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Objectives: Abnormal trophoblast behaviors during pregnancy contribute to the
development of preeclampsia (PE). Syntaxin2 (STX2) has been shown to be a crucial
epithelial mediator in numerous diseases. However, the functions of STX2 and the
mechanisms underlying its role in PE remain largely unknown. The aim of this study
was to explore the role of STX2 on trophoblast biology and unravel the molecular
mechanisms that contribute to the development and progression of PE.

Materials and Methods: We first compared the expression of STX2 in placental tissues
from women with PE and women with normal pregnancies. Then, we investigated the
role of STX2 on trophoblast proliferation, migration and invasion in HTR-8/SVneo and
primary human trophoblast cells by loss or gain of function experiments. In addition,
co-immunoprecipitation, pulldown and immunofluorescence assays were performed
to investigate the co-localization of STX2 with other proteins, and to help clarify the
mechanisms underlying STX2-mediated functions on trophoblasts.

Results: We demonstrated that STX2 expression was downregulated in placental
tissues of women with PE compared with those from normal pregnancies. Loss
and gain of function experiments further confirmed a role for STX2 in cell
proliferation, migration and invasion in trophoblasts. By co-immunoprecipitation,
pulldown and immunofluorescence co-localization assays, we revealed that STX2
selectively interacted with p85, a subunit of PI3K, and directly recruited p85 to the
cytomembrane, thereby activating the AKT signaling pathway. We further demonstrated
that the AKT activation was abolished by the use of a PI3K inhibitor (LY294002), which
negatively affected STX2-mediated functions on trophoblasts.

Conclusion: All together, our findings point to a crucial role for STX2 in PE progression.
Our new insights also suggest that STX2 may be a potential diagnostic tool and a novel
therapeutic target for treating PE.
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INTRODUCTION

Preeclampsia (PE) is a pregnancy complication characterized by
high blood pressure, excess protein excretion in the urine and
multiple organ dysfunction. With an incidence rate of 3–5%
among pregnancies, PE accounts for a substantial number of
maternal and neonatal deaths, and premature birth (Ukah et al.,
2018). Currently, the usual therapy for PE is to give birth, but
in certain cases this might not be possible given lack of fetal
maturity (Esteve-Valverde et al., 2018). Although some factors
have been shown to facilitate PE, including aspects of trophoblast
dysfunction, such as the inadequate remodeling of the helicine
artery, and immune dysfunction and excessive cell apoptosis,
the exact pathogenesis and etiology of PE have remained largely
unexplored (Sircar et al., 2015). Therefore, there is a pressing
neeed for understanding the specific molecular mechanisms
underlying PE, with the aim to find better therapies for this
condition and also better strategies for preventing PE.

Syntaxin2 (STX2, also known as epimorphin) is an important
member of the syntaxin family (Chen et al., 2009). The
C-terminal domain of STX2 can bind to the cytomembrane,
and STX2 acts as a key epithelial morphoregulator via its
N-terminal domain (Miura et al., 2007). STX2 is reported to be
involved in the morphogenesis and activation of epithelial cells
in multiple tissues (Hirai et al., 1992, 1998), such as pancreatic
ducts (Tulachan et al., 2006), the mammary gland (Hirai et al.,
1998), the lung (Koshida and Hirai, 1997), and the intestinal
epithelium (Fritsch et al., 2002). STX2 is also involved in the
progression and metastasis of various cancers, such as mammary
adenocarcinoma (Bascom et al., 2005), hepatocellular carcinoma
(Jia et al., 2011), ovarian cancer (Yew et al., 2013), and colorectal
cancer (Wang et al., 2018). Overall, these findings suggest a
role for STX2 in cell proliferation, invasion and metastasis.
However, the specific biological functions of STX2 and associated
molecular mechanisms underlying the development of PE remain
largely unknown.

A number of studies have shown a role for the AKT pathway
preeclampsia pathogenesis (Wang et al., 2019; Chen et al., 2020),
including its association with malformations in the developing
placental labyrinth (Laguë et al., 2010; Tong et al., 2016).
Downregulation of p-AKT in the extravillous trophoblast cells
impacts the growth and invasion of these cells (Xu Y. et al.,
2019). In addition, STX2 displayed anti-oxidative function via the
activation of PI3K/AKT signaling pathways in intestinal epithelial
cells (Iizuka et al., 2007).

The aim of this study was to examine the expression of
STX2 protein in the placentas of women with PE. Our results
indicate that STX2 protein expression was lower in the placenta
of women with PE than in the placenta of women without PE.
Using a combination of loss and gain of function experiments,
we suggest a role for STX2 in promoting trophoblast growth
and invasion potentially via the membrane recruitment of p85,
a regulatory subunit of PI3K, which could lead to AKT activation
in women with PE. Based on our findings, we propose that STX2
constitutes a novel biomarker that could be helpful in the early
diagnosis of PE as well as a potential therapeutic target in this
pregnancy complication.

MATERIALS AND METHODS

Patients and Samples
Normal placentas (n = 35) were obtained from full-term births
after cesarean section. Age-matched placentas were obtained
from women severe preeclampsia (n = 40) after cesarean section.
All placentas involved in this study were collected by procedures
of planned cesarean section without aid of artificial labor.
Placental tissues were obtained by a certified doctor by making
a vertical incision across a normal area at the center, involving
fetal and maternal placental surfaces. Tissues having calcified
deposits or clots were excluded. The experiments were approved
by the Ethics Committee of the Affiliated Hospital of Qingdao
University, China. All volunteers participating in this study
signed a written informed consent.

Cell Culture
HTR-8/SVneo cells were acquired from the China Center for
Type Culture Collection and kept in culture for all experiments.
10% (vol/vol) FBS/DMEM F12 was utilized for culturing the
trophoblast line in an incubator at a temperature of 37◦C
at 5% CO2.

Isolation and Culture of Primary Human
Trophoblast Cells
Term placentas were collected from uncomplicated pregnancies
after cesarean delivery. Isolation and culture of primary
human trophoblast cells was done according to conventional
methods. Specifically, we used a protocol based on the classic
trypsin digestion and Percoll gradient centrifugation method,
as previously described (Kliman et al., 1986; Sagrillo-Fagundes
et al., 2016). In brief, the placental tissue was washed, sheared,
and weighed, and digested in a solution containing trypsin
and DNAse. The supernatant was collected and the pellet was
kept. This process was performed in order to discard the outer
syncytium and to keep the underlying trophoblasts. The pellet
was then purified by centrifugation in a Percoll gradient, which
allowed collection of the trophoblasts. At last, the trophoblasts
were kept in culture using warm DMEM-HG (Thermo Fisher
Scientific) with 10% vol/vol FBS.

Transient Transfection and Lentivirus
Infection
SiRNA transient transfections and lentivirus infection were
performed with Lipofectamine 3000 (Invitrogen, California), as
per manufacturer’s instruction. For cell transfection, lentiviruses
containing either a non-targeting scrambled shRNA (Control)
or a STX2-specific shRNA (sh-STX2) were used in gene-
knockdown experiments (Hanbio, Shanghai, China). Control
lentivirus (Vector) and lentiviral constructs expressing full-
length STX2 (STX2) (Hanbio, Shanghai, China) were used for
overexpression experiments. Green fluorescent protein (GFP)
(Hanbio, Shanghai, China) was used for the selection of
stable transfection.
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In order to establish cell lines with consistent silencing
or overexpression of STX2, we isolated single clones after
puromycin treatment of the transfected cells.

The shRNAs sequences used were as follows: Control,
5′-GCAAGCTGACCCTGAAGTT-3′; sh-STX2, 5′-GCTTGAAG
ATCTGAACAAA-3′.

qRT-PCR Experiments (Quantitative
Real-Time Polymerase Chain Reaction)
Total RNA was extracted with a Trizol reagent (Takara, Japan).
Complementary DNAs were synthesized by using commercial
reverse transcription kits (Invitrogen). qRT-PCR was performed
with a SYBR Premix Ex Taq kit (Takara, Japan) and an ABI 7500
Sequencing Detection System, with β-Tubulin acting as a control.

The following primer sequences were used: STX2, forward,
5′-GCTCGGGACAGGCTTGAG-3′, reverse, 5′-GTCTGTGGTG
GTTCTCCCAG-3′; β-Tubulin forward, 5′-TCCGAGTACCAGC
AGTACCA-3′, reverse, 5′-ACAGAGGCAAAACTGAGCAC-3′.

Western Blot
Cell lysis was conducted on ice with RIPA buffer (Sigma-
Aldrich, St. Louis, United States). Cell lysates were centrifuged
at 12,000 × g for 20 min and treated with 5x protein
loading buffer. The membrane protein was isolated using the
MinuteTM Plasma Membrane Protein Isolation Kit (SM-005,
Invent Biotechnologies). Protein aggregates were then separated
by SDS-PAGE and electro-transferred onto a PVDF membrane
(Bio-Rad, Hercules, United States). Membranes were blocked
in 5% (wt/vol) instant skim milk for 1 h at room temperature.
Membranes were incubated at 4◦C overnight with primary
antibodies (SXT2 (ab12369, Abcam, Cambridge, MA; 1:1,000),
p-AKT (ser473, #4060, CST; 1:1,000), AKT (#4685, CST; 1:1,000),
p-GSK3β (ser9, #5558, CST; 1:1,000), β-catenin (#8480, CST;
1:1,000), β-Tubulin (#15115, CST; 1:5,000), PI3K p85 (#4257,
CST; 1:1,000), PI3K p110α (#4249, CST; 1:1,000), PI3K p110β

(#3011, CST; 1:1,000).
Following incubation with the primary antibody, membranes

were then washed and incubated with secondary antibodies (1:
1,000; CST, Danvers, United States). Protein-antibody complexes
were detected and quantified with a chemiluminescence
detection system (Bio-Rad, United States?).

Immunohistochemistry
Immunohistochemical analysis of placental tissues was
performed on 4-µm paraffin sections. After dewaxing and
rehydration, sections were treated with citric acid for antigen
retrieval and blocked in 10% (wt/vol) Bovine Serum Albumin
(BSA). Incubation with the primary antibody (polyclonal
anti-SXT2 (ab12369, Abcam, Cambridge, MA; 1:500) was
performed overnight at 4◦C in a humid chamber. Slides were
then washed with PBS and incubated with a secondary antibody
(1:500; biotinylated secondary antibody; ZSGB-BIO) for 20 min
at room temperature. Slides were then washed again in PBS
and chromogenic detection was performed using a DAB
(diaminobenzidine tetrahydro chloride) reagent kit was for
2–5 min, with hematoxylin used as counterstain. Imaging was

performed with a Leica DM4000B microscope (Germany).
Protein expression levels was performed with Image-Pro Plus 5.1
soft by two independent investigators blinded to the subgroups.

Immunofluorescence
STX2-specific shRNA treated trophoblasts (HTR-8 or primary
human trophoblast cells) were cultured for 24 h. To permeabilize
cells for immunofluorescence assays, incubation with 0.5%
(vol/vol) TritonX-100 for 15 min at room temperature was
performed. Cells were then blocked with 6% (wt/vol) goat serum,
and incubated with anti- PI3K p85 (ab86714, Abcam; 1:100)
overnight at 4◦C. Cells were then washed and incubated with a
fluorescence-labeled second antibody (anti-488; AS001, abclonal;
1:300) for 1 h at room temperature. Then, cells were incubated
with the anti-SXT2 antibody (ab12369, Abcam; 1:100) for 1.5
h and with another fluorescence-labeled second antibody (anti-
CY3; AS007, abclonal; 1:300) for 1 h. Cells were washed once
again and stained with DAPI (Guangzhou RiboBio, China; 1
µg/mL) for 5 min at room temperature. Imaging was performed
on a confocal fluorescence microscope.

CCK-8 Analysis
Cells (5 × 103/well) were seeded in 96-well plates. Cell
proliferation was monitored every day using a CCK-8 reagent
(Thermo Fisher Scientific, Massachusetts, United States). Briefly,
CCK-8 reagent was added to each well and cells were kept in
culture for an extra period of 1.5 h. Colorimetric assays were
then performed by measuring optical densities (OD) at 450
nm for each well using a microplate reader. Three independent
experiments were performed to determine the growth curves.

EdU Assay
The Click-iT R© EdU Alexa Fluor R© 488 Cell Proliferation Assay Kit
(Molecular Probes, Invitrogen, OR, United States) was used to
perform the EdU assay according to manufacturer’s instructions.
Briefly, cells were treated prior to pulse-labeling with 10 µM and
0.1 µM EdU for 3 h.

Harvested cells were washed twice with 1% BSA. Following
incubation in Click-iT R© fixative for 15 min in the dark, cells
were washed in a saponin-based permeabilization and washing
reagent (1×). Then, the cells were incubated in 1 × Click-iT R©

EdU reaction cocktail for 30 min in the dark and washed again.
Finally, cellular DNA was stained with a DNA staining solution
prepared according to manufacturer’s instructions. Samples
were analyzed with a BD FACSCaliburTM flow cytometer (BD
Biosciences, San Jose, CA).

Ki67 Cell Proliferation Assay
Harvested cells (about 1× 106) were incubated with an anti Ki67-
FITC monoclonal antibody (clone MIB-1, DAKO, Glostrup,
DK) following use of Leucoperm reagents A and B (Serotec)
and lysing solution dissolution treatment (BD lysing solution,
Becton Dickinson, San Josè, CA, United States). Then, samples
were resuspended, washed and immediately analyzed on a BD
Accuri C6 flow cytometer (Becton Dickinson). A minimum of
10,000 cells were acquired both for immunophenotype and Ki67
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determination. The CFlow Plus software (Becton Dickinson) was
used to analyze the data. Cell proliferative activity was based
on the percentage of Ki67 positive cells (KI67I). Results were
shown in the form of a scattergram gate of FSC vs. SSC, and
the percentage of positive cells was calculated based on SSC vs.
fluorescence intensity values.

Transwell Assay
Treated cells (5 × 104/well, 100 µL) without FBS were seeded
in the upper chamber of Transwell plates (Corning, NY,
United States) with 8 µm membrane. Then, 750 µL complete
culture medium with 10% (vol/vol) FBS was added to the lower
chamber. For the invasion assay, the membrane was covered with
100 µL BD MatrigelTM matrix at a 1:8 dilution. Then, cells were
cultured for 16–24 h, fixed with 4% paraformaldehyde and dyed
with a crystal violet solution. The number of penetrated cells on
the membrane was considered a measure of the cell migration
and invasion capability. Experiments were done in triplicate.

Colony Forming Assay
To observe the colony formation condition of cells, about 1,000
HTR-8/SVneo or JEG-3 primary human trophoblast cells cells
were seeded separately in six-well plates. After 14 days, colonies
were fixed in paraformaldehyde solution and dyed with a crystal
violet solution.

Co-immunoprecipitation (Co-IP) and GST
Pull-Down Assay
Cells were lysed in a lysis buffer (Pierce, Rockford, United States).
Lysates were then centrifuged and the supernatant was cleared
by incubation with Protein A/G magnetic beads (Thermo Fisher
Scientific) at 4◦C temperature for one hour. The pre-cleared
supernatant was then immunoprecipitated by incubation with
the primary antibody SXT2 (ab3265, Abcam; 1:200) overnight at
4◦C. Protein complexes were then incubated with Protein A/G
magnetic beads for 1 h at 4◦C and analyzed by western blot.

The proteins tagged with GST and His were amplified in
Escherichia coli BL. Following the instructions, GST-tagged
proteins were incubated with glutathione-Sepharose 4B beads
(Amersham Biosciences) for purification. His-tagged proteins
were purified by nickel affinity resins (Merck). After adding
20 µm of glutathione-Sepharose 4B beads, the proteins tagged
with His and GST or GST alone protein were mingled in PBS
binding buffer (Takara’s PBS, pH 7.4, 4◦C, 2 h) and then the
mixture was cultured for 1 h with nutation. Finally, the beads
were washed and eluted with 2x SDS sample buffer for western
blot analysis.

Statistical Analysis
Unpaired two-tail t-test was used to perform all statistical
analyses. All data were reported as the mean ± standard error
mean deviations from at least three independent experiments.
GraphPad Prism version 7.00 software program (GraphPad; La
Jolla, United States) was used to analyze the data. A p-value of
less than 0.05 was considered statistically significant.

RESULTS

STX2 Is Downregulated in the Placenta
of Pregnant Women With PE
To investigate if STX2 protein expression was altered in the
placenta of women with PE, we obtained placental tissues
from 35 females with normal pregnancy and from 40 women
with PE. Using immunostaining techniques, we observed that
STX2 proteins were largely localized on the cellular membrane
and cytoplasm of cytotrophoblasts (Figure 1A). Based on our
analysis, STX2 protein had a lower expression level in the
PE group than in the control (NC) group. Analysis of STX2
mRNA levels, by qRT-PCR, and of STX2 protein levels, by
western blot, in placental tissues further confirmed the IHC
results (Figures 1B,C). All together, these results demonstrate
that STX2 expression downregulated significantly in the placenta
of women with PE.

STX2 Promoted Proliferation, Migration,
and Invasion of Trophoblasts
To further explore the expression of STX2 in placental
trophoblast cells, we used HTR-8/SVneo cell lines and
primary human trophoblast cells for STX2 knockdown and
overexpression experiments. Analysis of mRNA and protein
levels was used to evaluate the efficacy of lentivirus transfection
(Figures 2A,B). EdU assays and clone forming assays were used
to determine the proliferation ability of trophoblast cells with
different treatments. We observed that cell proliferation was
reduced substantially in HTR-8/SVneo and primary human
trophoblast cells with Sh-STX2 expression, but increased in
these cells, compared with their control cells (Figures 2C,D).
CCK-8 assays and Ki67 cell proliferation assays provided the
similar results (Supplementary Figures 1A,B). Transwell assay
suggested that STX2 knockdown significantly reduced cell
migration and invasion, while STX2 overexpression promoted
these behaviors (Figure 2E). These results suggest that STX2
may have a role in placental trophoblasts by regulating their
proliferation, migration, and invasion capability.

STX2 Activated AKT Signaling Pathway
via Membrane Recruitment of PI3K p85
AKT pathway plays a critical role in trophoblastic growth,
migration and invasion (Zhu et al., 2016; Wang et al., 2019; Xu
B. et al., 2019). STX2 has been shown to regulate several different
signaling pathways or molecular factors, such as FAK/ERK (Jia
et al., 2011), β-catenin (Yew et al., 2013), and NF-κB (Wang
et al., 2018). Based on previous studies that investigate the cross-
talk between STX2 and these classical signaling pathways, it is
reasonable to speculate that STX2 may regulate AKT signaling
pathway activation in PE. We examined activation of AKT in
both HTR8/SVneo and primary human trophoblast cells. We
observed that, in stably transfected cells, levels of phosphorylated
AKT (Ser473), as well as its downstream genes, including
phosphorylated GSK3β (ser9) and β-catenin (Katoh and Katoh,
2006; Song et al., 2018; Xu B. et al., 2019) changed according to
changes in STX2 levels (Figure 3A).
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FIGURE 1 | STX2 is downregulated in the placenta of PE pregnancies. (A) Representative images of IHC staining of STX2 in normal control (NC; n = 35) tissues and
PE (n = 40) tissues. Scale bar: 100 µm (100×); 50 µm (400×). Student’s t-test: ***P < 0.001. (B) Relative STX2 mRNA levels of placenta tissues from pregnant
women with PE or normal control pregnancy (NC) as detected by qRT-PCR (n = 4/group). (C) Relative STX2 protein levels of placenta tissues from pregnant women
with PE or normal control pregnancy as detected by western blot (n = 4/group). β-Tubulin was used for normalization. All the experiments were repeated three times
independently.

As shown in Figure 1A, STX2 protein was found to
be located on the cytomembrane and cytoplasm. It’s been
shown that some membrane proteins can interact with PI3K
and enhance phosphatidylinositol-3,4,5-trisphosphate (PIP3)
production, thus activating the AKT signaling pathway (Zhang
et al., 2013; Zhou et al., 2019). In addition, STX2 has been
reported to interact with TRAF6 to activate the NF-κB pathway
in colorectal cancer cell lines (Wang et al., 2018). Based on
these findings, we wondered if STX2 was able to recruit PI3K
directly to the cytomembrane to activate the AKT pathway
in trophoblasts. Our co-immunoprecipitation results suggested
that STX2 could be bound to p85, a regulatory subunit of
PI3K, but exhibited little affinity with p110α and p110β, the
catalytic subunits of PI3K (Figure 3B). GST pull-down assay
further demonstrated that STX2 directly bound to p85 in vitro
(Figure 3C). Immunofluorescence analysis further confirmed
that STX2 and p85 proteins co-localized on the cytomembrane
and cytoplasm of control group in HTR8/SVneo and primary
trophoblast cells. In contrast, STX2 and p85 proteins were
found to be scattered separately in the cytoplasm of cells in Sh-
STX2 groups (Figure 3D). Then we extracted the membrane
protein of the two cells, western blot showed that the protein

expression of p85 was decreased significantly in the sh-STX2
groups (Figure 3E). We have also performed IHC staining of
phosphorylated AKT (Ser473) in the placental tissues of women
with PE previously described in Figure 1A. We observed that
STX2 protein expression was positively correlated with p-AKT
expression in a statistically significant manner (Figure 3F).
Overall, these results suggest that STX2 may modulate AKT
signaling pathway via recruitment of PI3K to the membrane.

STX2 Promotes Trophoblast
Proliferation, Migration, and Invasion via
Activation of the AKT Pathway
To investigate the role of AKT in STX2-induced trophoblast
proliferation, migration and invasion, cells were treated with
an inhibitor of PI3K (LY294002). We transfected the above
two cells with a sh-STX2-expressing lentivirus construct, and
thus reversed the expression of STX2 (Figure 4A). Then, all
stably transfected cells were treated either with LY294002 or
DMSO for 48 h. Interestingly, after excluding off-target effects
of the shRNA overexpression, we observed that STX2 effectively
reversed the activation of the AKT pathway. However, use of the
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FIGURE 2 | STX2 promotes proliferation, migration and invasion of trophoblast cells. (A) qRT-PCR analysis and (B) western blot analysis of STX2 expressions in
HTR-8/SVneo and primary human trophoblast cells transfected with Sh-STX2 and STX2-expressing lentivirus. (C) EdU assay and (D) colony forming assay of
control and experimental cells in which STX2 was knocked down or overexpressed. Down-regulated STX2 reduced cell proliferation, whereas up-regulated STX2
increased cell proliferation. (E) Transwell assays of control and experimental cells in which STX2 was knocked down or overexpressed. Down-regulated STX2
inhibited cell migration and invasion, whereas up-regulated STX2 promoted cell migration and invasion. All the experiments were repeated three times independently.
Data are represented as the mean ± SEM. Student’s t-test: **P < 0.01.
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FIGURE 3 | STX2 activates the AKT signaling pathway via membrane recruitment of PI3K p85. (A) Western blot analysis of p-AKT (ser473), AKT, p-GSK3β(ser9),
and β-catenin in stably transfected HTR-8/SVneo and primary human trophoblast cells. β-Tubulin was used for normalization. (B) Co-IP results showing cell lysates
were immunoprecipitated (IP) with antibodies for STX2, followed by western blot using PI3K p85, PI3K p110α, PI3K p110β, or STX2 antibodies. (C) GST pull-down
assay was performed to clarify the binding between STX2 and PI3K p85 in vitro. (D) Confocal microscopy detection of subcellular distribution of STX2 (red) and PI3K
p85 (green) in HTR-8/SVneo and primary human trophoblast cells transfected with Sh-STX2. Scale bar: 25µm. (E) Western blot analysis of the expression of p85 in
membrane protein of control and experimental cells in which STX2 was knocked down. (F) Representative images of IHC staining for STX2 and p-AKT (ser473) in
patients with PE (n = 4/group). Data are represented as the mean ± SEM. Student’s t-test: **P < 0.01. All the experiments were repeated three times independently.
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FIGURE 4 | STX2 promotes trophoblasts proliferation, migration and invasion through activating PI3K-AKT pathway. (A,B) Western blot analysis of p-AKT (ser473),
AKT in indicated stably transfected HTR-8/SVneo and primary human trophoblast cells treated with LY294002 (PI3K inhibitor, 10 µM) or DMSO (negative control) for
48 h. (C) EdU assay and (D) colony forming assay were used to evaluated the proliferation of control and experimental cells in which STX2 was stably transfected
with or without LY294002 treatment. (E) Transwell assays were used to evaluated the migration and invasion of control and experimental cells in which STX2 was
stably transfected with or without LY294002 treatment. All the experiments were repeated three times independently. Data are represented as the mean ± SEM.
Student’s t-test: ***P < 0.01.
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FIGURE 5 | The diagrammatic presentation of the underlying mechanism of STX2 promoting PE development. STX2 activated the PI3K-AKT pathway by interacting
with PI3K p85 to prompt the trophoblast proliferation, migration and invasion. Therefore, down-regulation of STX2 in placenta contributed to the development of PE.

PI3K inhibitor completely abolished the rescue or overexpression
effects of STX2 on the AKT pathway (Figures 4A,B). We
investigated cell proliferation by EdU and colony formation
assays (Figures 4C,D), and observed that PI3K inhibition
restricted the trophoblast cells proliferation. Viability of the
two cells was also markedly reduced after PI3K inhibition
treatment (group c vs. d, d vs. e, P < 0.01; c vs. e,
P > 0.05; Supplementary Figure 1C) by CCK-8 analysis. Cell
migration and invasion were also affected in a manner consistent
with the findings described above assessed by the transwell
assays (Figure 4E).

In conclusion, our results suggest that the AKT pathway plays
a vital role in STX2-induced trophoblast proliferation, migration
and invasion (Figure 5).

DISCUSSION

Earlier studies revealed a correlation between STX2 expression
cell proliferation, invasion and metastasis in various diseases.
For example, STX2 has been shown to play an essential in
human hepatocellular carcinoma invasion and metastasis (Jia
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et al., 2011). In this study, our results from IHC staining, qRT-
PCR and western blot analysis demonstrate downregulation
of both STX2 mRNA and protein in placental tissues of
women with PE. Through loss or gain of function experiments,
we showed that STX2 depletion attenuated cell proliferation,
invasion, and migration, while overexpression of STX2 increased
cell proliferation, invasion, and migration in both HTR-8/SV
neo and primary human trophoblast cells. In addition, we
showed that the re-expression level of STX2 in HTR-8/SVneo-
Sh-STX2 cells reached that of controls (or in primary human
trophoblast cells), further suggesting a modulating effect of STX2
on trophoblasts function (Figures 4A,B).

Given that knockdown and overexpression of STX2 may
play an important role in the progression of PE, investigations
into the mechanisms underlying these effects are of utmost
importance. Multiple signaling pathways have been involved
in regulating cellular proliferation and invasion. For example,
the PI3K/AKT pathway has been shown to be vital for
numerous aspects of cellular activities both in physiological and
pathological conditions. Several studies have shown that certain
cell behaviors, including proliferation, migration and invasion,
could be subdued by inhibiting and targeting upstream molecules
in the PI3K/AKT signaling pathway in PE (Zhu et al., 2016; Wang
et al., 2019; Xu Y. et al., 2019). Blocking the PI3K/AKT signaling
pathway also reduced the expression of sFlt1 in placentas of
women with PE (Park et al., 2010). Moreover, desensitization
of the PI3K/AKT pathway, which accounted for endothelial
dysfunction, was also observed in PE and increased the level of
soluble endoglin, an antagonist of TGF-β signaling (Cudmore
et al., 2012). In this study, we found that STX2 expression was
correlated with the level of p-AKT, as well as of its downstream
genes, p-GSK3β and β-catenin. We hypothesize that the role of
STX2 in the regulation of the AKT pathway might be key in
trophoblast growth and invasion. Further investigations on this
topic will help unveil the possible mechanisms underlying the
effect of STX2 on the growth and invasion capabilities of these
cells. Indeed, a fundamental question that remains unanswered
is how STX2 promotes trophoblast proliferation and invasion. It
has been known that membrane-residing PI3K phosphorylates
phosphatidylinositol-4,5-bisphosphate (PIP2) into PIP3, which
in turn recruits and activates corresponding effectors, such as
PDK1 and AKT (Balla et al., 2009; Miao et al., 2010; Huang
et al., 2011) in (please mention which cells/tissues). Certain
membrane proteins have been shown to bind PI3K, enhance PIP3
production and activate AKT signaling (Carnero et al., 2008).
Our results from co-immunoprecipitation experiments suggested
that STX2 formed a high affinity complex with p85, a subunit of
PI3K, but not with p110α/β. Immunofluorescence analysis also
suggested that most of p85 protein co-localized with STX2, and
that STX2 and p85 co-localization was reduced following STX2
knockdown. An interaction between STX2 and p85 is possible,
and in agreement with a recent study that showed an interaction
between STX2 and another cell surface protein, TRAF6 (Wang
et al., 2018). However, further studies are needed to determine if
STX2 and PI3K interact with each other directly or indirectly.

Moreover, LY294002, currently the most widely used PI3K
inhibitor (Wang et al., 2019; Xu Y. et al., 2019), can effectively

block proliferation, migration and invasion of trophoblasts
induced by STX2 rescue or overexpression, confirming the
important role of AKT signaling activation regulated by STX2
in the development of PE. These findings indicate that STX2
may activate the AKT signaling pathway by direct binding to
and recruiting PI3K to the cytomembrane, and thus provide
our deeper understanding of the role of STX2 in regulating
PI3K/AKT signaling in trophoblasts. Our results showed a
relationship between STX2 and PI3K pathway in pathogenesis
of PE, which gave new mechanistic insight and made possible
the early diagnosis of PE. However, there is still a long way
to go before the PI3K pathway inhibitor could become a
treatment in PE.

In summary, our study demonstrated that STX2 is
downregulated in placental tissues of women with PE, possibly
resulting in reduction of trophoblast proliferation and invasion.
Our results also suggest that STX2-mediated cellular dysfunction
of trophoblasts is induced by activation of the AKT signaling
through membrane recruitment of p85. Naturally, further
studies are still needed to clarify the specific mechanism of
STX2-induced PE, meanwhile the interaction of STX2 and PI3K
is an exploratory orientation to reveal the pathogenesis of PE.
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Supplementary Figure 1 | CCK-8 and Ki67 assays tested the trophoblast
proliferation property in different treated groups. (A) CCK-8 assay of control and
experimental cells in which STX2 was knocked down or overexpressed. (B) Ki67
cell proliferation assay of control and experimental cells in which STX2 was

knocked down or overexpressed. (C) CCK-8 assay was used to evaluated the
proliferation of control and experimental cells in which STX2 was stably
transfected with or without LY294002 treatment. All the experiments were
repeated three times independently.
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