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José Baselga2,4, Kathryn V Anderson1*

1Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan
Kettering Cancer Center, New York, United States; 2Human Oncology and
Pathogenesis Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer
Center, New York, United States; 3Cell Biology Program, Sloan Kettering Institute,
Memorial Sloan Kettering Cancer Center, New York, United States; 4Department of
Medicine, Memorial Sloan Kettering Cancer Center, New York, United States

Abstract Epithelial morphogenesis and stability are essential for normal development and organ

homeostasis. The mouse neural plate is a cuboidal epithelium that remodels into a columnar

pseudostratified epithelium over the course of 24 hr. Here we show that the transition to a

columnar epithelium fails in mutant embryos that lack the tumor suppressor PTEN, although

proliferation, patterning and apical-basal polarity markers are normal in the mutants. The Pten

phenotype is mimicked by constitutive activation of PI3 kinase and is rescued by the removal of

PDK1 (PDPK1), but does not depend on the downstream kinases AKT and mTORC1. High

resolution imaging shows that PTEN is required for stabilization of planar cell packing in the neural

plate and for the formation of stable apical-basal microtubule arrays. The data suggest that

appropriate levels of membrane-associated PDPK1 are required for stabilization of apical junctions,

which promotes cell elongation, during epithelial morphogenesis.

DOI: 10.7554/eLife.12034.001

Introduction
Phosphoinositides are powerful second messengers in signaling pathways that also control epithelial

organization and cell motility, placing them at a unique intersection of signaling and morphogenesis.

The lipid phosphatase PTEN, which converts the membrane lipid phosphatidylinositol (3,4,5)-tri-

sphosphate (PtdIns(3,4,5)P3) to phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), is the second

most commonly mutated gene in human cancers. PtdIns(3,4,5)P3 and PtdIns(4,5)P2 act by recruiting

specific sets of pleckstrin homology domain-containing proteins to the plasma membrane (e.g.

Lietzke et al., 2000), where they become active.

The best-studied functions of PTEN are as a negative regulator of proliferation and a positive reg-

ulator of apoptosis through the PDPK1-AKT-mTOR pathway (Chalhoub and Baker, 2009;

Song et al., 2012). In addition to its role in tumorigenesis, loss of one copy of the wild-type PTEN

gene leads to complex human developmental disorders such as Cowden and Bannayan-Riley-Ruval-

caba syndromes, which are characterized by macrocephaly, benign tumors, arteriovenous malforma-

tions, and autism spectrum disorder (Blumenthal and Dennis, 2008; Zhou and Parada, 2012).

Phosphoinositides play important roles in the architecture of epithelia (Shewan et al., 2011), consis-

tent with the high frequency of PTEN mutations in carcinomas. Studies on lumen morphogenesis in a

three-dimensional culture system showed that PtdIns(4,5)P2 is enriched in the apical membrane,

whereas PtdIns(3,4,5)P3 is enriched in basolateral membranes (Martin-Belmonte et al., 2007), and
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this was proposed to be important in tumor development (Shewan et al., 2011). Mammalian PTEN

regulates cellular processes as diverse as collective cell migration (Bloomekatz et al., 2012) and

axon regeneration (Park et al., 2008), and some of the effects of PTEN are independent of the AKT

pathway (e.g. Vasudevan et al., 2009).

PTEN is essential for viability and Pten null mouse embryos arrest at midgestation with a complex

set of morphological defects (Suzuki et al., 1998; Bloomekatz et al., 2012). We showed previously

that PTEN is required for the directional collective migration of a population of extraembryonic cells,

the anterior visceral endoderm (AVE), which must move from a distal to proximal position to define

the anterior-posterior body axis of the embryo (Bloomekatz et al., 2012). PTEN is also required in

the cells of the embryo proper: deletion of Pten in cells of the epiblast (the embryo proper) using

the Sox2-Cre transgene (Hayashi et al., 2002) (Pten 4Epi) bypasses the requirement for AVE migra-

tion but leads arrest at midgestation (~E9.0) with a syndrome of defects that included cardia bifida,

abnormal mesoderm migration, and an abnormal open neural tube (Bloomekatz et al., 2012).

Mammalian neural tube closure requires more than 100 genes that regulate a sequence of

orchestrated morphogenetic processes that transform the neural epithelium into a closed tube

(Copp and Greene, 2010; Harris and Juriloff, 2010; Colas and Schoenwolf, 2001). Failure of any

one of these events can cause neural tube defects, the second most common type of human birth

defect after cardiac malformations. Most genetic studies of neural tube closure have focused on the

cell rearrangements in the ventral midline mediated by the planar cell polarity pathway

(Murdoch et al., 2003; Ybot-Gonzalez et al., 2007; Nishimura et al., 2012; Williams et al., 2014)

or on the actin-mediated apical constriction of neural epithelial cells required for neural tube closure

(Suzuki et al., 2012; Grego-Bessa et al., 2015). Prior to apical constriction, the neural plate lateral

to the midline is transformed from a cuboidal to a tightly packed pseudostratified columnar epithe-

lium, so that by E9.5, up to 8 nuclei are stacked on top of each other, with each cell retaining con-

nections to both the apical surface and the basement membrane of the epithelium.

Here we define the cellular and biochemical basis of the neural tube closure defect seen in mouse

embryos that lack PTEN. The Pten neural plate phenotype is not the result of changes in prolifera-

tion, apoptosis, cell fate or loss of epithelial polarity. Instead, Pten mutants have a novel defect in

neural morphogenesis: they fail to form a pseudostratified columnar epithelium. Cells do not elon-

gate along their apical-basal axis; they fail to become compacted along the mediolateral axis of the

embryo and they fail to pack into a stable hexagonal array. A combination of genetic and chemical

genetic experiments demonstrate that these defects are due to the loss of the lipid phosphatase

activity of PTEN and to the activation of 3-phosphoinositide-dependent protein kinase-1 (PDPK1

eLife digest In mammals, the brain and spinal cord develop from a flat sheet of cells called the

neural plate, which bends around to create a structure known as the neural tube. This bending

process occurs through a complex sequence of cell shape changes. The cells in the neural plate are

initially short and wide, but transform into long, thin cells as the neural plate forms. Problems that

prevent the neural tube from forming correctly are amongst the most common birth defects in

humans.

Many cancer cells contain a mutation that affects a gene that produces a protein called PTEN.

This protein normally activates a tumor suppressor pathway, and so cancer cells that lack PTEN

divide and grow uncontrollably. Grego-Bessa et al. have now examined mouse embryos that lack

this gene, and found that the neural plate in such embryos forms irregular ruffles rather than a

closed tube.

Further investigation revealed that the neural tube defects are not due to the inactivation of the

traditional tumor suppressor pathway. Instead, correct neural tube formation relies upon the ability

of PTEN to remove phosphate groups from a target lipid, which is important for limiting the activity

of an enzyme called PDK1. Unlimited PDK1 activity causes complex changes that prevent the neural

plate cells from elongating and packing together correctly. Future work is now needed to

investigate the exact molecules targeted by PDK1 and the roles they play in disorders and diseases

caused by a lack of the PTEN protein.

DOI: 10.7554/eLife.12034.002

Grego-Bessa et al. eLife 2015;5:e12034. DOI: 10.7554/eLife.12034 2 of 22

Research article Cell biology Developmental biology and stem cells

http://dx.doi.org/10.7554/eLife.12034.002
http://dx.doi.org/10.7554/eLife.12034


(PDK1)), but do not depend on the AKT-mTOR tumor suppressor pathway. The data suggest that

PTEN activity is required for stabilization of cell packing in the neural plate, which is in turn required

for formation of apical-basal microtubule arrays, apical-to-basal trafficking, and cell elongation in the

neural plate. We suggest that the role of PTEN in epithelial morphogenesis contributes to the devel-

opmental malformations in PTEN mutant syndromes and to the behavior of tumors that lack PTEN.

Results

PTEN is required for formation of the pseudostratified neural
epithelium, but not for proliferation, patterning or apical-basal polarity
The cephalic neural epithelium in Pten-/- or Pten 4Epi embryos does not close to make a neural

tube (Bloomekatz et al., 2012). At E8.5, scanning electron micrographs showed that the wild-type

cephalic neural plate was a smooth structure in which both sides have elevated to begin neural tube

closure (Figure 1A,C). In contrast, irregular folds appeared in the Pten mutant neural plate as early

as E8.0 and the neural plate was dramatically ruffled at E8.5 (Figure 1B,D); the position of the

ectopic folds was highly variable between embryos. PTEN protein was strongly expressed in the

E8.5 wild-type neural plate, where it was enriched both apically and basally (Figure 1—figure sup-

plement 1A–F), consistent with a significant role for PTEN in morphogenesis of the neural tube.

Phosphorylated AKT was not detectable in the wild-type neural plate, but was present in all mem-

branes of Pten 4Epi neural plate cells (Figure 1—figure supplement 1G,H), consistent with strong

activation of the PI3 kinase pathway in Pten mutants.

The abnormal morphology of Pten-/- embryos was noted in previous experiments and was attrib-

uted to increased proliferation (Stambolic et al., 1998); however we previously showed that prolifer-

ation, cell number, and interkinetic nuclear migration are normal in the Pten-/-neural plate

(Bloomekatz et al., 2012). Previous data suggested that there might be abnormalities in anterior-

posterior patterning of cell types in the Pten-/- brain that could account for the abnormal morphol-

ogy of the anterior neural tube (Suzuki et al., 1998). However, we found that anterior-posterior and

dorsal-ventral neural patterning were normal in Pten 4Epi embryos (Figure 1—figure supplement

2A,B). It has also been reported that loss of Pten activates canonical Wnt signaling (Chen et al.,

2015), but expression of the canonical Wnt reporter TOPGAL was normal in Pten 4Epi embryos

(Figure 1—figure supplement 2C).

Transverse sections of the cephalic neural plate showed striking differences in organization in the

wild-type and Pten 4Epi cephalic neural epithelium. (For simplicity, we refer to Pten 4Epi in the

text below as Pten.) The wild-type neural plate is a single-layered columnar epithelium; the cells of

the neural epithelium are so tightly packed that the nuclei appear to stack on top of each other, cre-

ating a pseudostratified epithelium. Nuclei in the cephalic neural plate, marked by expression of

nuclear SOX2, were stacked in 3–5 rows at E8.5 (Figure 1E). In contrast, the SOX2+ nuclei of the

E8.5 Pten cephalic neural plate were organized in only 1–3 rows (Figure 1F; Figure 1—figure sup-

plement 3I).

Apical recruitment of PTEN is required for apical-basal polarity during apical lumen formation by

MDCK cells (Martin-Belmonte et al., 2007). In contrast, we found that global apical-basal organiza-

tion in the mouse neural plate was normal in the absence of PTEN. Laminin was basal, and F-actin,

N-cadherin, ZO1, aPKC and Par3 were correctly localized to the apical domain in the mutant neural

plate (Figure 1G,H; Figure 1—figure supplement 3A–H). Thus the data indicate that the Pten neu-

ral plate phenotype is not caused by abnormalities in proliferation, patterning or global apical-basal

polarity; instead PTEN is required for normal morphogenesis of the neural plate.

Pten-/- neuroepithelial cells are cuboidal rather than columnar and lack
stable microtubule arrays
Because cells are very tightly packed in the neural plate, we used the mosaic expression of a cyto-

plasmic X-linked GFP transgene (Hadjantonakis et al., 2001) to visualize the shape of individual

neural cells. In wild type, neural plate cells were highly elongated along the apical-basal axis,

whereas Pten neuroepithelial cells were shorter and wider (Figure 2A,B). Accompanying the lack of

pseudostratification, the Pten neural plate was 1.5 fold wider than the wild type: the mediolateral

apical contour (from left to right) at the level of the mid-hindbrain junction in the E8.5 wild-type
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neural plate was 668 ± 242 mm wide (n = 6) and 1023 ± 369 mm wide in Pten (n = 6). Despite this

increase in width, the number of nuclei across the width of the cephalic neural plate was not

changed in the mutant (275 ± 140 nuclei wide in wild type; 262 ± 88 nuclei in Pten mutants), indicat-

ing that the same number of cells occupy more area in Pten.

We measured the apical surface area of individual neural plate cells by en face imaging, with cell

boundaries marked by expression of the tight junction marker ZO1 (Figure 2C). At the onset of neu-

ral morphogenesis (head fold stage, E7.75), the apical surfaces of wild-type and Pten mutant cells

were both variable in size and shape but had the same average area (approximately 30 mm2;

Figure 1. Morphological defects in the Pten mutant cephalic neural plate. (A, B, C, D) Comparison of neural plate

morphology of the dorsal head of wild-type (WT) and Pten 4Epi mutant embryos at E8.0 and E8.5 in scanning

electron microscope images. Scale bar = 100 mm. (E, F) Transverse sections of E8.5 WT and Pten 4Epi embryos

show the absence of pseudostratified columnar organization in the Pten mutant cephalic neural plate. Green is

SOX2, red is phalloidin (F-actin), blue is DAPI. (G, H) Z-stack projection of three optical sections (total of 3 mm)

from transverse sections of the cephalic neural plate of E8.5 WT and Pten 4Epi mutant embryos stained for

phalloidin (red) and laminin (purple). Scale bar E–H = 10 mm.

DOI: 10.7554/eLife.12034.003

The following figure supplements are available for figure 1:

Figure supplement 1. PTEN expression in the cephalic neural plate.

DOI: 10.7554/eLife.12034.004

Figure supplement 2. Normal neural patterning in Pten4Epi embryos.

DOI: 10.7554/eLife.12034.005

Figure supplement 3. Apical markers in Pten 4Epi mutant embryos.

DOI: 10.7554/eLife.12034.006
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Figure 2. Cellular defects of Pten 4Epi mutant neuroepithelial cells. (A) Comparison of WT and mutant cell shape in the E8.5 cephalic neural plate,

using X-linked GFP-expression to mark individual cells. Schematic representations of individual cells for each genotype are shown (white box). Red is

phalloidin. Scale bar is 10 mm. (B) Comparison of neural plate height in the cephalic region of WT and mutants. WT E7.75 = 23.9 ± 4.5 mm; Pten 4Epi

E7.75 = 23.6 ± 4.1 mm: WT and mutant are not different, p = 0.86, by standard t-test. WT E8.0 = 32.5 ± 1.7 mm; Pten 4Epi E8.0 = 24.6 ± 3.7 mm: WT is

significantly taller than the mutant, *p = 0.0164. WT E8.5 = 49.1 ± 9.6 mm; Pten 4Epi E8.5 = 32.6 ± 7.4 mm; WT is significantly taller than the mutant,

****p < 0.0001. For this and similar analyses below, >100 measurements were made from >3 embryos. (C) Comparison of apical cell shape in the

Figure 2 continued on next page
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Figure 2D). By ~6 hr later, at E8.0, the average apical surface area of wild-type neural cells had

decreased to ~20 mm2, whereas the apical surface area of Pten mutant cells was unchanged

(Figure 2D). At E8.5, the apical surface of wild-type neural plate cells had shrunk further, so that it

was ~8 mm2, ~3.5 fold smaller than at E7.75. Between E8.0 and E8.5, the surface area of Pten neural

plate cells also decreased, but the area of mutant cells was still ~40% greater than that of wild type

(Figure 2D). At the same time as the apical surface of wild-type neural plate cells decreased, cell vol-

ume remained constant, so the height of the cells increased ~2 fold in WT embryos from ~24 mm at

E7.75 to ~50.0 mm at E8.5 (Figure 2B), while the height of Pten mutant cells increased only ~1.3

fold, to ~30 mm at E8.5 (Figure 2B).

Formation of polarized columnar epithelia is accompanied by the formation of arrays of apicoba-

sally polarized stable microtubules, with minus-ends apical (Bré et al., 1987; Jaulin and Kreitzer,

2010). For example, in the neural plate of the Xenopus embryo, multiple g-tubulin-positive apical

centrioles nucleate stable arrays of parallel, acetylated microtubules that are thought to drive elon-

gation of the cells along the apical-basal axis (Lee et al., 2007). In cells of the mouse embryo neural

plate, there is only a single apical centrosome, but noncentrosomal microtubule arrays, marked by

expression of a-tubulin, were present parallel to the apical-basal axis of cephalic neural plate cells in

both the E8.5 wild-type neural plate, although a-tubulin arrays were not apparent in the Pten mutant

(Figure 2—figure supplement 1A). Stable microtubules can become acetylated (Palazzo et al.,

2003); wild-type microtubule arrays were not acetylated at E8.0 (0–2 somites) except in the floor

plate but became acetylated by E8.5 (5–7 somites) and were strongly acetylated at E9.0 (11–13

somites) (Figure 2E; Figure 2—figure supplement 1B,C). In contrast, the Pten neural plate lacked

acetylated microtubules at each of these stages; the only acetylated microtubule arrays in the

mutant neural plate were located in the floor plate, the cells in the ventral midline (Figure 2E).

Constitutive activation of PI3 kinase recapitulates the Pten neural plate
phenotype
Because PTEN has both lipid and protein phosphatase activities (Worby and Dixon, 2014), we

tested whether the lipid phosphatase activity of PTEN mediated its role in epithelial morphogenesis.

While PTEN dephosphorylates PtdIns(3,4,5)P3 to PtdIns(4,5)P2, phosphoinositide 3-kinase (PI3

kinase) carries out the reverse reaction and produces PtdIns (3,4,5)P3. We injected the pregnant

mothers of Pten mutant embryos at E7.5 with LY294002, a small molecule inhibitor of PI3 kinase

(Gharbi et al., 2007) and analyzed the embryonic phenotype 24 hr later. The development of wild-

type embryos was not affected by this treatment, but the mutant neural plate appeared rescued: it

was pseudostratified and showed acetylated microtubules arrays (Figure 3—figure supplement 1).

Thus inhibition of PI3 kinase rescued Pten neural plate phenotype, suggesting that it is the lack of

the lipid phosphatase activity that causes the Pten mutant phenotype.

We used an independent genetic experiment to test whether increased levels of PtdIns(3,4,5)P3

were responsible for the defects in epithelial morphogenesis. Pik3ca encodes the p110 catalytic sub-

unit of PI3 kinase that catalyzes the production of PtdIns(3,4,5)P3. Point mutations in PIK3CA are

seen frequently in tumors and approximately 40% of breast cancer PIK3CA mutations are due to a

single amino acid substitution allele, PIK3CAH1047R, which causes elevated kinase activity (Saal, 2005;

Figure 2 continued

cephalic neural epithelium of WT and Pten 4Epi embryos viewed en face at E7.75, E8.0 and E8.5. Cell borders are marked by expression of ZO1

(white). Scale bar = 20 mm. (D) Apical surface of cephalic neural epithelial cells, taken from images like those shown in (C). WT E7.75 = 29 ± 17 mm2;

Pten 4Epi E7.75 = 30 ± 16 mm2: WT and mutant are not different, p = 0.79. WT E8.0 = 20 ± 10 mm2; Pten 4Epi E8.0 = 29 ± 15 mm2. The WT surface

area is significantly smaller than in the mutant, ****p < 0.0001. WT E8.5 = 8 ± 4 mm2; Pten 4Epi E8.5 = 14 ± 9 mm2. The WT surface area is significantly

smaller than in the mutant, ****p < 0.0001. (E) Acetylated microtubule arrays in the neural plate in stage-matched WT and mutant embryos. Transverse

sections of cephalic regions of WT and Pten 4Epi embryos at E8.0 (0– 2 somites), E8.5 (5–7 somites) and E9.0 (11–13 somites). Green is acetylated

tubulin; blue is DAPI. Arrows point to the apical surface of neural plate; arrowheads point to the floor plate. The first region of tubulin acetylation in WT

is in the floor plate, which is only region of tubulin acetylation in the mutant. Scale bar = 25 mm.

DOI: 10.7554/eLife.12034.007

The following figure supplement is available for figure 2:

Figure supplement 1. Acetylated microtubules in the wild type cranial neural plate.

DOI: 10.7554/eLife.12034.008
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Carson et al., 2008). We conditionally expressed a Pik3caH1047R allele in the epiblast under the con-

trol of the Sox2 promoter (Pik3caH1047R-Epi). Western blot analysis confirmed that both pAKT

Thr308 and pAKT Ser473, well-characterized targets of the PI3-kinase pathway (Sarbassov et al.,

2005), were elevated in both Pten and Pik3caH1047R-Epi embryos (Figure 3A).

Pik3caH1047R-Epi embryos had an open, ruffled cephalic neural plate, similar to that seen in Pten

4Epi (Figure 3B). Transverse sections of the cephalic neural plate showed that Pik3caH1047R-Epi neu-

ral plate cells did not become columnar (height of E8.5 neural plate cells = 31.5 ± 7.2 mm), the nuclei

failed to become pseudostratified, and there was reduced expression of acetylated tubulin

(Figure 3C). The apical surface area of E8.5 Pik3caH1047R-Epi neural plate cells was ~15 mm2, ~40%

larger than wild type (Figure 3C,D), and epithelial cell height was ~40% shorter than in wild type, as

seen in Pten (Figure 3C,E). The common defects in Pik3caH1047R-Epi and Pten 4Epi embryos argue

that elevated levels of PtdIns(3,4,5)P3 were responsible for the neural plate phenotypes of both

mutants.

Figure 3. Expression of an activated form of PI3 Kinase mimics the Pten mutant neural plate phenotype. (A) Loss of Pten (Pten 4Epi) or expression of

the activating mutation Pik3caH1047R-Epi in the epiblast leads to phosphorylation of AKT in E8.5 embryos. Representative Western blots (n = 3) show the

two phosphorylated forms of AKT in WT, Pten 4Epi and Pik3caH1047R–Epi embryos. Numbers indicate approximate MW. (B) Pik3caH1047R–Epi embryos

phenocopy Pten 4Epi embryos. Whole embryos (inset) and expanded view of the cephalic region of E8.5 WT and Pik3caH1047R-Epi embryos; dorsal

view. Scale bar = 120 mm. (C) The apical surface of the neural plate, viewed en face; cell borders marked by expression of ZO1 (white) (top row), and

acetylated tubulin (green) in transverse sections of the cephalic neural epithelium of E8.5 WT and Pik3caH1047R-Epi embryos. Blue is DAPI. Scale bar =

20 mm. (D) Comparison of apical surface area of cephalic neural epithelial cells at E8.5. WT = 8 ± 4 mm2; Pten 4Epi = 14 ± 9 mm2; Pik3caH1047R-Epi = 15

± 10 mm2. The surface areas of both mutants are significantly larger than wild type, ****p < 0.0001. (E) Cephalic neural plate height at E8.5. WT = 49.1 ±

9.6 mm; Pten 4Epi = 32.6 ± 7.4 mm; Pik3caH1047R-Epi = 31.5 ± 7.2 mm. Cells in both mutants are significantly shorter than in wild type, ****p < 0.0001.

DOI: 10.7554/eLife.12034.009

The following figure supplement is available for figure 3:

Figure supplement 1. Inhibition of PI3 kinase restores pseudostratification in the Pten 4Epi neural plate.

DOI: 10.7554/eLife.12034.010
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Removal of 3-phosphoinositide dependent protein kinase 1 (PDPK1)
rescues the Pten neural plate phenotype
In the PTEN tumorigenesis pathway, elevated PtdIns(3,4,5)P3 recruits 3-phosphoinositide-dependent

protein kinase-1 (PDPK1) to the plasma membrane through its PH domain, thereby allowing PDPK1

access to specific substrates, including AKT, an important target in tumorigenesis (Sommer et al.,

2013). Pdpk1 null embryos die at midgestation with defects in morphogenesis of the brain and

somites; proliferation and apoptosis are normal in null mutant MEFs, but Pdpk1 mutant cells are

small (Lawlor et al., 2002).

To assess the role of Pdpk1 in neural morphogenesis, we removed the gene in embryonic line-

ages using a conditional Pdpk1 allele with Sox2-Cre (Pdpk1 4Epi). The general morphology of

Pdpk1 4Epi embryos was similar to that previously described for the Pdpk1 null allele

(Lawlor et al., 2002), although the conditionally deleted embryos appeared more healthy, formed

recognizable somites and initiated embryonic turning, unlike the null mutants. The sides of the neu-

ral plate in Pdpk1 4Epi failed to elevate at E8.5, but the neural tube closed by E9.5 (Figure 4—fig-

ure supplement 1A,B). Transverse sections at E8.5 and E9.5 showed multiple layers of nuclei and

strong acetylated tubulin staining in cephalic neural tube (Figure 4—figure supplement 1A,B), indi-

cating that cell elongation and neural plate pseudostratification occurred in absence of PDPK1.

To test whether the neural morphogenesis defects observed in Pten neural plate required the

activity of PDPK1, we simultaneously removed both Pdpk1 and Pten in the epiblast using the Sox2-

Cre transgene. While pAKT levels were increased in Pten embryos, the levels of both phosphory-

lated forms of AKT were decreased in Pdpk1 4Epi single mutants (hereafter referred to as Pdpk1)

and were present at approximately normal levels in Pten 4Epi Pdpk 14Epi double mutant embryos

(referred to below as Pten Pdpk1 double mutants) (Figure 4A). Phosphorylation of the AKT target

GSK3b (Ser9) was decreased (Figure 4A), confirming that activation of AKT by removal of PTEN

depends on PDPK1, as in other cell types. We noted that phosphorylation of the downstream target

ribosomal protein S6 was not affected in Pten embryos, while phosphorylation of S6 was abolished

in Pdpk1 single and Pten Pdpk1 double mutant embryos (Figure 4A). The absence of increased

phosphorylation of S6 in Pten embryos probably reflects the high rates of growth and cell division in

the wild-type mouse embryo, which are not further increased by removal of PTEN.

The global morphology of the Pten Pdpk1 double mutant embryos resembled that of the Pdpk1

single mutants (Figure 4B). The cells in the E8.5 double mutant cephalic neural plate were elongated

similar to wild type (E8.5 Pten Pdpk1 neural plate height = 48.6 ± 8.8 mm), pseudostratified, and

there were apical-basal arrays of acetylated microtubules in the double mutant neural plate

(Figure 4C,D). The apical surface area of cells in E8.5 Pten Pdpk1 double mutant neural plate was

50% less than in Pten embryos (10 ± 7 mm2 compared to 15 ± 9 mm2), indicating a rescue of cell

shape (Figure 4C,E). Thus these aspects of the Pten neural plate phenotype depend on PDPK1.

PTEN acts in extraembryonic tissues to control polarized collective migration of the anterior vis-

ceral endoderm that establishes the anterior-posterior body axis and in the epiblast to control move-

ment of cardiac precursor cells to the midline (Bloomekatz et al., 2012). In double mutants that lack

both Pten and Pdpk1 in all tissues (Pten-/-; Pdpk1-/-), the embryos showed the partial axis duplication

seen in Pten single mutants (Figure 4—figure supplement 2A). Pten 4Epi Pdpk1 4Epi double

mutants showed the cardia bifida phenotype seen in Pten 4Epi embryos (Figure 4—figure supple-

ment 2B). Thus these cell migration phenotypes in Pten mutant embryos were not rescued by

removal of PDPK1, in contrast to the PDPK1-dependent phenotype of the Pten neural plate.

The neural plate defects in Pten mutants are independent of AKT and
mTORC1
AKT is a direct substrate for phosphorylation by PDPK1 (Walker et al., 1998) and the biochemical

assays showed that AKT phosphorylation was increased in Pten mutant embryos (e.g. Figure 3A), as

expected. There are three Akt genes in the mouse with overlapping functions (Gonzalez and

McGraw, 2009), prohibiting a classical genetic test of the role of Akt in neural morphogenesis.

Therefore to test whether pAKT was required for the Pten 4Epi phenotype, we injected mothers of

Pten mutant embryos with MK-2206, an allosteric inhibitor that blocks activation of the three AKT

isoforms (Hirai et al., 2010), 24 and 48 hr before embryo dissection. Western blot analysis showed
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that the treatment effectively blocked phosphorylation of AKT on both Thr308 and Ser473

(Figure 5A).

Despite effective inhibition of AKT activation, treatment with MK-2206 had no detectable effect

on the morphology of the neural plate of E8.5 Pten embryos (Figure 5B). En face imaging and trans-

verse sections showed that blocking AKT activity did not rescue the neural plate height, pseudostra-

tification or microtubule acetylation (Figure 5C,D). Quantification of apical surface area showed no

significant difference between treated and untreated Pten embryos (Figure 5E).

An important downstream target of AKT is mTORC1, which mediates its effects on growth and

survival (Zoncu et al., 2011). To test whether mTORC1 activity plays a role in morphogenesis of the

Figure 4. Removal of Pdpk1 rescues the pseudostratified columnar organization of the Pten neural plate. (A) Phosphorylation of downstream targets of

the PI3 kinase pathway in E8.5 wild type, Pten 4Epi, Pdpk1 4Epi single mutant and Pten 4Epi Pdpk1 4Epi double mutant embryos. Representative

western blot shown (n = 3). Numbers indicate approximate MW. (B) Dorsal views of E8.5 wild-type, Pten 4Epi, Pdpk14Epi and Pten 4Epi Pdpk1 4Epi

embryos. The Pten Pdpk1 double mutants are similar in morphology to Pdpk1 single mutants, but are larger. Scale bar = 100 mm. (C) The apical surface

of the neural plate, viewed en face. Cell borders marked by expression of ZO1 (white) (top row) and acetylated tubulin (green) in transverse sections of

cephalic neural epithelium in E8.5 wild-type, Pten 4Epi, Pdpk1 4Epi and Pten 4Epi Pdpk1 4Epi embryos. Blue is DAPI. Scale bar = 20 mm. (D)

Cephalic neural plate height at E8.5. WT = 49.1 ± 9.6 mm; Pten 4Epi = 32.6 ± 7.4 mm; Pdpk1 4Epi = 47.2 ± 8.9 mm; Pten 4Epi Pdpk1 4Epi = 48.6 ± 8.8

mm. Pten 4Epi cells are significantly shorter than in wild type, and Pten 4Epi Pdpk1 4Epi double mutant cells are significantly taller than in Pten 4Epi,

****p < 0.0001. (E) Apical surface area of E8.5 cephalic neuroepithelial cells. Wild type = 9 ± 6 mm2; Pten 4Epi = 15 ± 9 mm2. The surface area of Pten

4Epi is significantly greater than in wild type, ****p < 0.0001; Pdpk1 4Epi = 8 ± 5 mm2; Pten 4Epi Pdpk1 4Epi = 10 ± 7 mm2; the surface area of Pten

4Epi Pdpk1 4Epi double mutant cells is significantly less than in Pten 4Epi, ****p < 0.0001.

DOI: 10.7554/eLife.12034.011

The following figure supplements are available for figure 4:

Figure supplement 1. The Pdpk14Epi phenotype.

DOI: 10.7554/eLife.12034.012

Figure supplement 2. Cell migration phenotypes in Pten Pdpk1 double mutants.

DOI: 10.7554/eLife.12034.013
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neural plate, we injected pregnant females with the mTor inhibitor rapamycin. Western blot analysis

of treated embryos showed that the rapamycin treatment blocked phosphorylation of ribosomal pro-

tein S6, as expected (Figure 5—figure supplement 1A). Despite its clear biochemical activity, rapa-

mycin did not rescue the cell shape, pseudostratification or tubulin acetylation in the Pten 4Epi

neural plate (Figure 5—figure supplement 1B). Thus neither AKT nor mTORC1 mediated the effect

of PDPK1 on neural morphogenesis.

Many other direct substrates for phosphorylation by PDPK1 are known, including more than 20

protein kinases of the AGC family, in addition to AKT (Pearce et al., 2010). Atypical PKC (aPKC) and

Figure 5. The Pten neural plate phenotype is independent of AKT. (A) Effect of the AKT inhibitor MK-2206 treatment on targets of the PI3 kinase

pathway in E8.5 embryos. Western blot of the two phosphorylated forms of AKT and pS6 S240/4 in WT and Pten 4Epi at E8.5 in control embryos

(vehicle) and after 24 or 48 hr of MK-2206 treatment in utero prior to embryo dissection. Numbers indicate approximate MW. (B) Dorsal view (inset) and

enlarged image of the cephalic region of E8.5 wild-type and Pten 4Epi embryos. There is no change in the morphology of the mutant heads after 24 or

48 hr of MK-2206 treatment in utero. Scale bar = 120 mm. (C) The apical surface of the neural plate, viewed en face. Cell borders marked by expression

of ZO1 (white) (top row); acetylated tubulin (green) in transverse sections of cephalic neural epithelium in wild type and Pten 4Epi at E8.5 after 24 or 48

hr of MK-2206 treatment in utero. Blue is DAPI. Scale bar = 10 mm. (D) Height of the E8.5 cephalic neural plate. Wild type, untreated (control) = 44.9 ±

5.7 mm; WT 48 hr treatment = 46.5 ± 9.9 mm; MK-2206 treatment had no significant effect. Pten 4Epi untreated (control) = 32.4 ± 7.3 mm; Pten 4Epi

24 hr = 33.9 ± 6.8 mm2; Pten 4Epi 48 hr = 30.3 ± 7.5 mm. Treated and untreated mutants were all significantly shorter than wild type, but MK-2206

treatment did not significantly rescue cell elongation in the mutant. (E) Apical surface area of E8.5 cephalic neuroepithelial cells. Control = 8 ± 5 mm2;

WT 48 hr = 7 ± 4 mm2; Pten 4Epi Control = 14 ± 9 mm2; Pten 4Epi 24 hr = 13 ± 9 mm2; Pten 4Epi 48 hr = 14 ± 10 mm2. Treated and untreated mutant

cells all had significantly larger surface area than wild type, but MK-2206 treatment did not significantly decrease cell surface area in the mutant.

DOI: 10.7554/eLife.12034.014

The following figure supplements are available for figure 5:

Figure supplement 1. Inhibition of mTORC1 by rapamycin does not rescue the Pten neural plate phenotype.

DOI: 10.7554/eLife.12034.015

Figure supplement 2. Downstream targets of PDPK1.

DOI: 10.7554/eLife.12034.016

Figure supplement 3. Myosin-II distribution and levels appear normal in the Pten neural plate.

DOI: 10.7554/eLife.12034.017
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PKN family members are PDPK1 targets that are stimulated through PtdIns(3,4,5)P3 association

(Balendran et al., 2000), and aPKC is an important regulator of epithelial polarity. However, we did

not detect a change in localization or increased phosphorylation of aPKC in Pten mutants (Figure 1—

figure supplement 3; Figure 5—figure supplement 2A). The Serum and Glucocorticoid-induced

Kinase (SGK) protein family is also activated by phosphorylation by PDPK1. Phosphorylation of

NDRG1 (T346) is mediated by SGK activity (Murray et al., 2004), and pNDRG1 was upregulated in

Pten embryos and reduced in Pten Pdpk1 double mutants (Figure 5—figure supplement 2A). How-

ever, in utero treatment of Pten embryos with the AKT inhibitor MK-2206 blocked phosphorylation

of NDRG1 (Figure 5—figure supplement 2B), suggesting that activation of NDRG1 depends AKT

and not on the pathway that regulates neural morphogenesis. Evidence suggests that PDPK1 can

activate Rho kinase 1 (ROCK1) and phosphorylation of myosin light chain (Pinner and Sahai, 2008),

which should increase the formation of myosin cables. However, myosin-II was anisotropically distrib-

uted in neural plate cells of all genotypes (wild type, Pten-/-, Pdpk1-/- and Pten-/- Pdpk1-/-), there was

no preferential enrichment of myosin-II at long or short cell edges in E8.0 embryos (Figure 5—figure

supplement 3A–D) and phosphorylation of myosin light chain (MLC) was similar in wild type and

Pten mutants (Figure 5—figure supplement 3E).

PTEN and PDPK1 regulate cell packing in the neural plate
To define the cellular processes regulated by PDPK1 in the neural plate, we examined the cellular

basis of the Pten mutant phenotype at higher resolution. Pten has been implicated in planar topol-

ogy of epithelial cells in Drosophila (Bardet et al., 2013) and cells in the amniote neural plate

undergo dynamic cellular reorganization during neural tube closure as cells break and remake junc-

tions with their neighbors (Schoenwolf and Alvarez, 1989; Nishimura et al., 2012). In stable epi-

thelia, cells are hexagonally packed into a honeycomb-like array: each cell has six neighbors and

three cells converge on each vertex (Zallen and Zallen, 2004). In dynamic epithelia, this pattern can

be disrupted by cell division or by neighbor exchanges, so that each cell has fewer neighbors and a

greater number of cells converge on each vertex (Zallen and Zallen, 2004).

Visualizing cell borders with ZO1 (Figure 2C), b-Catenin (Figure 6A) or F-actin (Figure 6D; Fig-

ure 6—figure supplement 1A,D), cells at the beginning of wild-type neural morphogenesis (E8.0)

were not hexagonally packed: only ~45% had five or six edges (Figure 6B). Cell arrangements

included rosette-like structures where as many as 8 cells converged at a single vertex (Figure 6A),

similar to structures in epithelia undergoing active cell rearrangements (Blankenship et al., 2006)

and previously described in the rearranging cells of the neural floor plate in chick and mouse

embryos (Nishimura et al., 2012; Williams et al., 2014). The arrangement of cells in the Pten neural

plate at E8.0 showed the same organization as seen in wild type, where �4 cells converging on

~60% of the vertices (Figure 6C). At E8.5, when pseudostratification was apparent, cells in the wild-

type neural plate were packed in a more honeycomb-like arrangement: ~1.8 fold more cells with 5

and 6 edges, and the percentage of cases with �4 cells converging on a vertex was reduced by half

(to ~30%), consistent with a more stable epithelium (Figure 6A–C). In contrast, these parameters did

not change between E8.0 and E8.5 in Pten mutants. Thus PTEN appears to promote a more regular,

hexagonal organization in the plane of the epithelium at the same stage when the epithelium

becomes columnar. Cells in the E8.5 neural plate cells of the constitutively activate PI3 kinase mutant

(Pik3caH1047R-Epi) showed the complex cells arrangements and rosettes seen in Pten mutants (Fig-

ure 6—figure supplement 1A–C).

The organization of E8.5 Pdpk1 single and the Pten Pdpk1 double mutant neural plates were sim-

ilar to wild type, with similar distributions of neighbors per cell (~60% of cells with 5 or 6 edges) and

the percentage of cases with �4 cells converging on a vertex was ~30% (Figure 6D–F). Blocking

AKT activity with MK-2206 did not modify cell packing in the Pten neural plate (Figure 6—figure

supplement 1D–F). Thus, as with cell elongation and pseudostratification, the failure of Pten mutant

neural plate to assume a stable conformation was caused by elevated PtdIns(3,4,5)P3, and depended

on PDPK1 but not AKT.

PTEN and PDPK1 regulate apical-to-basal trafficking in the neural plate
The bottle cells of the gastrulating Xenopus embryo share some characteristics with the early neural

plate: they begin as cuboidal cells that elongate in an apical-basal direction while forming apical-
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Figure 6. PTEN promotes stable cell packing in the neural plate. Panels (A) and (D) show high magnification views of the apical surface of the neural

plate embryos, with magnification adjusted so that the cells appear to be approximately the same size, in order to highlight the difference in cell

packing in the two genotypes. Scale bars in (A) and (D) = 15 mm. Orange arrowheads indicate examples of 3 cells/vertex, and yellow arrows indicate

vertices formed by �4 cells. Cell borders marked by b-catenin (A) or F-actin (D) expression. (A) At E8.0, rosette-like structures are common in both WT

and Pten. Fewer rosette-like arrangements are seen in WT at E8.5, but rosettes persist in the E8.5 Pten neural plate. (B) Quantification of percentage of

Figure 6 continued on next page
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basal arrays of microtubules and constricting their apical surfaces (Keller et al., 2003; Lee and Har-

land, 2007). During the cuboidal-to-columnar transformation in Xenopus bottle cells, membrane

from apical microvilli is endocytosed and trafficked to the basolateral membrane, creating a net

movement of membrane from apical to basolateral domains (Lee and Harland, 2010).

Because vesicle trafficking is highly active in dynamic epithelia and stable microtubules failed to

form in the Pten mutant neural plate, we tested whether trafficking was affected by the loss of

PTEN. Rab5, a marker of early endosomes, was distributed in an apical-to-basal gradient in the wild

type neural plate. In contrast, Rab5+ vesicles were restricted to the most apical domain of the cells

in Pten mutants (Figure 7A,B). Clathrin, a marker for coated endocytic vesicles, was also more api-

cally restricted in Pten than in wild-type neural plate cells (Figure 7C,D). The normal distribution of

Rab5+ and clathrin+ vesicles was restored in Pten Pdpk1 double mutant neural plates (Figure 7A–

D).

To test whether the change in vesicle distribution reflected changes in endocytosis or in apical-to-

basal trafficking, we cultured E8.0 embryos in presence of transferrin coupled to Alexa-647 and ana-

lyzed the localization of transferrin-647 after 8 hrours of culture (Christ et al., 2012). Total transfer-

rin-647 uptake was similar in wild-type and Pten neural plate cells. However, while transferrin spread

along the apical-basal extent of wild-type cells, transferrin accumulated in the apical region in Pten

cells (Figure 7E,F), suggesting that defects in basal trafficking are coupled to the failure of Pten

mutants to form a pseudostratified columnar neural epithelium. Similar to the other neural plate phe-

notypes, basal transport of transferrin was rescued in Pten Pdpk1 double mutants, but was not res-

cued by treatment of Pten with MK-2206 (Figure 7G,H).

Discussion
Mouse embryos that lack PTEN have an unprecedented defect in morphogenesis of the neural tube.

In Pten mutant embryos, a SOX2+ neural epithelium forms, shows normal segregation of apical and

basal markers, is patterned by developmental signals, and proliferates normally. However, the

mutant cephalic neural epithelium fails to undergo the transition from a cuboidal to a tall, columnar

pseudostratified epithelium; instead, the mutant neural plate is thin, wide and irregularly folded, and

cephalic neural tube closure fails completely.

Phosphoinositides have been described as key regulators of apical-basal polarity (Martin-

Belmonte et al., 2007; Shewan et al., 2011), and indeed the Pten mutants have a profound defect

in the organization of the third (apical-basal) dimension of the neural epithelium. However, the tradi-

tional markers of apical-basal polarity are localized correctly in the Pten mutant neural plate: Par3,

aPKC, ZO1, P-ERM, N-cadherin and F-actin are apically localized, and laminin is basally localized.

Based on the enrichment of pAKT in both apical and basolateral membranes of the Pten mutant neu-

ral plate, apical-basal polarity markers are localized correctly despite high levels of PtdIns(3,4,5)P3
throughout cell membranes.

Despite the important roles of phosphoinositides in mTOR signaling, endocytic sorting, recycling

and trafficking (Di Paolo and De Camilli, 2006; Shewan et al., 2011; Dibble and Cantley, 2015),

the genetic and chemical genetic data demonstrate that all the phenotypes in the Pten neural plate

are mediated by increased activity of PDPK1. Although phosphorylated AKT is enriched in all cellular

membranes in the mutant neural plate, inhibition of the downstream kinases AKT or mTor does not

Figure 6 continued

cells with 3–8 edges. Between E8.0 and E8.5, the percentage of cells with 3–4 edges decreases ~45%, while the percentage with 5–6 edges increases

~1.6 fold in WT embryos, but these parameters are unchanged in E8.5 mutants. (C) The percentage of vertices plotted against the number of cells

meeting at a vertex. In a honeycomb arrangement, 3 cells meet at a vertex; the number of cases where three cells meet at a vertex increases ~1.8 fold

between E8.0 and E8.5, whereas the Pten neural plate does not changed in this interval. (D) At E8.5, Pdpk1 single and Pten Pdpk1 double mutants

show packing similar to that in WT, compared to the more rosette-like packing in Pten. Quantification of % of cells with 3–8 edges (E) and % of vertices

formed by 3–7 cells (F) showed similar values in E8.5 WT, Pdpk1 and Pten Pdpk1 embryos. Bars indicate %, lines indicate s.d.

DOI: 10.7554/eLife.12034.018

The following figure supplement is available for figure 6:

Figure supplement 1. Cell packing in the neural plate with constitutively active PI3 kinase and when AKT is inhibited with MK-2206.

DOI: 10.7554/eLife.12034.019
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modify the Pten mutant phenotype, whereas removal of Pdpk1 rescues all aspects of the Pten phe-

notype. We therefore conclude that it is the inappropriate PtdIns(3,4,5)P3-stimulated activity of

PDPK1, and not changes in levels of other phosphoinositides or in the activity of AKT or mTorc1,

that mediates all the morphogenetic defects seen in the Pten mutant neural epithelium.

Perhaps the most striking cellular difference between the Pten and wild-type neural plate cells is

the absence of stable apical-basal microtubule arrays in the mutant. The formation of noncentroso-

mal apicobasal microtubule arrays, with apical minus-ends and basal plus-ends, is a hallmark of

columnar epithelia (Bré et al., 1987; Jaulin and Kreitzer, 2010). Consistent with a requirement of

Figure 7. Apical-basal trafficking in PI3 kinase pathway mutants. (A– D) Distribution of endosome markers along the apical-basal axis in transverse

sections of the cephalic neural plate of E8.5 wild-type, Pten 4Epi, Pdpk1 4Epi and Pten 4Epi Pdpk1 4Epi embryos. (A) Localization of Rab5, an early

endosome marker. (B) Distribution of Rab5 along the apical-basal axis, normalized to a maximum value of 100. (C) Localization of clathrin.

(D) Distribution of clathrin along the apical-basal axis, normalized to a maximum value of 100. (E) Uptake of Transferrin-Alexa 647 after 8 hr of embryo

culture. Transverse sections of cephalic neural plate of E8.5 wild-type, Pten 4Epi, Pdpk1 4Epi and Pten 4Epi Pdpk1 4Epi embryos. White signal is the

native Alexa 647 fluorescence. (F) Distribution of Alexa-647 signal along the apical-basal axis. Transferrin-647 accumulates apically in the Pten 4Epi but

not in Pten 4Epi Pdpk1 4Epi double mutants. (G) Transverse sections of cephalic neural plate of E8.5 wild-type and Pten 4Epiembryos treated in

utero with MK-2206 for 48 hr and then cultured with 50 mg/ml of Transferrin-647 and MK-2206 for 8 hr. (H) Distribution of Alexa-647 along the apical-

basal axis is not affected by MK-2206 treatment. Images are Z-projections of 3 optical sections of 1 mm each. Red is phalloidin. Blue is DAPI. Scale bars

= 10 mm.

DOI: 10.7554/eLife.12034.020
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microtubule arrays for apical-basal trafficking in columnar epithelia (Jaulin and Kreitzer, 2010;

Rodriguez-Boulan and Macara, 2014), basal trafficking of apically endocytosed transferrin fails in

the Pten neural plate. Recent work showed that PTEN can bind directly to microtubule-associated

vesicles (Naguib et al., 2015), suggesting that PTEN could play a direct role in apical-to-basal traf-

ficking in the neural plate. The data show that the PTEN is required for organization of stable arrays

of apical-basally oriented microtubules, which may both stabilize the long axis of the cell and pro-

mote the redistribution of membrane from the apical to the basolateral domains of neuroepithelial

cells, leading to the transition from a cuboidal to a columnar epithelium.

At the same stage (between E8.0 and E8.5) when wild-type neural cells begin to elongate and

form arrays of apical-basal stable microtubules, cells of the neural plate are also reorganizing in the

plane of the epithelium to become more hexagonally packed. At E8.0, cell packing in both the wild-

type and Pten mutant anterior neural plate is irregular and includes the rosette-like arrangements

that are a hallmark of dynamic epithelia (Blankenship et al., 2006). By E8.5, wild-type cells have

resolved into a more regular packing pattern and fewer rosettes are observed, while the Pten neural

plate continues to have many rosette-like cell arrangements.

Pten-dependent, Akt-independent changes in cell packing have also been observed in the Dro-

sophila wing disc, where the effect of Pten mutations was attributed to a defects in the remodeling

of adherens junctions (Bardet et al., 2013). Similar to what we observed in the cephalic neural plate

of the mouse Pten mutant, Drosophila Pten mutant wing disc epithelial cells have fewer neighbors

than seen in a regular hexagonal array. In the Drosophila case, high levels of myosin-II are preferen-

tially seen on short cell edges of Pten mutant cells. In contrast, myosin-II is anisotropically distributed

in the both the wild-type and mutant E8.0 mouse neural plate, and it can be enriched at either long

or short cell edges. The anisotropic distribution of myosin-II persists in the E8.5 Pten mutant, while

myosin-II becomes enriched at all cell edges in the E8.5 wild-type neural plate, probably in prepara-

tion for the next phase of neural tube closure, actomyosin-mediated apical constriction. Thus the

loss of PTEN blocks the maturation of cell packing in the neural plate, but there is no simple relation-

ship between the Pten phenotype and the distribution of myosin-II.

The abnormal planar cell packing and the absence of apical-basal microtubule arrays in the Pten

neural plate appear to be coupled: they occur simultaneously and both depend on regulated activity

of PDPK1. The coupling of these two phenotypes is consistent with known links between apical junc-

tions and microtubule arrays. Apical adherens junctions are sites for anchorage of noncentrosomal

microtubule arrays (Meng et al., 2008; Gavilan et al., 2015). Microtubules dynamics, in turn, can

regulate the stability of adherens junctions (Meng et al., 2008; Waterman-Storer et al., 2000), sup-

porting the existence of a positive feedback loop that couples stable adherens junctions and micro-

tubule arrays. We propose that a target of PDPK1 in the Pten mutant neural plate inhibits

stabilization of apical junctions, which, in turn, blocks the formation of the noncentrosomal microtu-

bule arrays required for elongation of cells in the neural plate (Figure 8). The direct target of PDPK1

in this process is not known; one possibility is that inappropriate activity of PDPK1 promotes

dynamic fluctuations in the activity of aPKC and/or PKN. PtdIns(3,4,5)P3-tethered PDPK1 is sufficient

to activate these two classes of kinases (Balendran et al., 2000) and aPKC can regulate both apical

junctions and microtubule organization (Harris and Tepass, 2008; Harris and Peifer, 2007).

PTEN has many roles in mammalian brain development, including control of cell size

(Kwon et al., 2001), neuronal differentiation and migration (Yue et al., 2005), synapse structure and

synaptic plasticity (Fraser et al., 2008; Sperow et al., 2012) and axon regeneration (Park et al.,

2008). Human mutations in one copy of the PTEN gene are associated with a variety of abnormali-

ties in brain development, including megalencephaly and focal cortical dysplasia, which can lead to

autism and pediatric epilepsy (Hevner, 2015; Jansen, et al., 2015; Zhou and Parada, 2012). Our

findings define a profound, very early role of PTEN in the organization of the brain that is likely to

contribute to the human syndromes caused by PTEN haploinsufficiency.

PDPK1-dependent changes in epithelial stability could also play an important role in tumors that

lack PTEN. Mutations in PI3 kinase pathway are extremely common in tumors: for example, nearly

80% of cases of endometrial carcinoma (non-ultramutated samples) have inactivating mutations in

PTEN (Cancer Genome Atlas Research Network et al., 2013) and 45% of human luminal A breast

tumors harbor activating mutations in PIK3CA (Cancer Genome Atlas Network, 2012). Previous

studies provided evidence that anchorage-independence and xenograft growth of breast cancer

cells carrying the activated H1047R PI3KCA allele depended on PDPK1 but not AKT
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(Gagliardi et al., 2012) and phosphoproteomic analysis of cell lines with activating PI3KCA muta-

tions identified cases in which PDPK1 activity, but not AKT activity, was required for tumorigenicity

(Vasudevan et al., 2009). The data presented here demonstrate that PtdIns(3,4,5)P3-dependent

PDPK1 activity is an important consequence of the absence of PTEN in vivo, even in the absence of

activation of AKT. Our findings highlight the importance of identifying the relevant PDPK1 targets

during mouse development, in PTEN-associated developmental syndromes, and in tumors.

Materials and methods

Mouse strains
The mutant alleles used here have been described previously: Ptenflox (Trotman et al., 2003),

Pdk1flox (MGI designation: Pdpk1) (Lawlor et al., 2002), R26-Pik3caH1047R (Jackson Laboratories,

Bar Harvor, ME. Stock #016977). The epiblast specific-expressing CRE line is Sox2-CRE

(Hayashi et al., 2002). The Wnt-reporter line used was TOPGAL (DasGupta and Fuchs 1999). The

genotype of the Pten DEpi (epiblast-deleted) embryos is Sox2-Cre/+; Ptenflox/Ptennull. The genotype

of the Pdpk1 DEpi embryos is Sox2-Cre/+; Pdpk1flox/Pdpk1null. The genotype of the Pten Pdpk1

DEpi double mutants is Sox2-Cre/+; Ptenflox/Ptennull; Pdpk1flox/Pdpk1null. We generated the Pten

and Pdpk1 deleted (null) alleles by crossing conditional mice with Sox2-Cre, taking advantage of

Sox2 activity in the female germ line. The X-linked GFP transgene was a gift from Anna-Katerina

Hadjantonakis (Hadjantonakis et al., 2001). Pten mutants were congenic in CD1, and all other lines,

except R26-Pik3caH1047R (FVB), were backcrossed to CD1 for at least four generations before analy-

sis. For timed pregnancies, noon on the day of the vaginal plug was E0.5.

Figure 8. A model for the role of PTEN in the formation of the pseudostratified columnar epithelium. PDPK1 is

anchored to the plasma membrane by PtdIns(3,4,5)P3 (PIP3), which is made by PI3 kinase (PI3K) and degraded by

PTEN. In the Pten mutant, increased PIP3 recruits high levels of PDPK1 to the membrane, where it is activated.

Activated membrane-associated PDPK1 has two targets: activated PDPK1 generates high levels of pAKT; in a

separate pathway, high levels of membrane-associated PDPK1 inhibit the formation of stable apical junctions.

Stable apical junctions are required for the formation of stable apical-basal microtubule arrays, which mediate

apical-to-basal trafficking in the neural epithelium, allowing elongation and tight packing of cells in the neural

epithelium. In WT, PDPK1 is not required for formation of the pseudostratified neural epithelium, although the

delay in neural tube closure in Pdpk1 mutants may reflect a subtle role for the protein in epithelial organization.

DOI: 10.7554/eLife.12034.021
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In utero embryo drug treatment
Pregnant females were injected intraperitoneally (i.p.) following standard procedures. A final volume

of 0.5 ml was injected. Treatments were as follows: 25 mg/kg/day of LY294002

(Selleckchem, Houston, TX) diluted in DMSO at E7.5; 120 mg/kg/day of MK-2206 (from the Baselga

Laboratory; commercially available from Selleckchem) diluted in Captisol at E7.5 or E6.5 and E7.5; 3

mg/kg/day of Rapamycin (Sigma, St. Louis, MO) diluted DMSO at E6.5 and E7.5. Embryos were har-

vested at E8.5.

Scanning electron microscopy
Embryos for SEM were fixed in 2.5% glutaraldehyde overnight at 4˚C, processed using standard pro-

cedures and imaged with a Zeiss Supra 25 Field Emission Scanning Electron Microscope.

LacZ staining and in situ hybridization
b-Galactosidase activity was detected using standard described protocols (Hogan et al., 1994).

Whole-mount in situ hybridization was performed on embryos following standard methods

(Eggenschwiler and Anderson, 2000). The Brachyury (Wilkinson et al., 1990), En2 (Joyner and

Martin, 1987), Krox20 (Wilkinson et al., 1989), EMX2 (Simeone et al., 1992), Fgf8 (Tanaka et al.,

1992), and Axin2 (Jho et al., 2002) in situ probes were previously described. The embryos were

photographed using an HRC Axiocam (Zeiss, Germany) fitted onto a stereomicroscope

(Leica, Germany).

Immunostaining
Embryos were dissected in ice-cold or room temperature PBS/4% BSA and processed for imaging

following established protocols (Lee et al., 2010). Immunofluorescence staining was performed with

Alexa Fluor-conjugated secondary antibodies (Invitrogen, Waltham, MA) diluted 1:400. Sections

were counterstained with DAPI (1:2000) to stain nuclei. All images shown are from the cephalic neu-

ral plate.

Rhodamine-phalloidin (Invitrogen) was used at 1:200. ARL13b antibody (Caspary et al., 2007)

was used at 1:2000. Commercial antibodies were: Sigma: g-tubulin (T-6557), 1:1000 for immunofluo-

rescence (IF); a-Tubulin (T5168) 1:1000 for IF, 1:3000 for western blots (WB); acetylated a-Tubulin

(T7451) 1:1000 for IF and 1:3000 for WB. Santa Cruz, Dallas, TX: GAPDH (sc-32233), 1:5000 for WB.

Invitrogen: ZO1 (33-9100), 1:200 for IF. Cascade Biosciences, Winchester, MA: Pten (ABM2052),

1:1000 for IF. Cell Signaling, Danvers, MA: Pten (9559) 1:500 for IF; S6 (2217) 1:2000 for WB; pS6

(2211) 1:1000 for WB; pAKT Ser473 (9271) 1:1000 for WB; pAKT Thr308 (2965) 1:1000 for WB; AKT

(9272) 1:1000 for WB; Rab5 (3547) 1:100 for IF; Clathrin Heavy Chain (4796) 1:100 for IF; pMLC2

(3671), 1:1000 for WB; acetylated a-Tubulin (5335) 1:3000 for WB. Hybridoma Bank, Iowa City, IA:

Nkx2.2 (74.5A5) 1:100 for IF; Nkx6.1 (F55A10) 1:50 for IF. Covance, Princeton, NJ: MHCIIB (CMII-23;

PRB-445P), 1:50 for IF, and 1:1000 for WB. Abcam, Cambridge, MA: FOXA2 (AB40874) 1:800 for IF.

Millipore, Billerica, MA: Olig2 (AB9610) 1:200 for IF; SOX2 (AB5603) 1:1000 for IF.

For immunofluorescence, samples were mounted using Vectashield (Vector

Labs, Burlingame, CA) or ProLong Gold (Life Technologies, Carlsbad, CA) mounting media, and

slides were imaged with SP5 and SP8 confocal microscopes (Leica) with a 63 � 0.5 NA lens, at a res-

olution of 1024 � 1024. In transverse sections, maximum intensity was set in the apical domain, and

images with apical non-saturated signal on the neural plate were taken. En face images are Z-projec-

tions of 3–5 single optical sections taken every 0.3 mm. Images were analyzed using Volocity soft-

ware (PerkinElmer, Waltham, MA). The immunofluorescence data presented in the figures are

representative images of at least three embryos.

Fluorescence signal quantification
Pixel intensity along the apicobasal axis of the neural plate was determined on Z-stack projections of

5 optical sections taken every 1 mm (grayscale). Pixel intensity values were taken from lines 20 pixels

wide traced with ImageJ. Graphical distribution of pixel intensity average (n�3 embryos) was gener-

ated using Prism6 with normalized values.
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Transferrin uptake assay
E8.0 embryos with intact yolk sac and ectoplacental cone were dissected in 37˚C DMEM/F12 con-

taining 10% FBS. After dissection, 5 embryos were transferred to a glass bottle (Roller Bottle System)

containing 5 ml of 50% rat serum/50% DMEM/F12 and incubated at 37˚C with 5% CO2 and 10% O2.

Transferrin-Alexa 674 (Molecular Probes, Eugene, OR. #Ta3366) was diluted in the culture media to

50 mg/ml, as described (Christ et al., 2012). After 8 hr, the yolk sac was removed and the embryos

were fixed in 4% PFA for 2 hr at 4˚C and mounted for cryosectioning following established protocols

(Lee et al., 2010). Images were taken from transverse sections of the cephalic region using a SP5

Leica confocal microscope collecting the native signal from Transferrin-Alexa 674.

Morphometric analysis
Neural plate height of cephalic region was measured following a previously described method

(Grego-Bessa et al., 2015). Apical surface area quantification of cephalic neuroepithelial cells was

determined from en face images taken with a Leica SP5 inverted confocal microscope and 63 � 0.5

NA lens, and analyzed by Volocity software (>100 measurements per embryo, n�3 embryos). For all

analyses, n�3 embryos. Measurements are average ± s.d. Comparisons were made by standard t-

test. Prism6 was used for statistical analysis.

For analysis of cell packing, ZO-1, b-Catenin and Phalloidin-Rhodamine staining delineated the

apical domain of cephalic neuroepithelial cells. En face images of the cephalic region were taken by

confocal microscope at 63� of magnification. For two-dimensional cell patterns, the number of

edges/cell and the number of vertices formed by 3–7 cells were quantitated manually from at least 3

embryos per genotype (>200 cell vertexes). Data analysis was performed with Excel and Prism6.

Immunoblotting
A pool of three E8.5 embryos, after removal of the heart, was lysed in Cell Lysis Buffer (Cytoskele-

ton, Denver, CO. GL36) plus Complete Protease Inhibitor Cocktail (Roche, Germany). Western blots

were performed according to standard protocols, and protein was detected with HRP-conjugated

secondary antibodies and ECL detection reagents (Amersham, UK).
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Bré MH, Kreis TE, Karsenti E. 1987. Control of microtubule nucleation and stability in madin-darby canine kidney
cells: the occurrence of noncentrosomal, stable detyrosinated microtubules. The Journal of Cell Biology 105:
1283–1296. doi: 10.1083/jcb.105.3.1283

Cancer Genome Atlas Network. 2012. Comprehensive molecular portraits of human breast tumours. Nature
490:61–70. doi: 10.1038/nature11412

Cancer Genome Atlas Research Network, Kandoth C, Schultz N, Cherniack AD, Akbani R, Liu Y, Shen H,
Robertson AG, Pashtan I, Shen R, Benz CC, Yau C, Laird PW, Ding L, Zhang W, Mills GB, Kucherlapati R,
Mardis ER, Levine DA. 2013. Integrated genomic characterization of endometrial carcinoma. Nature 497:67–73.
doi: 10.1038/nature12113

Carson JD, Van Aller G, Lehr R, Sinnamon RH, Kirkpatrick RB, Auger KR, Dhanak D, Copeland RA, Gontarek RR,
Tummino PJ, Luo L. 2008. Effects of oncogenic p110alpha subunit mutations on the lipid kinase activity of
phosphoinositide 3-kinase. Biochemical Journal 409:519–524. doi: 10.1042/BJ20070681

Caspary T, Larkins CE, Anderson KV. 2007. The graded response to sonic hedgehog depends on cilia
architecture. Developmental Cell 12:767–778. doi: 10.1016/j.devcel.2007.03.004

Chalhoub N, Baker SJ. 2009. PTEN and the PI3-kinase pathway in cancer. Annual Review of Pathology 4:127–
150. doi: 10.1146/annurev.pathol.4.110807.092311

Chen Y, Huang W-C, Sejourne J, Clipperton-Allen AE, Page DT. 2015. Pten mutations alter brain growth
trajectory and allocation of cell types through elevated beta-catenin signaling. Journal of Neuroscience 35:
10252–10267. doi: 10.1523/JNEUROSCI.5272-14.2015

Christ A, Christa A, Kur E, Lioubinski O, Bachmann S, Willnow TE, Hammes A. 2012. LRP2 is an auxiliary SHH
receptor required to condition the forebrain ventral midline for inductive signals. Developmental Cell 22:268–
278. doi: 10.1016/j.devcel.2011.11.023

Colas Jean-François, Schoenwolf GC. 2001. Towards a cellular and molecular understanding of neurulation.
Developmental Dynamics 221:117–145. doi: 10.1002/dvdy.1144

Copp AJ, Greene ND. 2010. Genetics and development of neural tube defects. The Journal of Pathology 220:
217–230. doi: 10.1002/path.2643

DasGupta R, Fuchs E. 1999. Multiple roles for activated LEF/TCF transcription complexes during hair follicle
development and differentiation. Development (Cambridge, England) 126:4557–4568.

Di Paolo G, De Camilli P. 2006. Phosphoinositides in cell regulation and membrane dynamics. Nature 443:651–
657. doi: 10.1038/nature05185

Dibble CC, Cantley LC. 2015. Regulation of mTORC1 by PI3K signaling. Trends in Cell Biology 25:545–555. doi:
10.1016/j.tcb.2015.06.002

Grego-Bessa et al. eLife 2015;5:e12034. DOI: 10.7554/eLife.12034 19 of 22

Research article Cell biology Developmental biology and stem cells

http://dx.doi.org/10.1074/jbc.M000421200
http://dx.doi.org/10.1074/jbc.M000421200
http://dx.doi.org/10.1016/j.devcel.2013.04.020
http://dx.doi.org/10.1016/j.devcel.2006.09.007
http://dx.doi.org/10.1016/j.devcel.2006.09.007
http://dx.doi.org/10.1016/j.ydbio.2012.02.005
http://dx.doi.org/10.1016/j.ydbio.2012.02.005
http://dx.doi.org/10.1038/ejhg.2008.162
http://dx.doi.org/10.1083/jcb.105.3.1283
http://dx.doi.org/10.1038/nature11412
http://dx.doi.org/10.1038/nature12113
http://dx.doi.org/10.1042/BJ20070681
http://dx.doi.org/10.1016/j.devcel.2007.03.004
http://dx.doi.org/10.1146/annurev.pathol.4.110807.092311
http://dx.doi.org/10.1523/JNEUROSCI.5272-14.2015
http://dx.doi.org/10.1016/j.devcel.2011.11.023
http://dx.doi.org/10.1002/dvdy.1144
http://dx.doi.org/10.1002/path.2643
http://dx.doi.org/10.1038/nature05185
http://dx.doi.org/10.1016/j.tcb.2015.06.002
http://dx.doi.org/10.1016/j.tcb.2015.06.002
http://dx.doi.org/10.7554/eLife.12034


Eggenschwiler JT, Anderson KV. 2000. Dorsal and lateral fates in the mouse neural tube require the cell-
autonomous activity of the open brain gene. Developmental Biology 227:648–660. doi: 10.1006/dbio.2000.
9918

Fraser MM, Bayazitov IT, Zakharenko SS, Baker SJ. 2008. Phosphatase and tensin homolog, deleted on
chromosome 10 deficiency in brain causes defects in synaptic structure, transmission and plasticity, and
myelination abnormalities. Neuroscience 151:476–488. doi: 10.1016/j.neuroscience.2007.10.048

Gagliardi PA, di Blasio L, Orso F, Seano G, Sessa R, Taverna D, Bussolino F, Primo L. 2012. 3-phosphoinositide-
dependent kinase 1 controls breast tumor growth in a kinase-dependent but akt-independent manner.
Neoplasia 14:719–IN19. doi: 10.1593/neo.12856

Gavilan MP, Arjona M, Zurbano A, Formstecher E, Martinez-Morales JR, Bornens M, Rios RM, Gumbiner BM.
2015. Alpha-catenin-dependent recruitment of the centrosomal protein CAP350 to adherens junctions allows
epithelial cells to acquire a columnar shape. PLOS Biology 13:e1002087. doi: 10.1371/journal.pbio.1002087

Gharbi SI, Zvelebil MJ, Shuttleworth SJ, Hancox T, Saghir N, Timms JF, Waterfield MD. 2007. Exploring the
specificity of the PI3K family inhibitor LY294002. Biochemical Journal 404:15–21. doi: 10.1042/BJ20061489

Gonzalez E, McGraw TE. 2009. The akt kinases: isoform specificity in metabolism and cancer. Cell Cycle 8:2502–
2508. doi: 10.4161/cc.8.16.9335

Greene NDE, Carmichael SL. 2010. An update to the list of mouse mutants with neural tube closure defects and
advances toward a complete genetic perspective of neural tube closure. Birth Defects Research Part A: Clinical
and Molecular Teratology 88:653–669. doi: 10.1002/bdra.20676

Grego-Bessa J, Hildebrand J, Anderson KV. 2015. Morphogenesis of the mouse neural plate depends on distinct
roles of cofilin 1 in apical and basal epithelial domains. Development 142:1305–1314. doi: 10.1242/dev.115493

Hadjantonakis A-K, Cox LL, Tam PPL, Nagy A. 2001. An x-linked GFP transgene reveals unexpected paternal x-
chromosome activity in trophoblastic giant cells of the mouse placenta. Genesis 29:133–140. doi: 10.1002/
gene.1016

Harris KP, Tepass U. 2008. Cdc42 and par proteins stabilize dynamic adherens junctions in the drosophila
neuroectoderm through regulation of apical endocytosis. The Journal of Cell Biology 183:1129–1143. doi: 10.
1083/jcb.200807020

Harris TJC, Peifer M. 2007. APKC controls microtubule organization to balance adherens junction symmetry and
planar polarity during development. Developmental Cell 12:727–738. doi: 10.1016/j.devcel.2007.02.011

Hayashi S, Lewis P, Pevny L, McMahon AP. 2002. Efficient gene modulation in mouse epiblast using a Sox2Cre
transgenic mouse strain. Mechanisms of Development 119:S97–S101. doi: 10.1016/S0925-4773(03)00099-6

Hevner RF. 2015. Brain overgrowth in disorders of RTK–PI3K–AKT signaling: a mosaic of malformations.
Seminars in Perinatology 39:36–43. doi: 10.1053/j.semperi.2014.10.006

Hirai H, Sootome H, Nakatsuru Y, Miyama K, Taguchi S, Tsujioka K, Ueno Y, Hatch H, Majumder PK, Pan B-S,
Kotani H. 2010. MK-2206, an allosteric akt inhibitor, enhances antitumor efficacy by standard chemotherapeutic
agents or molecular targeted drugs in vitro and in vivo. Molecular Cancer Therapeutics 9:1956–1967. doi: 10.
1158/1535-7163.MCT-09-1012

Hogan BL, Blessing M, Winnier GE, Suzuki N, Jones CM. 1994. Growth factors in development: the role of TGF-
beta related polypeptide signalling molecules in embryogenesis. Development (Cambridge, England).
Supplement:53–60.

Jansen LA, Mirzaa GM, Ishak GE, O’Roak BJ, Hiatt JB, Roden WH, Gunter SA, Christian SL, Collins S, Adams C,
Rivière J-B, St-Onge J, Ojemann JG, Shendure J, Hevner RF, Dobyns WB. 2015. PI3K/AKT pathway mutations
cause a spectrum of brain malformations from megalencephaly to focal cortical dysplasia. Brain 138:1613–
1628. doi: 10.1093/brain/awv045

Jaulin F, Kreitzer G. 2010. KIF17 stabilizes microtubules and contributes to epithelial morphogenesis by acting at
MT plus ends with EB1 and APC. The Journal of Cell Biology 190:443–460. doi: 10.1083/jcb.201006044

Jho E.-h., Zhang T, Domon C, Joo C-K, Freund J-N, Costantini F. 2002. Wnt/beta-Catenin/Tcf signaling induces
the transcription of Axin2, a negative regulator of the signaling pathway. Molecular and Cellular Biology 22:
1172–1183. doi: 10.1128/MCB.22.4.1172-1183.2002

Joyner AL, Martin GR. 1987. En-1 and en-2, two mouse genes with sequence homology to the drosophila
engrailed gene: expression during embryogenesis. Genes & Development 1:29–38. doi: 10.1101/gad.1.1.29

Keller R, Davidson LA, Shook DR. 2003. How we are shaped: the biomechanics of gastrulation. Differentiation
71:171–205. doi: 10.1046/j.1432-0436.2003.710301.x

Kwon C-H, Zhu X, Zhang J, Knoop LL, Tharp R, Smeyne RJ, Eberhart CG, Burger PC, Baker SJ. 2001. Pten
regulates neuronal soma size: a mouse model of lhermitte-duclos disease. Nature Genetics 29:404–411. doi:
10.1038/ng781

Lawlor MA, Mora A, Ashby PR, Williams MR, Murray-Tait V, Malone L, Prescott AR, Lucocq JM, Alessi DR. 2002.
Essential role of PDK1 in regulating cell size and development in mice. The EMBO Journal 21:3728–3738. doi:
10.1093/emboj/cdf387

Lee C, Scherr HM, Wallingford JB. 2007. Shroom family proteins regulate gamma-tubulin distribution and
microtubule architecture during epithelial cell shape change. Development 134:1431–1441. doi: 10.1242/dev.
02828

Lee J-Y, Harland RM. 2007. Actomyosin contractility and microtubules drive apical constriction in xenopus bottle
cells. Developmental Biology 311:40–52. doi: 10.1016/j.ydbio.2007.08.010

Lee J-Y, Harland RM. 2010. Endocytosis is required for efficient apical constriction during xenopus gastrulation.
Current Biology 20:253–258. doi: 10.1016/j.cub.2009.12.021

Grego-Bessa et al. eLife 2015;5:e12034. DOI: 10.7554/eLife.12034 20 of 22

Research article Cell biology Developmental biology and stem cells

http://dx.doi.org/10.1006/dbio.2000.9918
http://dx.doi.org/10.1006/dbio.2000.9918
http://dx.doi.org/10.1016/j.neuroscience.2007.10.048
http://dx.doi.org/10.1593/neo.12856
http://dx.doi.org/10.1371/journal.pbio.1002087
http://dx.doi.org/10.1042/BJ20061489
http://dx.doi.org/10.4161/cc.8.16.9335
http://dx.doi.org/10.1002/bdra.20676
http://dx.doi.org/10.1242/dev.115493
http://dx.doi.org/10.1002/gene.1016
http://dx.doi.org/10.1002/gene.1016
http://dx.doi.org/10.1083/jcb.200807020
http://dx.doi.org/10.1083/jcb.200807020
http://dx.doi.org/10.1016/j.devcel.2007.02.011
http://dx.doi.org/10.1016/S0925-4773(03)00099-6
http://dx.doi.org/10.1053/j.semperi.2014.10.006
http://dx.doi.org/10.1158/1535-7163.MCT-09-1012
http://dx.doi.org/10.1158/1535-7163.MCT-09-1012
http://dx.doi.org/10.1093/brain/awv045
http://dx.doi.org/10.1083/jcb.201006044
http://dx.doi.org/10.1128/MCB.22.4.1172-1183.2002
http://dx.doi.org/10.1101/gad.1.1.29
http://dx.doi.org/10.1046/j.1432-0436.2003.710301.x
http://dx.doi.org/10.1038/ng781
http://dx.doi.org/10.1038/ng781
http://dx.doi.org/10.1093/emboj/cdf387
http://dx.doi.org/10.1093/emboj/cdf387
http://dx.doi.org/10.1242/dev.02828
http://dx.doi.org/10.1242/dev.02828
http://dx.doi.org/10.1016/j.ydbio.2007.08.010
http://dx.doi.org/10.1016/j.cub.2009.12.021
http://dx.doi.org/10.7554/eLife.12034


Lee JD, Migeotte I, Anderson KV. 2010. Left–right patterning in the mouse requires Epb4.1l5-dependent
morphogenesis of the node and midline. Developmental Biology 346:237–246. doi: 10.1016/j.ydbio.2010.07.
029

Lietzke SE, Bose S, Cronin T, Klarlund J, Chawla A, Czech MP, Lambright DG. 2000. Structural basis of 3-
phosphoinositide recognition by pleckstrin homology domains. Molecular Cell 6:385–394. doi: 10.1016/S1097-
2765(00)00038-1

Martin-Belmonte F, Gassama A, Datta A, Yu W, Rescher U, Gerke V, Mostov K. 2007. PTEN-mediated apical
segregation of phosphoinositides controls epithelial morphogenesis through Cdc42. Cell 128:383–397. doi: 10.
1016/j.cell.2006.11.051

Meng W, Mushika Y, Ichii T, Takeichi M. 2008. Anchorage of microtubule minus ends to adherens junctions
regulates epithelial cell-cell contacts. Cell 135:948–959. doi: 10.1016/j.cell.2008.09.040

Murdoch JN, Henderson DJ, Doudney K, Gaston-Massuet C, Phillips HM, Paternotte C, Arkell R, Stanier P, Copp
AJ. 2003. Disruption of scribble (scrb1) causes severe neural tube defects in the circletail mouse. Human
Molecular Genetics 12:87–98. doi: 10.1093/hmg/ddg014

Murray JT, Campbell DG, Morrice N, Auld GC, Shpiro N, Marquez R, Peggie M, Bain J, Bloomberg GB,
Grahammer F, Land F, Wulff P, Kuhl D, Cohen P. 2004. Exploitation of KESTREL to identify NDRG family
members as physiological substrates for SGK1 and GSK3. Biochemical Journal 384:477–488. doi: 10.1042/
BJ20041057

Naguib A, Bencze G, Cho H, Zheng W, Tocilj A, Elkayam E, Faehnle CR, Jaber N, Pratt CP, Chen M, Zong W-X,
Marks MS, Joshua-Tor L, Pappin DJ, Trotman LC. 2015. PTEN functions by recruitment to cytoplasmic vesicles.
Molecular Cell 58:255–268. doi: 10.1016/j.molcel.2015.03.011

Nishimura T, Honda H, Takeichi M. 2012. Planar cell polarity links axes of spatial dynamics in neural-tube closure.
Cell 149:1084–1097. doi: 10.1016/j.cell.2012.04.021

Palazzo A, Ackerman B, Gundersen GG. 2003. Cell biology (communication arising): tubulin acetylation and cell
motility. Nature 421:230. doi: 10.1038/421230a

Park KK, Liu K, Hu Y, Smith PD, Wang C, Cai B, Xu B, Connolly L, Kramvis I, Sahin M, He Z. 2008. Promoting
axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science 322:963–966. doi: 10.
1126/science.1161566

Pearce LR, Komander D, Alessi DR. 2010. The nuts and bolts of AGC protein kinases. Nature Reviews Molecular
Cell Biology 11:9–22. doi: 10.1038/nrm2822

Pinner S, Sahai E. 2008. PDK1 regulates cancer cell motility by antagonising inhibition of ROCK1 by RhoE.
Nature Cell Biology 10:127–137. Epub 2008 Jan 20. doi: 10.1038/ncb1675

Rodriguez-Boulan E, Macara IG. 2014. Organization and execution of the epithelial polarity programme. Nature
Reviews Molecular Cell Biology 15:225–242. doi: 10.1038/nrm3775

Saal LH. 2005. PIK3CA mutations correlate with hormone receptors, node metastasis, and ERBB2, and are
mutually exclusive with PTEN loss in human breast carcinoma. Cancer Research 65:2554–2559. doi: 10.1158/
0008-5472-CAN-04-3913

Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. 2005. Phosphorylation and regulation of Akt/PKB by the rictor-
mTOR complex. Science 307:1098–1101. doi: 10.1126/science.1106148

Schoenwolf GC, Alvarez IS. 1989. Roles of neuroepithelial cell rearrangement and division in shaping of the avian
neural plate. Development 106:427–439.

Shewan A, Eastburn DJ, Mostov K. 2011. Phosphoinositides in cell architecture. Cold Spring Harbor Perspectives
in Biology 3:a004796. doi: 10.1101/cshperspect.a004796

Simeone A, Gulisano M, Acampora D, Stornaiuolo A, Rambaldi M, Boncinelli E. 1992. Two vertebrate homeobox
genes related to the drosophila empty spiracles gene are expressed in the embryonic cerebral cortex. The
EMBO Journal 11:2541–2550.

Sommer EM, Dry H, Cross D, Guichard S, Davies BR, Alessi DR. 2013. Elevated SGK1 predicts resistance of
breast cancer cells to akt inhibitors. Biochemical Journal 452:499–508. doi: 10.1042/BJ20130342

Song MS, Salmena L, Pandolfi PP. 2012. The functions and regulation of the PTEN tumour suppressor. Nature
Reviews Molecular Cell Biology 13:283–296. doi: 10.1038/nrm3330

Sperow M, Berry RB, Bayazitov IT, Zhu G, Baker SJ, Zakharenko SS. 2012. Phosphatase and tensin homologue
(pTEN) regulates synaptic plasticity independently of its effect on neuronal morphology and migration. The
Journal of Physiology 590:777–792. doi: 10.1113/jphysiol.2011.220236

Stambolic V, Suzuki A, de la Pompa JL, Brothers GM, Mirtsos C, Sasaki T, Ruland J, Penninger JM, Siderovski
DP, Mak TW. 1998. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN.
Cell 95:29–39. doi: 10.1016/S0092-8674(00)81780-8

Suzuki A, de la Pompa JL, Stambolic V, Elia AJ, Sasaki T, Barrantes Ivén del Barco, Ho A, Wakeham A, ltie A,
Khoo W, Fukumoto M, Mak TW. 1998. High cancer susceptibility and embryonic lethality associated with
mutation of the PTEN tumor suppressor gene in mice. Current Biology 8:1169–1178. doi: 10.1016/S0960-9822
(07)00488-5

Suzuki M, Morita H, Ueno N. 2012. Molecular mechanisms of cell shape changes that contribute to vertebrate
neural tube closure. Development, Growth & Differentiation 54:266–276. doi: 10.1111/j.1440-169X.2012.
01346.x

Tanaka A, Miyamoto K, Minamino N, Takeda M, Sato B, Matsuo H, Matsumoto K. 1992. Cloning and
characterization of an androgen-induced growth factor essential for the androgen-dependent growth of mouse
mammary carcinoma cells. Proceedings of the National Academy of Sciences of the United States of America
89:8928–8932. doi: 10.1073/pnas.89.19.8928

Grego-Bessa et al. eLife 2015;5:e12034. DOI: 10.7554/eLife.12034 21 of 22

Research article Cell biology Developmental biology and stem cells

http://dx.doi.org/10.1016/j.ydbio.2010.07.029
http://dx.doi.org/10.1016/j.ydbio.2010.07.029
http://dx.doi.org/10.1016/S1097-2765(00)00038-1
http://dx.doi.org/10.1016/S1097-2765(00)00038-1
http://dx.doi.org/10.1016/j.cell.2006.11.051
http://dx.doi.org/10.1016/j.cell.2006.11.051
http://dx.doi.org/10.1016/j.cell.2008.09.040
http://dx.doi.org/10.1093/hmg/ddg014
http://dx.doi.org/10.1042/BJ20041057
http://dx.doi.org/10.1042/BJ20041057
http://dx.doi.org/10.1016/j.molcel.2015.03.011
http://dx.doi.org/10.1016/j.cell.2012.04.021
http://dx.doi.org/10.1038/421230a
http://dx.doi.org/10.1126/science.1161566
http://dx.doi.org/10.1126/science.1161566
http://dx.doi.org/10.1038/nrm2822
http://dx.doi.org/10.1038/ncb1675
http://dx.doi.org/10.1038/nrm3775
http://dx.doi.org/10.1158/0008-5472-CAN-04-3913
http://dx.doi.org/10.1158/0008-5472-CAN-04-3913
http://dx.doi.org/10.1126/science.1106148
http://dx.doi.org/10.1101/cshperspect.a004796
http://dx.doi.org/10.1042/BJ20130342
http://dx.doi.org/10.1038/nrm3330
http://dx.doi.org/10.1113/jphysiol.2011.220236
http://dx.doi.org/10.1016/S0092-8674(00)81780-8
http://dx.doi.org/10.1016/S0960-9822(07)00488-5
http://dx.doi.org/10.1016/S0960-9822(07)00488-5
http://dx.doi.org/10.1111/j.1440-169X.2012.01346.x
http://dx.doi.org/10.1111/j.1440-169X.2012.01346.x
http://dx.doi.org/10.1073/pnas.89.19.8928
http://dx.doi.org/10.7554/eLife.12034


Trotman LC, Niki M, Dotan ZA, Koutcher JA, Di Cristofano A, Xiao A, Khoo AS, Roy-Burman P, Greenberg NM,
Dyke TV, Cordon-Cardo C, Pandolfi PP, Hastie N. 2003. Pten dose dictates cancer progression in the prostate.
PLoS Biology 1:e59. doi: 10.1371/journal.pbio.0000059

Vasudevan KM, Barbie DA, Davies MA, Rabinovsky R, McNear CJ, Kim JJ, Hennessy BT, Tseng H, Pochanard P,
Kim SY, Dunn IF, Schinzel AC, Sandy P, Hoersch S, Sheng Q, Gupta PB, Boehm JS, Reiling JH, Silver S, Lu Y,
Stemke-Hale K, Dutta B, Joy C, Sahin AA, Gonzalez-Angulo AM, Lluch A, Rameh LE, Jacks T, Root DE, Lander
ES, Mills GB, Hahn WC, Sellers WR, Garraway LA. 2009. AKT-independent signaling downstream of oncogenic
PIK3CA mutations in human cancer. Cancer Cell 16:21–32. doi: 10.1016/j.ccr.2009.04.012

Walker KS, Deak M, Paterson A, Hudson K, Cohen P, Alessi DR. 1998. Activation of protein kinase B beta and
gamma isoforms by insulin in vivo and by 3-phosphoinositide-dependent protein kinase-1 in vitro: comparison
with protein kinase B alpha. Biochemical Journal 331:299–308. doi: 10.1042/bj3310299

Waterman-Storer CM, Salmon WC, Salmon ED. 2000. Feedback interactions between cell-cell adherens
junctions and cytoskeletal dynamics in newt lung epithelial cells. Molecular Biology of the Cell 11:2471–2483.
doi: 10.1091/mbc.11.7.2471

Wilkinson DG, Bhatt S, Chavrier P, Bravo R, Charnay P. 1989. Segment-specific expression of a zinc-finger gene
in the developing nervous system of the mouse. Nature 337:461–464. doi: 10.1038/337461a0

Wilkinson DG, Bhatt S, Herrmann BG. 1990. Expression pattern of the mouse T gene and its role in mesoderm
formation. Nature 343:657–659. doi: 10.1038/343657a0

Williams M, Yen W, Lu X, Sutherland A. 2014. Distinct apical and basolateral mechanisms drive planar cell
polarity-dependent convergent extension of the mouse neural plate. Developmental Cell 29:34–46. doi: 10.
1016/j.devcel.2014.02.007

Worby CA, Dixon JE. 2014. PTEN. Annual Review of Biochemistry 83:641–669. doi: 10.1146/annurev-biochem-
082411-113907

Ybot-Gonzalez P, Savery D, Gerrelli D, Signore M, Mitchell CE, Faux CH, Greene NDE, Copp AJ. 2007.
Convergent extension, planar-cell-polarity signalling and initiation of mouse neural tube closure. Development
134:789–799. doi: 10.1242/dev.000380

Yue Q, Groszer M, Gil JS, Berk AJ, Messing A, Wu H, Liu X. 2005. PTEN deletion in bergmann glia leads to
premature differentiation and affects laminar organization. Development 132:3281–3291. doi: 10.1242/dev.
01891

Zallen JA, Zallen R. 2004. Cell-pattern disordering during convergent extension in Drosophila. Journal of Physics:
Condensed Matter 16:S5073–S5080. doi: 10.1088/0953-8984/16/44/005

Zhou J, Parada LF. 2012. PTEN signaling in autism spectrum disorders. Current Opinion in Neurobiology 22:873–
879. doi: 10.1016/j.conb.2012.05.004

Zoncu R, Efeyan A, Sabatini DM. 2011. MTOR: from growth signal integration to cancer, diabetes and ageing.
Nature Reviews Molecular Cell Biology 12:21–35. doi: 10.1038/nrm3025

Grego-Bessa et al. eLife 2015;5:e12034. DOI: 10.7554/eLife.12034 22 of 22

Research article Cell biology Developmental biology and stem cells

http://dx.doi.org/10.1371/journal.pbio.0000059
http://dx.doi.org/10.1016/j.ccr.2009.04.012
http://dx.doi.org/10.1042/bj3310299
http://dx.doi.org/10.1091/mbc.11.7.2471
http://dx.doi.org/10.1038/337461a0
http://dx.doi.org/10.1038/343657a0
http://dx.doi.org/10.1016/j.devcel.2014.02.007
http://dx.doi.org/10.1016/j.devcel.2014.02.007
http://dx.doi.org/10.1146/annurev-biochem-082411-113907
http://dx.doi.org/10.1146/annurev-biochem-082411-113907
http://dx.doi.org/10.1242/dev.000380
http://dx.doi.org/10.1242/dev.01891
http://dx.doi.org/10.1242/dev.01891
http://dx.doi.org/10.1088/0953-8984/16/44/005
http://dx.doi.org/10.1016/j.conb.2012.05.004
http://dx.doi.org/10.1038/nrm3025
http://dx.doi.org/10.7554/eLife.12034

