs using LASSO regression analysis, and the results showed that high-risk 
patients were correlated with shorter survival time for the LUAD cohorts. Correlation analyses 
between IRRS and clinical characteristics were also evaluated to validate the clinical use of IRRS. 
In addition, we analyzed the differences in the distribution of immune cell infiltration and 
immunoregulatory gene expression, which may facilitate individual immunotherapy. Based on 
the above result, we conclude that IRRS can act as a powerful predictor for risk stratification and 
prognosis prediction, and may facilitate the decision-making process for LUAD patients.   

1. Introduction 

Lung cancer is the leading cause of cancer-related mortality worldwide, with lung adenocarcinoma (LUAD) being the most 
prevalent subtype of the disease [1–3]. Despite an overall decline in mortality during the last few years, it remains a major threat to 
human health [4,5]. Nowadays, surgery, chemotherapy, targeted therapy, and immunotherapy are the main treatment options for 
LUAD, and the prognosis remains poor for most patients [6–10]. With rapidly evolving next-generation sequencing technologies, it is 
necessary to stratify LUAD patients more accurately to better guide treatment strategies and improve prognosis [11]. 

The tumor immune microenvironment (TIME) is an extremely complex assembly of various elements that include tumor cells, 
immune cells, stromal, and extracellular components [12,13]. Currently, growing evidence suggest that TIME plays a key role in LUAD 
development [14–16]. Tumor-infiltrating lymphocytes and tumor-associated macrophages, as easily available biomarkers in TIME, 
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have been shown to be associated with cancer prognosis [17–19]. Furthermore, more and more studies suggest that the presence of 
tumor-infiltrating immune cells (TICs) within TIME can inhibit or promote cancer growth [20–23]. Therefore, an in-depth analysis of 
the TIME may provide more reliable prognostic biomarkers for patients with LUAD. 

Currently, many studies have examined the impact of TICs in LUAD development. Dai found that the hypoxia-related prognostic 
signature can predict immune cell infiltration and prognosis in LUAD patients [24]. Zuo established an immune cell characteristic 
score, which is a prognostic indicator for patients and can be widely applied in future clinical settings [25]. However, the small sample 
size and a low number of immune cell signatures may limit its statistical accuracy and overall reliability. Therefore, further studies 
using larger sample sizes and more comprehensive immune cell subtypes are still required. 

In the present study, we focus on evaluating the features of TME in patients with LUAD, and further analyzed its immune activity 
and prognosis. Immune cell signatures were derived from various published literature [26–35]. 65 immune cells were included, and 17 
immune cells correlated with the prognosis of LUAD were identified. Finally, a novel immune cell infiltration-based model was 
constructed and further examined in a validation set and an independent test set. 

2. Materials and methods 

2.1. Data processing 

Messenger RNA (mRNA) profiling of LUAD patients were acquired from the TCGA and GEO databases. The enrollment criteria are 
the following: (1) the number of primary LUAD samples exceeds 50 cases; (2) OS was greater than 30 days; (3) the data type was 
transcriptome profiling. 

The original data was downloaded from GEO database and standardized using the RMA with the “affy” R package [36]. For the 

Fig. 1. Flow chart of the study.  
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cohort from TCGA, RNA-sequencing data were transformed into the form of TPM for subsequent analysis [37]. Finally, the ComBat 
algorithm was used to reduce the likelihood of potential multicenter batch effects among each cohort [38]. Our workflow is depicted in 
Fig. 1. 

Finally, a total of 2470 LUAD samples from twelve cohorts were analyzed in this study. The 1666 patients collected from the 
GSE31210, GSE13213, GSE50081, GSE41271, GSE68465, GSE30219 and TCGA-LUAD cohorts were used as the LUAD training cohort, 
while the 804 patients collected from the GSE26939, GSE14814, GSE72094, GSE37745 and GSE42127 cohorts were used as the 
validation cohort. Another 43 patients from the Chinese PLA general hospital were used as an external test cohort. 

2.2. RNA sequencing analysis 

A total of 43 fresh tumor samples were processed using the Qiagen RNeasy Mini Kit. The RNA obtained after extraction was 
completed for concentration measurement using Nanodrop 2000C, and Agilent 2100 Bioanalyzer was applied to RNA fragment 
integrity analysis. Concentration measurements were performed with Qubit4.0 Fluorometric Quantitation (Thermo Fisher Scientific, 
USA), and RNA library fragment analysis was performed with an Agilent 2100 Bioanalyzer. Qualified libraries were sequenced in 

Fig. 2. IRRS model Construction. (A) Forest plot of OS for 23 TICs. (B) Partial likelihood deviance of the LASSO coefficient profiles. (C) LASSO 
coefficient profiles of 23 TICs. 
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PE150 mode on the Illumina HiseqX platform (Illumina US). 

2.3. Gene set enrichment analysis 

The 65 TICs were collected based on a comprehensive literature search, and these immune cells included T cells, NK cells, DCs et al. 
Therefore, we believe that the 65 TICs can truly reflect the immune status of different tumor samples. The ssGSEA implemented in the 
“GSVA” R package was applied to measure the per sample expression of 65 TICs [39]. The normalized enrichment score of each TIC 
was collected for further analysis. 

Fig. 3. Kaplan-Meier curves for OS. (A) Training cohort. (B) Validation cohort. (C) Entire cohort. Subgroup analysis of survival for the two risk 
groups. GSE31210 (D), GSE68465 (E), GSE72094 (F), and TCGA-LUAD (G). (H–I) ROC curves of the IRRS model for the training and valida-
tion cohorts. 
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2.4. DEG analysis 

The R package “limma” was used for DEG analysis [40]. Enrichment analysis of DEGs were calculated using GSEA, respectively. GO 
and KEGG analyses were implemented using the “clusterProfiler” R package [41]. 

2.5. Tumor purity analysis 

Estimation of immune and stromal scores were calculated using the ESTIMATE algorithm from the RNA-seq data [42]. Subse-
quently, the association between the IRRS subgroups and the scores mentioned above was evaluated in our LUAD samples. 

2.6. Immune landscape description 

The relative abundance of 22 TICs was estimated using CIBERSORT with the LM22 gene set. The relationship between 65 immune- 
related genes and IRRS, including MHC-class family, immune checkpoints family, and several other molecules were furthered 
explored. 

2.7. Response to immunotherapy 

The TIDE web was applied to predict the immunotherapy response to immune checkpoint blockade for each patient. In addition, 
IMvigor210, GSE78220, GSE93157 and Check-Mate cohorts were also employed to analyze IRRS for immunotherapy. 

Table 1 
Results of Cox regression analysis in the LUAD training cohort.  

Variables Univariate analysis Multivariate analysis 

HR (95 % CI) P-value HR (95 % CI) P-value 

Age 
<65 Reference    
≥65 1.561 (1.338–1.821) <0.001 1.633 (1.377–1.937) <0.001 

Sex 
Male Reference    
Female 0.777 (0.666–0.907) 0.001 0.953 (0.797–1.138) 0.592 

Smoking history 
Yes Reference    
No 0.603 (0.485–0.750) <0.001 0.730 (0.578–0.923) 0.009 

TNM stage 
I + II Reference    
III + IV 3.177 (2.661–3.794) <0.001 2.923 (2.410–3.545) <0.001 

Risk score 
Low Reference    
High 2.210 (1.884–2.593) <0.001 2.091 (1.749–2.500) <0.001  

Table 2 
Results of Cox regression analysis in the LUAD validation cohort.  

Variables Univariate analysis Multivariate analysis 

HR (95 % CI) P-value HR (95 % CI) P-value 

Age 
<65 Reference    
≥65 1.581 (1.257–1.989) <0.001 1.497 (1.183–1.895) <0.001 

Sex 
Male Reference    
Female 0.669 (0.537–0.832) <0.001 0.726 (0.579–0.911) 0.006 

Smoking history 
Yes Reference    
No 0.928 (0.524–1.642) 0.797   

TNM stage 
I + II Reference    
III + IV 1.976(1.510–2.584) <0.001 1.785 (1.360–2.343) <0.001 

Risk score 
Low Reference    
High 1.781 (1.428–2.222) <0.001 1.689 (1.343–2.123) <0.001  
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2.8. Statistical analysis 

The IRRS model was established based on the correlation between TICs level and survival, and Lasso regression analysis was used to 
select highly prognosis-related TICs [43]. The formula of the IRRS was established on the basis of the value of lambda. min. The 
“survminer” R package was employed to draw survival curves. The nomogram model was created using the “rma” R package to predict 
the survival of LUAD patients. Then, the nomogram was assessed with calibration curves, which measure the relationship between the 
outcomes predicted by the prognostic model and the observed outcomes in the LUAD cohort. All statistical analyses were performed 
with R software. 

3. Results 

3.1. Immune cell signatures for LUAD patients 

To analyze the prognostic value of 65 TICs, 12 LUAD cohorts were included. A total of 2470 LUAD patients were separated into a 
training and validation set. Univariate analysis demonstrated that 23 TICs were correlated with OS (P < 0.01). The rigorous cut-off 
point was applied to obtain a better prognostic model in LUAD samples (Fig. 2A). Subsequently, 17 out of 23 TICs highly corre-
lated with OS were selected through LASSO regression analysis (Fig. 2B and C), and the risk score formula was established (IRRS =
Activated CD4 T cells * 0.503 + B cells * (− 0.309) + CTL * 0.070 + Endothelial cells * 0.033 + Eosinophils * (− 0.239) + Erythrocytes * 
0.041 + GMP * (− 0.167) + Keratinocytes * 0.211 + Mast cells * (− 0.421) + MDSCs * 0.459 + MEP * (− 0.167) + Multipotent pro-
genitors * 0.096 + Myeloid dendritic cells * (− 0.076) + Natural killer T cells * 0.680 + pDC * (− 0.108) + CD4 Tm resting * (− 0.448) +

Fig. 4. Summary of the clinical characteristics stratified by IRRS. (A) LUAD training cohort. (B) LUAD validation cohort.  
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CD4 naive T cells * (− 0.093)). 
Based on this formula, we calculated the IRRS for all LUAD patients. Subsequently, 1666 LUAD patients were divided into two IRRS 

subgroups, separated by the median value of 0.9465. The survival curves indicated that patients with low IRRS had longer OS in the 
LUAD training cohort (121 months vs 52 months, P < 0.001, Fig. 3A). To further test the stability of the IRRS model, we applied the 
same formula to the validation cohort. It was found that patients low IRRS had longer in the validation (94 months vs 49 months, P <
0.001, Fig. 3B) and the entire cohort (116 months vs 51 months, P < 0.001, Fig. 3C). In addition, among the 43 patients enrolled in the 
external validation cohort, 33 were eligible. The survival curves revealed that patients with low-risk scores tended to have longer OS 
compared with high-risk scores (Fig. S1). Additionally, multivariate analysis showed that the IRRS were significantly correlated with 
OS (Tables 1 and 2). We then performed the validation of IRRS in the four datasets with the largest sample size. As expected, high IRRS 
was correlated with a worse survival time in GSE31210, GSE68465, GSE30219, and TCGA-LUAD cohorts (Fig. 3D–G). 

We also identified the prediction accuracy of our IRRS model using ROC curves. These results indicated that the 1-, 3-, and 5-year 
AUC were 0.772, 0.731, and 0.691 in the training cohort, and 0.711, 0.695, and 0.681 in the validation cohort (Fig. 3H and I). 

3.2. Correlation analysis between IRRS and clinical features 

We further investigated the association between IRRS and clinical features in the LUAD cohorts. In the training cohort, the smoking 
history, gender, stage, EGFR, KRAS were significantly related to IRRS (Fig. 4A). In the validation cohort, high IRRS was significantly 
associated with age, gender, EGFR, KRAS and p53 (Fig. 4B). Overall, from the perspective of common gene mutations in LUAD, pa-
tients with EGFR mutation, and KRAS wild-type had significantly lower IRRS. 

Then, we carried out a comprehensive analysis to analyze the differences among patients with different clinical characteristics. 
High IRRS is related to poor OS in LUAD patients, regardless of age, smoking status, and TNM stage (Fig. 5A–F). In addition, both 

Fig. 5. Kaplan-Meier survival curves of LUAD patients in different subgroups. (A) Age ≤65. (B) Age >65. (C) Non-smokers (D) Smokers. (E) Stage I- 
II. (F) Stage III-IV. Positive (G) and negative (H) EGFR mutation status. Positive (I) and negative (J) KRAS mutation status. Positive (K) and negative 
(L) p53 mutation status. 
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EGFR-mutant positive and negative patients with low IRRS had a significantly longer OS (Fig. 5G and H). For patients with negative 
KRAS and p53 mutation status, low IRRS patients had longer OS, while similar results were not observed in patients with positive KRAS 
and p53 mutation status (Fig. 5I-L). 

3.3. Nomogram construction 

To create a quantitative prognostic model for LUAD patients, the OS nomogram was created, and the points of LUAD patients can be 
used to estimate the 3-, 5- and 10-year survival (Fig. 6A). As shown, IRRS contributed the most to predicting survival of LUAD patients. 
ROC analysis revealed that the AUC was the largest, indicating that the IRRS model had better predictive accuracy than other clinical 
features (Fig. 6B). Moreover, calibration and decision curve analyses also showed good predictive accuracy for the nomogram (Fig. 6C 
and D). 

3.4. DEG analysis 

To investigate the biological significance, DEG analysis was performed between different risk groups. Among the DEGs, 2672 genes 
were up-regulated, and 484 genes were down-regulated (Fig. 7A). Subsequently, top 20 genes with largest statistically differences were 
selected, and our extended gene network revealed more interactions of genes (Fig. 7B). Kaplan-Meier curves were also constructed by 
dividing samples at the median expression level (Fig. S2). 

We also applied three pathway analyses, GO, KEGG, and GSEA, to analyze the potential association between DEGs and immunity. 
GO term analysis revealed that DEGs were closely linked with lymphocyte mediated immunity, antigen presentation, cytokinesis, and 
T cell mediated cytotoxicity (Fig. 7C). From the results of KEGG enrichment, it was found that 48 KEGG pathways were enriched, 
including cell cycle, Th17 cell differentiation, and so on (Fig. 7D). We next performed GO and KEGG analyses for the down- or up- 
regulated genes, and displayed the network diagram of 6 immune-related pathways (Fig. S3). The results presented above showed 
that the differentially expressed genes can be mapped to immune, cell cycle, and metabolic pathways. Moreover, the results of the 
GSEA analysis indicated a close association between IRRS and several immune-related pathways (Fig. 7E). 

3.5. Tumor microenvironment between two risk groups 

Using the NES generated by ssGSEA, a heatmap of 17 TICs for LUAD patients was plotted. It is evident from the heatmap that the 

Fig. 6. Prediction model nomogram. (A) Nomogram predicting 3-, 5-, and 10-year survival. (B) The ROC curve of nomogram. (C) Calibration curves 
for the nomogram. (D) Decision curve analysis for the nomogram. 
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two IRRS subtypes differ in the infiltration levels of 17 TICs and 8 immune-related genes (Fig. 8A and B). Additionally, we also 
estimated the relative abundance of 22 TICs using the CIBERSORT algorithm. The proportions of TICs for each sample were shown in 
Fig. 9B, and their distributions in different IRRS subtypes were illustrated in the form of boxplots (Fig. 9C). In addition, correlation 
analyses were carried out to measure correlations between TICs (Fig. S4). 

Estimation from the RNA-seq data showed that estimate score, immune score, and stromal score were higher in the low-risk group, 
while the tumor purity was higher in the high-risk group (Fig. 8C–F). Subsequently, we also analyzed the expression of 65 

Fig. 7. Bioinformatic analysis of LUAD subtype-specific genes and pathways. (A) Volcano plot of DEGs. (B) Gene Mania networks of the top 20 
genes with the largest statistically differences. GO (C), KEGG (D), and GSEA (E) analysis of the DEGs. 

L. Qiu et al.                                                                                                                                                                                                             



Heliyon 10 (2024) e33109

10

immunomodulators in different risk groups (Fig. 9A). The results indicated that patients with low IRRS had higher immunoregulatory 
gene expression than patients with high IRRS. Additionally, low-risk group had increased expression of CTLA-4, CD28, CD80 and ICOS, 
while high-risk group had higher levels of LAG3 and PD-L2 (Fig. 9D–K). Our analysis suggests significant correlations of immune 
checkpoint genes in different risk groups, which has implications for the personalization of immunotherapy. 

3.6. The role of IRRS in predicting immunotherapy benefits 

TIDE has proven to be a useful tool to assess immunotherapy efficacy. In this study, patients with low-risk scores had lower TIDE 
score, implying that they may benefit more from immunotherapy (Fig. 10A–D). We then investigated whether the IRRS could predict 
immunotherapy response based on four independent datasets. The two IRRS subtypes differ in the expression levels of 8 immune- 
related genes in the IMvigor210 cohort (Fig. 10E). The survival curves indicated that patients with low-risk scores had significantly 
longer OS (Fig. 10I). Furthermore, patients with low-risk scores exhibited a more excellent likelihood of response to ICI therapy 
compared with high-risk patients (Fig. 10J and K). Similarly, the results showed a significant survival benefit for patients with low-risk 
scores in GSE78220, GSE93157 and CheckMate datasets (Fig. 10F–H). 

4. Discussion 

The tumor microenvironment is emerging as a critical component that contributes to growth and progression of malignant tumors 

Fig. 8. Immune landscape of LUAD patients. (A) Heatmap of the 17 immune cells. (B) The riskscore, survival status, and heatmap of 8 immune- 
related genes. Estimate (C), immune (D), stromal score (E), and tumor purity (F) for different risk groups. 
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[44–46]. Immune cells play vital roles in the TME, actively interacting with tumor and stromal cells [47–49]. Given the close rela-
tionship between TICs and prognosis, the exploration of TICs as a prognostic biomarker is an active research area. Previous studies 
have explored the role of TICs in several tumor types [50–53]. However, increasing evidence indicates that the TME is complex, and 
more data are needed to improve the prognostic model. 

In our study, 65 TICs were included, and the IRRS model was built on the basis of 17 selected TICs. The results showed that low IRRS 
were correlated with longer OS in LUAD patients. Moreover, given the large number of patients with different datasets, the IRRS model 
was further confirmed in the subgroup analysis. As expected, IRRS was stable on independent datasets. These results indicated that the 
combination of TICs is a potential biomarker for LUAD patients. In addition, a nomogram based on IRRS and clinical characteristics 
was established to estimate the OS of LUAD patients. Our results showed that IRRS contributed the most points to the nomogram 
model. 

We further explored the IRRS model in the subgroup of different clinical features, and the results indicated that IRRS was 
significantly related to gender, EGFR, and KRAS status for both the training and validation cohorts. As for other clinical characteristics, 
consistent results were not observed in both cohorts. Additionally, we also analyzed the association between IRRS and survival. The 
results showed that significant differences in OS were observed, regardless of age, TNM stage, and EGFR mutation status. However, 
similar results were not observed for patients with positive KRAS or p53 mutation status. In fact, there was a complex interaction 
between gene mutation status, environment, and prognosis of cancer patients. As genetic testing technologies rapidly evolve, a deeper 
and more comprehensive understanding of oncogenesis enables us to understand how cancer will behave in the future. Therefore, we 
need to further explore TICs in patients with different gene mutation status to better understand their interactions in the varying TIME. 

We also performed a DEG analysis to analyze the biological significance between different risk groups. Among the DEGs, top 12 
genes with largest statistically differences were selected, and Kaplan-Meier curves were performed by dividing patients at the median 
expression level. These results are consistent with previous observational studies [54–58]. Subsequently, GO term analysis implied that 
DEGs were prone to be statistically enhanced in immune-related pathways, including lymphocyte mediated immunity, T cell mediated 
cytotoxicity, and so on. Aberrant activity of genes and immune-related pathways are frequently correlated with tumorigenesis and 
tumor progression. In our study, differences in survival benefit between different risk groups could be explained by the DEGs in diverse 
cancer parameters. The results showed that several pathways, including cell cycle regulation, immune response and metabolic 
function, could play a major part in the TME. However, more detailed studies are required to examine the relationships between gene 
expression and cancer prognosis. 

Multiple studies have demonstrated that immune checkpoint molecules play significant roles in tumor immune evasion, and ICIs 

Fig. 9. Immune cell proportions and immunomodulators of the two IRRS subtypes. (A) Heatmap of 65 immune checkpoint profiles. (B) Relative 
proportions of 22 TICs. (C) Boxplots of the different immune cell proportions. Expression of 8 immune-related genes. (D) PD-1. (E) PD-L2. (F) 
CTLA4. (G) LAG3. (H) CD28. (I) CD80. (J) CD86. (K) ICOS. 
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have reshaped cancer therapy [59–61]. Therefore, an in-depth analysis between IRRS and immune checkpoint molecules was per-
formed in this study. It was found that patients with low-risk scores had higher levels of CTLA-4, CD28, CD80 and ICOS. At present, 
durable survival benefit of ICIs has been observed in many cancer types. The significant of immune checkpoint molecules suggests that 
IRRS could be an effective indicator for patients receiving immunotherapy. Therefore, we analyzed whether the IRRS could predict 
immunotherapy response based on four independent datasets, and the results showed a significant survival benefit for patients with 
low IRRS. Additionally, the TIDE prediction scores were also lower in low-risk patients, which suggests that IRRS may be a potential 
indicator for response to immunotherapy. 

However, there were some limitations. First, this is a retrospective observational study using public datasets, and the application of 
IRRS need to be further validated by future cohort studies. Second, despite the IRRS is designed to include as many TICs as possible, it is 
still difficult to simulate various complex aspects of the tumor immune microenvironment. Third, the optimal cut-off for IRRS is 
uncertain, and further clinical validation is required to determine its prognostic value. Despite the above limitations, our study 
indicated that IRRS is a valuable prognostic marker for patients with LUAD. 

5. Conclusions 

In summary, the proposed IRRS model is a powerful tool for predicting survival in LUAD. Patients with high IRRS were associated 
with worse survival outcomes and shorter survival for LUAD patients. In addition, the IRRS model can also help to identify patients 
who may benefit from immunotherapy. This study will contribute to an enhanced understanding of the differences in the distribution 
of immune cell infiltration and immunoregulatory gene expression between high- and low-risk patients, which may facilitate indi-
vidual immunotherapy in the future. 

Ethics approval and consent to participate 

This study was approved by the Ethics Committee of Chinese PLA General Hospital (S2018-203-01), and written informed consent 

Fig. 10. The prognostic value for immunotherapy. (A) TIDE, (B) MSI, (C) T cell exclusion, and (D) T cell dysfunction score in two risk groups. (E) 
The riskscore, survival status, and heatmap in the IMvigor210 cohort. Kaplan-Meier curves for OS in different immunotherapy cohorts. (F) 
Checkmate cohort. (G) GSE78220. (H) GSE93157. (I) IMvigor210. (J) Clinical efficacy for the IMvigor210 cohort. (K) IRRS distribution of clinical 
efficacy in the IMvigor210 cohort. 
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was obtained from all included patients. 
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