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SMILES (simplified molecular-input line-entry system) information of small molecules parsed by one-hot array is passed to a 

convolutional neural network called black box. Outputs data representing a gene signature is then matched to the genetic signature 

of a disease to predict the appropriate small molecule. Efficacy of the predicted small molecules is examined by in vivo animal models. 

GSEA, gene set enrichment analysis.
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Once a target protein has been associated with the onset and 

progression of a certain disease, the initial ‘hit’ compounds 

are largely discovered by either high-throughput screening 

(HTS) or chemical design based on the target protein struc-

ture (Schenone et al., 2013). This process, which is common-

ly referred to as target-based drug discovery (TDD), has been 

quite successful. However, the TDD approach requires ‘target 

identification,’ which demands tremendous efforts during 

the pre-discovery process. However, once a cellular plat-

form to explore pathogenic phenotypes is established (e.g., 

disease-in-a-dish from patient-derived stem cells), HTS (or 

content screening) can be performed to identify candidate 

compounds to alleviate or reverse the pathogenic pheno-

types (Schenone et al., 2013). The recent advances in pheno-

type-based drug discovery and gene editing technology have 

enabled the establishment of isogenic pairs of patient-derived 

stem cells (Park et al., 2022). Disease-induced transcriptome 

profiles are not only the consequences of disease but can 

also provide clues regarding its potential causes (i.e., the 

mechanism of disease onset). Therefore, in-depth analyses of 

transcriptome profiles from disease models often provide cru-

cial insights into the mechanisms of pathogenesis and enable 

the discovery of valuable target proteins (Casamassimi et al., 

2017). Furthermore, a growing number of studies have in-

corporated disease-associated transcriptome signatures into 

the drug discovery process (Kwon et al., 2019). For exam-

ple, the connectivity Map (CMap) approach can be used to 

inversely match drug- or compound-induced transcriptome 

profiles with disease signatures (Kwon et al., 2020).

 Zhu et al. (2021) developed a deep learning-based efficacy 

prediction system (DLEPS) model to facilitate drug discov-

ery. Unlike CMAP, where chemically inducible changes in 

transcriptional profiles (CTPs) are experimentally assessed, 

the DLEPS model is a deep neural network that is trained 

using input from simplified molecular-input line-entry system 

(SMILES) data (i.e., a line-based specification for the descrip-

tion of chemical structures) and CTPs from the L1000 proj-

ect (Subramanian et al., 2017), an extended transcriptome 

profile of chemical or genetic perturbations. First, each small 

molecule, which is first represented by SMILES, is vectorized 

into a single array and projected into a two-dimensional la-

tent space. This latent space is a virtual space that is further 

decoded into 978 landmark gene signatures. These landmark 

genes, which are converted into 12,328 genes via linear 

transformation, are used as input to perform gene set enrich-

ment analysis based on the ranks of their expression levels. 

Through DLEPS, the authors virtually produce a correlation 

network between the chemical structure of small molecules 

and putative gene expression signatures. Therefore, this 

DLEPS algorithm allows for the establishment of links be-

tween gene signatures, pathogenic responses, and specific 

small molecules.

 To validate this system, the authors first attempted to pre-

dict putative anti-obesity molecules based on 150 unbiased 

up- and down-regulated genes identified by comparing 

brown adipose tissue (BAT) to white adipose tissue (WAT) 

using a library containing a total of 3680 small molecules 

(D3680 library: including U.S. Food and Drug Administration 

approved drug or natural compounds). The four predicted 

molecules, including isoginkgetin, chelidonine, loureirin B, 

and chikusetsusaponin IV, were tested in a high-fat diet 

mouse model to confirm their weight reduction effect. Inter-

estingly, such weight loss is achieved through the activation 

of genes associated with BAT and adaptive thermogenesis 

without significant alterations in food intake or daily exercise 

activity, suggesting the potential of these compounds as nov-

el anti-obesity drug candidates. Therefore, the authors con-

cluded that treating the mice with the natural compounds 

predicted by the DLEPS model promotes the browning of 

WAT. Similarly, this model was applied to identify candidate 

drugs for the treatment of hyperuricemia (HUA), a chronic 

metabolic disorder characterized by the occurrence of in-

flammation and renal fibrosis. Based on the corresponding 

gene signature, the authors calculated an HUA score and in-

flammation/fibrosis score as the inputs for the DLEPS model 

and identified four candidate compounds out of the D3680 

library. Experimental validation with an HUA mouse model 

demonstrated that perillene, a natural compound derived 

from ‘Perilla frutescens,’ could effectively lower blood uric acid 

levels and this therapeutic effect was similar to that of com-

mercial anti-HUA drugs such as allopurinol, benzbromarone, 

topiroxostat, and febuxostat. Other HUA symptoms such as 

blood urea nitrogen, serum creatinine, alanine aminotrans-

ferase (ALT), aspartate aminotransferase (AST), kidney index 

(ratio of kidney and body weight), and the level of fibrosis of 

renal tubules were also ameliorated by perillene treatment. 

The authors also reported that perillene inhibits xanthine 

oxidase by direct interaction, which was likely the mode of 

action of this compound. A similar approach was adopted 

to identify drug candidates for nonalcoholic steatohepatitis 

(NASH) from a clinical trial database including 11,293 com-

pounds (D11294 library). The two predicted compounds 

trametinib and GI02002 effectively reduced the level of ALT, 

AST, and triglyceride levels in a NASH mouse model, which 

was established by feeding the mice with a methionine-and 

choline-deficient diet. Trametinib is an inhibitor of MEK1 and 

impedes ERK1/2 activation, which was previously demon-

strated to inhibit glucose and lipid metabolism. The authors 

also examined the effectiveness of other ERK inhibitors such 

as ravoxertinib and FR180204.

 The continuous development of large-scale datasets of 

drug (or small molecule)-induced transcriptomic patterns (i.e., 

drug-omics datasets) will thus enable the creation of learning 

models to link small molecules to gene signatures associated 

with specific diseases. In turn, this would greatly promote 

the development of data-driven drug discovery. The refine-

ment of deep learning models also poses several important 

challenges (Zhao and So, 2019) and therefore additional 

efforts are needed to experimentally validate these models. 

The accuracy of a deep learning model greatly depends on 

the size of the training dataset. However, current datasets 

from compounds and transcriptomes of disease models are 

relatively insufficient. Therefore, alternative approaches such 

as ‘transfer learning’ could enable the development of deep 

learning-based drug discovery (Chiu et al., 2021) by minimiz-

ing overfitting and uncertainty.

 The study by Zhu et al. (2021) successfully validated the 

efficacy of drugs and natural compounds predicted by 
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their deep learning model based on disease-specific gene 

signatures. Considering the complexity of the molecular 

mechanisms that underly disease onset and progression, dis-

ease-specific gene signatures must be precisely characterized 

and defined to avoid overlap with other similar diseases for 

further clinical applications. Various deep learning systems 

are also being extensively developed to interpret biological 

networks such as complex protein-protein interactions and 

signaling cascades (Muzio et al., 2021). Therefore, highly 

sophisticated deep learning systems for drug prediction could 

be developed by training the algorithms with disease-specific 

gene signatures and biological network datasets.
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