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Abstract

The ability to delay the execution of a goal until the appropriate time, prospective memory (PM), can be supported
by the following two different cognitive control strategies: proactive control involving working memory mainte-
nance of the goal and active monitoring of the environment; or reactive control relying on timely retrieval of goal
information from episodic memory. Certain situations tend to favor each strategy, but the manner in which
individuals adjust their strategy in response to changes in the environment is unknown. Across two experiments,
human participants performed a delayed-recognition PM task embedded in an ongoing visual search task that
fluctuated in difficulty. A control strategy was identified from moment to moment using reaction time costs and
fMRI measures of goal maintenance. We found that people fluidly modified control strategies in accordance with
changes in task demands (e.g., shifting toward proactive control when task difficulty decreased). This cognitive
flexibility proved adaptive as it was associated with improved PM performance.
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(s )

Adapting to changes in the environment is important for achieving immediate goals, and it is also essential
for remembering to perform future intentions. Using brain imaging and behavioral measures of cognitive
control, we discovered that people fluidly shift between proactive and reactive control strategies, from
moment to moment, in accordance with changes in ongoing task demands to successfully fulfill future
intentions. These flexible shifts in control strategy were associated with better memory for delayed
intentions, demonstrating that fine-grained control of attention and memory resources serves an adaptive
Krole for remembering to carry out future plans. /

ignificance Statement

Introduction
Life is busy, and keeping track of what we are doing and
what we intend to do can be challenging. Cognitive con-
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trol describes the set of processes by which we are able
to maintain and connect goals to actions and to subse-
quently filter out irrelevant distractors in accordance with
these goals (Gratton et al., 2018). Juggling goals despite
interruptions, an ability known as prospective memory
(PM), is a ubiquitous part of everyday life (Dismukes,
2012), constituting upwards of 50-80% of our daily mem-
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ory problems (Crovitz and Daniel, 1984; Kliegel and Mar-
tin, 2003). The multiprocess theory of PM (McDaniel and
Einstein, 2000; Einstein and McDaniel, 2005) describes
the following two dissociable strategies that can be used:
proactive control and reactive control (see also Braver,
2012). Proactive control relies on working memory to
remember the goal and external attention to monitor the
environment for cues to act (McDaniel and Einstein, 2000;
Guynn, 2003; Smith, 2003; Brewer et al., 2010). Reactive
control relies on episodic memory to store the goal and
salient cues from the environment to trigger its timely
retrieval (McDaniel and Einstein, 2007; Einstein and Mc-
Daniel, 2010; Marklund and Persson, 2012).

These strategies have been shown to have distinct
behavioral and neural profiles. Proactive control is cogni-
tively demanding (Braver et al., 2007; Cohen, 2008) and
interferes with ongoing (OG) processing (Smith, 2003;
Smith et al., 2007), whereas reactive control relies less on
working memory processing and can succeed without
any observable interference costs (Harrison and Einstein,
2010; Scullin et al., 2010a,b; Knight et al., 2011; Rummel
and Meiser, 2013; Harrison et al., 2014). Dissociable neu-
ral correlates have also been identified for these strategies
(Reynolds et al., 2009; Beck et al., 2014; Cona et al., 2014;
McDaniel et al., 2013; Lewis-Peacock et al., 2016).

Preparatory processes involved in proactive control
may benefit PM, but also place high costs on working
memory and attentional capacities. In low-demand envi-
ronments, controlled attentional processes can be suc-
cessfully allocated to maintain goal information in working
memory and to strategically monitor the environment for
the right time and place to act (West et al., 2006, 2007b;
Braver et al., 2007). However, in high-demand environ-
ments, it is more efficient to offload the PM intention to the
reactive control system and redirect cognitive resources
toward more immediate demands (Braver, 2012). While
reactive control is less cognitively demanding, it is more
susceptible to proactive interference and more vulnerable
to lapses in attention to goal-relevant events in the envi-
ronment (Braver et al., 2007; Scullin et al., 2012). It is
therefore important to select a control strategy best suited
to the current situation to reduce the risk that prospective
intentions interfere with more urgent demands, and also
to reduce the risk that those intentions go unfulfilled.

One major area of research in PM has been to explain
how individuals choose strategies in response to variable
environmental demands (Anderson et al., 2017). The dy-
namic multiprocess view (DMPV) (Scullin et al., 2013;
Shelton and Scullin, 2017) proposes that people have a
flexible choice between proactive control and reactive
control that primarily depends on the contextual likelihood
of a PM event. According to this model, individuals will
rely on reactive control when the probability of a PM event
is low, and then abruptly “switch on” proactive control
when an environmental cue signals an increased likeli-
hood of a PM event (Kuhimann and Rummel, 2014; Ball
et al., 2015; Cohen et al., 2017). However, previous work
has primarily relied on blocked experiment designs or
taken an all-or-none approach to measuring PM strategy.
The environment may not always change abruptly, but
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instead may fluctuate more gradually from moment to
moment. Correspondingly, PM strategy may fluctuate
gradually between varying degrees of proactive and reac-
tive control in response to the changing demands in the
environment. The present study sought to test this hy-
pothesis and to evaluate the impact of strategy flexibility
on PM performance.

In this study, we tested the dynamics of PM strategy
use by evaluating how individuals adjust their PM strate-
gies when cognitive demands subtly increase or decrease
over time, and in turn how this impacts prospective re-
membering. We hypothesized that adapting one’s control
strategy to better align with the cognitive load caused by
competing demands should improve prospective remem-
bering. Participants made a delayed target detection with
pictures of faces and scenes (the PM task) while also
performing an ongoing visual search task with oriented
arrows. The cognitive demands of the ongoing task were
manipulated by subtly, but monotonically, adjusting task
difficulty every couple of seconds. We linked time-
sensitive behavioral measures of PM strategy shifts and
multivariate neural measures of PM intention processing
to memory performance on a trial-by-trial basis.

Materials and Methods

Human subjects were recruited from the student body
at the University of Texas at Austin as well as from the
surrounding community, and the experiments were con-
ducted in a manner consistent with the approval of the
Internal Review Board of our institution. For Experiment 1,
55 participants were recruited. Five of these participants
were excluded due to below chance (<50%) performance
on the ongoing task across the experiment. For Experi-
ment 2, we recruited 30 participants, 2 of whom were
excluded for excessive movement during scanning that
led to MR images failing quality control. Data analyses
were performed on the remaining 78 participants (neural
sample: 28 participants; 17 females; mean age, 21.8
years; behavioral sample: 50 participants; 31 females;
mean age, 19.2 years).

Participants performed an ongoing visual search task
with an embedded PM task (Fig. 1). For the behavioral
sample, participants performed six blocks of the PM task.
For the neural sample, participants first completed one
PM practice block outside of the scanner to familiarize
themselves with the dual-task paradigm. During the prac-
tice block, face and scene stimuli were replaced with tools
and vehicles so that participants did not familiarize them-
selves with the main task stimuli, but all other task con-
figurations remained the same. Following completion of
the practice session, participants were asked to explain
the task, and the researcher answered any lingering ques-
tions before placing the subject in the MR scanner.

Ongoing task details

The ongoing task was a visual search task (“OG task”)
where participants searched for a specific target arrow on
a circular array of oriented arrows (Fig. 1A). We chose this
as the OG task due to the ability to systematically and
parametrically manipulate task difficulty by adjusting dis-
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Ongoing Task
find the rightward arrow wssy

Target: 3 s
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Prospective Memory Task
find the target image (during the Ongoing Task)

Probes: 2 s each (1 to 15 per trial)

Difficulty: 1 8
Inc IZ @ >
Fix
E 1 PM: face or scene
Dec || < @ Non-PM: none

Figure 1. Task design. Left, Ongoing task difficulty could increase or decrease every 2 s across a trial or remain fixed at the middle
difficulty level (level 8 of 15). We validated the relationship between difficulty levels in a pilot study, finding that as difficulty increased,
reaction time increased and accuracy decreased. For more information on pilot study 1, see Extended Data Figure 1-1. We further
validated that the ongoing task could impact prospective memory strategy use in a second pilot study, where we found PM cost was
significantly higher at an easy difficulty (level 4) than at a harder difficulty (level 12). For more information on pilot study 2, see Extended
Data Figure 1-2. Right, In the dual-task PM experiment, participants identified the reappearance of a PM target while concurrently

performing the ongoing task.

tractor parameters along a continuum (Sobel et al., 2007;
Kiyonaga et al., 2017). The ongoing task target arrow was
always a rightward facing horizontal arrow (—). The target
arrow was present on a randomly selected half of the
trials, located in one of 10 semirandomly selected loca-
tions around the circle. Participants were instructed to
search for the target on each display and use their right
hand to press “1” for present and “2” for absent (for the
MRI sample, that was buttons 1 and 2 on the response
box). Target arrow location was counterbalanced be-
tween the top and bottom halves of the screen. On “pres-
ent” trials, 9 nontarget (distractor) arrows appeared in set
positions around the circular array (10 on “absent” trials),
oriented within some distribution of angles determined by
the current task difficulty setting.

OG task difficulty was manipulated on each probe by
adjusting two parameters that determined the orientation
of the distractor arrows, as follows: their minimum simi-
larity to the target, and their similarity to other distractors.
For distractor-to-target similarity, a minimum angular dis-
tance was set to either 5°, 15°, 25°, 45°, 65°, or 75°. For
distractor-to-distractor similarity, the maximum variance
from the minimum angular distance was set to 10°, 20°, or
40°. The factorial combination of these parameters (ex-
cluding any combination where minimum distance plus
variance could exceed the 90° vertical plane) created 15
difficulty conditions. On every search display, each dis-
tractor arrow had a 50% chance of being flipped across
the horizontal plane and a 50% chance of being flipped
across the vertical plane, so that distractor arrows could
vary from 5-175° or 185-355°. To minimize uncontrolled
pop-out effects, we ensured that no distractor arrow in
the array was within 5° of an arrow that appeared in the
same location during the previous display. We validated
the relationship between difficulty levels in a pilot study,
finding that as difficulty increased, reaction time in-
creased (F(131s2) = 39.53, p < 0.001) and accuracy de-
creased (F13182 = 74.89, p < 0.001). For more
information on the pilot study, see Extended Data Figure
1-1.
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For the behavioral sample, participants sat ~18 inches
away from the screen, and all 10 arrows, which were 0.64°
by 0.22° in shape, were 3.18° away from the center of the
screen. For the MRI sample, stimuli were projected on to
a screen which participants viewed through a mirror
placed over the headcoil. Participants laid face up, look-
ing at a projection screen that was ~136 cm away from
the mirror. To keep the stimulus proportions relative to the
field of view the same across experiments, projected
arrows were 30° X 11°, and placed 1.39° away from the
center of the screen.

PM task stimuli

Colored images of unfamiliar faces and unfamiliar
scenes were gathered from various in-house and on-line
sources. These images were controlled for valence and
familiarity. Of those images, 230 (115 faces, 115 scenes)
were selected for use in this experiment. For each partic-
ipant, 40 faces and 40 scenes were randomly selected to
serve as the PM targets and, 75 faces and 75 scenes were
used as distractors. PM target images did not appear as
distractors and were used on one trial only. Distractor
images never reappeared within the same ftrial, but later
reappeared on subsequent trials (mean exposures per
distractor, 14; minimum, 6; maximum, 20).

PM task description

Each trial began with the presentation of the PM target
(a face, a scene, or no PM target) for 3 s, followed by a 1
s fixation cross. For non-PM trials, participants saw a
yellow null (2) sign in lieu of a face or scene. For PM trials,
participants were informed that the PM target shown was
only relevant for the current trial. After target presentation,
participants saw a series of 1-15 probes per trial. Every
probe contained a visual search array in the center of the
screen, with one face and one scene (each one 9.5° X
9.5° in visual angle) vertically aligned with the center of the
images placed 11.5° above or below the search array.
Each probe was on the screen for 2 s, during which the
participants were allowed 1.9 s to respond to the pres-
ence or absence of the horizontal arrow in the OG task or
to indicate whether the PM target had reappeared (by
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pressing “3” for behavioral participants or the third button
on the button box for MRI participants). Participants were
instructed to equally weight the importance of both tasks,
and only one response (to either the OG task or the PM
task) was allowed per probe (“task-switch” approach;
Bisiacchi et al., 2009). Visual feedback was presented
immediately following each response in the form of the
arrows turning green for correct OG responses, turning
red for incorrect OG responses, or a yellow border sur-
rounding the screen for PM false alarms. Probe feedback
remained on screen for the remaining duration of each 2 s
probe. The 1.9 s response deadline ensured that some
time (minimum, 100 ms) was always devoted to feedback
on every probe. On trials with a PM target presented at
the beginning of the trial (“PM trials”), participants per-
formed both tasks, as described above. On trials with no
PM target presented (“non-PM trials”), participants were
instructed to ignore the face and scene images and focus
solely on the OG task. The PM target reappeared only
once per trial, and its reappearance always marked the
end of the trial. After the final probe of each trial, partici-
pants were given feedback on the PM task in the form of
a green border appearing around the edge of the screen
for correct PM responses and a red border for missed PM
targets. This feedback (or a blank screen for non-PM
trials) remained for 2 s and was followed by a 6 s rest
interval with a fixation cross on the screen before the next
trial began.

PM and non-PM trials were randomly intermixed within
each block, with one-third of all trials being non-PM trials,
and the other two-thirds were equally split between face-
target or scene-target PM trials. Participants were able to
rest between blocks for as long as they wanted before
continuing with the experiment. OG task difficulty was
manipulated in the following five conditions: it could (1)
increase starting at the easiest difficulty (level 1), (2) in-
crease starting at the median difficulty (level 8), (3) de-
crease starting at the hardest difficulty (level 15), (4)
decrease starting at the median difficulty, or (5) remain
fixed at the median difficulty. For the main analyses re-
ported here, the first two conditions were combined as
“increasing” trials, the second two conditions were com-
bined as “decreasing” trials, and the fifth condition was
referred to as “fixed.” Each of the five difficulty types
occurred three times throughout each block in pseudo-
random order. Fifteen trials corresponding to the 3 X 5
combinations of PM type (face/scene/non-PM) and OG
difficulty type occurred once per block. Five trials in each
block were “catch trials” (containing fewer than eight
probes), which were included to keep participants en-
gaged at the beginning of each trial. The difficulty types
and target category for catch trials were counterbalanced
across the entire experiment. Trial lengths were predeter-
mined and pseudorandomized so that every participant
had the same number of total probes for face-target,
scene-target, and non-PM trials. Face and scene loca-
tions were randomized on each probe, and faces and
scenes appeared on the top or bottom of the display with
equal probability. Performance on face and scene trials
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was similar, so to increase statistical power, these trials
were collapsed for subsequent analyses.

Changes in difficulty occurred at the rate of one shift in
difficulty level per probe until either the end of the trial or
until a difficulty end point was reached. For example, on a
10-probe trial starting at the easiest difficulty (level 1) and
then increasing in difficulty, the trial would end at difficulty
level 10. However, on a 10-probe trial starting at the
median difficulty (level 8) and then increasing in difficulty,
the highest difficulty (level 15) would be reached by the
eighth probe, and the difficulty would remain at this level
for the final two probes of the trial. For the behavioral
experiment, this led to 70 PM probes at the hardest (level
15) and easiest (level 1) difficulty levels, 210 PM probes at
the middle difficulty (level 8), and 30—40 PM probes at the
other difficulty levels across the entire experiment. There
were approximately half that many non-PM probes at
each level. For the MRI sample, in which there was one
less experimental block, participants had an average of 53
probes at the hardest and easiest difficulties, 169 at the
middle difficulty, and 22-34 at the other difficulties. For
non-PM probes, the count across the experiment was
approximately half of those totals.

Ongoing task localizer (MRl sample only)

Once in the scanner, each participant first completed
the OG arrow visual search task. The OG task localizer
provided participants with the chance to familiarize them-
selves with this task in the MRI setting before the addition
of the embedded PM task. It also allowed for us to collect
time points where only the OG task was displayed on the
screen for training the classifiers on non-PM probes. The
arrow search task was the same as during the PM task;
however, there were no face or scene images on the
screen during the OG task localizer. Participants indicated
the presence or absence of a target right-facing horizontal
arrow within a 1.9 s response window. Feedback was
given in the form of arrows turning green for correct
responses and red for incorrect responses through the
end of the response window. Similar to the main task, the
difficulty of the OG task gradually increased or decreased
over the course of a trial. Each block included 60 probes,
split into eight trials of various lengths (minimum = 2,
maximum = 12). There was a 6 s rest interval between
trials. Participants performed two blocks of the ongoing
task localizer (120 probes total) before moving on to the
main PM task.

Face/scene localizer (MRI sample only)

After completion of the main PM task and a quick
subsequent memory test (not discussed here), partici-
pants performed a face/scene subcategorization localizer
task. This localizer allowed for us to collect more data
points of face and scene processing for training the fMRI
pattern classifiers. Presentation of faces and scenes al-
ternated in mini-blocks, where 11 stimuli from the same
category (faces or scenes) were presented in a row, and
participants indicated whether a face was male or female
or whether a scene was indoors or outdoors. A single face
or scene image was presented in the center of the screen,
and participants had 1s to respond. Because of the short
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response window, female/outdoor was always presented
as the left option, and male/indoor was always presented
as the right option. Note that this corresponded to button
box responses “1” and “2” in the scanner, which did not
overlap with the PM-repsonse button “3”. Immediately
following a response, a red (incorrect) or green (correct)
box appeared around the selected choice, or a blue box
(no response) appeared around the correct choice for 500
ms. The stimulus remained on the screen during this time.
There were then 500 ms between trials during which a
fixation cross appeared on the screen. There were three
blocks with six mini-blocks pseudorandomly interleaved
for a total of 198 localizer trials. While the fMRI pattern
classifiers performed well without the inclusion of the data
from both localizers, they performed numerically better
when localizer data were included. Therefore, our final
analysis included samples from both the OG localizer task
as well as the face/scene localizer task.

MRI acquisition and preprocessing

MRI data were acquired on a 3.0 T Siemens Skyra MRI
scanner with a 32-channel head coil. Whole-brain, high-
resolution anatomic images were collected for registration
and parcellation using a T1-weighted MPRAGE sequence
[repetition time (TR) = 1900 ms; echo time (TE) = 2.43 ms;
flip angle = 9°; field of view (FOV) = 256 X 256 X 192; 1
mm isotropic voxels]. Functional images were acquired
using a T2#-weighted multiband accelerated EPI pulse
sequence (TR = 2 s; TE = 29 ms; flip angle = 78°; FOV =
76 X 76; slice thickness = 3 mm; multiband factor = 2;
number of slices = 48; no gap; 3 mm isotropic voxels).
Following shim adjustment at the beginning of the scan
session, a B0 field map with the same slice prescription as
the functional data was acquired.

As an initial step for preprocessing, DICOMs (Digital
Imaging and Communications in Medicine) were con-
verted to NIFTI (Neuroimaging Informatics Technology
Initiative) format using decm2niix (Li et al., 2016). Next, the
recon-all function in Freesurfer (Fischl, 2012) was used to
skull strip and parcellate the high-resolution anatomic
image. MRI data were preprocessed using a combination
of functions in Freesurfer 6.0, FSL 5.0.9 (Jenkinson et al.,
2012), and ANTs 2.1.0 (Avants et al., 2011). Functional
images were first slice time corrected using the FSL sli-
cetimer function. Then, functional runs were normalized to
the third run of the main task (middle run) using a combi-
nation of within-run motion correction, rigid and affine
registration, and field unwarping processes from FSL and
ANTs. Nonlinear registration, via antsRegistrationSyn,
was then used to correct for between run differences.
Last, high-pass filtering (128 s) was applied to the images.

For the univariate GLM (General Linear Model) analysis,
rigid and affine transformations were used to register the
functional scans to the high-resolution anatomic, and then
nonlinear transformations were applied to normalize runs
to the MNI template. These images were spatially
smoothed (5 mm Gaussian), but no further preprocessing
was performed before using FSL FEAT for modeling. The
model included separate regressors for the PM target
presentation, PM trial probes 1 to n — 1, probe n (when
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the PM target reappeared in PM trials), non-PM trial
probes 1 to n, trial feedback, and rest. Six motion param-
eters, extracted using MCFLIRT in FSL, were included as
confound regressors. FEAT in FSL was used to identify
voxels that were more responsive on PM probes than on
non-PM Probes (cluster correction, p < 0.001; Fig. 3A,
Extended Data Table 3-1, ROI list).

This group level results map was then individually trans-
formed from standard space into subject functional space
so that the multivariate pattern analysis could be per-
formed independently for each participant. Individual,
native-space masks were created by applying a reversed
transformation matrix from EPI to MNI stereotaxic space
on the group-level GLM mask described above.

The classification analysis was performed using the
Princeton MVPA toolbox in MATLAB (https://github.com/
princetonuniversity/princeton-mvpa-toolbox). Binary (one
vs all other classes) L2-penalized logistic regression clas-
sifiers (penalty = 50) were trained, separately for each
participant, to differentiate fMRI activity corresponding to
faces, scenes, the OG task, and resting periods in be-
tween trials. A combination of data from the OG task
localizer (labeled as class “OG”), from the face/scene
localizer (labeled as class “face” or “scene”), and from the
PM task (labeled as “face,” “scene,” or “OG,” depending
on the PM target for each trial) were used to train the
classifiers using k-fold cross-validation. From the main
PM task, data from all probes (except for the final probe
on each trial when the PM target reappeared) were used
for training. For the k-fold cross-validation procedure,
classifiers were trained on all data from the two localizer
tasks plus four of the five runs from the PM task. In total,
there were 7180 time points used for classifier training on
each iteration (face = 1695, scene = 1695, OG = 1900,
rest = 1890), and 1215 used for testing on each iteration
(face = 300, scene = 300, OG = 325, rest = 290). All
regressors were shifted forward in time by two TRs (4 s) to
account for the hemodynamic lag. These classifiers were
then applied to the held-out run of data from the PM task.
The PM task runs were then rotated, and this procedure
was repeated to train classifiers and then test them on the
next held-out task run. This procedure was performed five
times so that all runs of the PM task were tested. To
improve classifier accuracy, we performed feature selec-
tion to remove uninformative voxels from the training
data. This was done separately for each fold of the cross-
validation analysis. Data within each voxel were z-scored
across all time points, and a 1 X 4 ANOVA was performed
to select only those voxels that demonstrated significant
(p < 0.05) variance across the four classes being trained
(face, scene, OG, and rest). The mean number of voxels
selected for each participant was 7864 voxels (SEM =
1208).

Each of the 1-versus-other classifiers produced an ev-
idence score for the class on which it was trained. There-
fore, the four evidence values produced for each test time
point need not sum to one. At each time point, the class
with the highest evidence value was selected as the pre-
dicted output. These predicted outputs were compared
with the actual class of the time point (face, scene, OG, or
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rest) to calculate the classifier accuracy. The area under
the curve (AUC) was calculated in MATLAB by comparing
correct predictions and false alarms independently for
each category across all time points. Scrambled regres-
sor assignments were used to test the empirical chance
level of classifier performance trained in this way (n =
1000/participant). Average scrambled baseline perfor-
mance (mean = 27.52%) was similar to the empirical
chance level of 25% for all participants.

Calculating PM cost and PM cost slope

For all analyses involving response times (RTs), we
excluded any responses faster than 300 ms. This criterion
is in line with previous work (Boywitt and Rummel, 2012;
Horn et al., 2013) and was used to exclude late responses
carried over from the preceding response window. We
hypothesized that individuals would be able to adjust their
PM strategy on a moment-to-moment basis in response
to fluctuating cognitive demands. To initially test this the-
ory, we performed a second pilot study where we had
participants perform our PM task at either an easy (level 4
in the main study) or hard (level 12 in the main study) OG
difficulty level. We found that PM cost significantly varied
as a function of OG task difficulty (F; 49 = 35.63, p <
0.001), with cost being higher at the easier difficulty (easy
PM cost: mean = 0.134 s; SE = 0.012) than at the harder
difficulty (hard PM cost: mean = 0.031 s; SE = 0.012). PM
accuracy was equivalent across difficulties [F 19 =
0.785, p = 0.387; easy = 71.0% (4.5%); hard = 64.5%
(5.8%)]. For more information about pilot study 2, see
Extended Data Figure 1-2. In the current study, we cal-
culated the PM cost at each task difficulty level associ-
ated with making a correct response on the OG task with
versus without the additional demand of the PM task (i.e.,
PM trials vs non-PM trials).

To calculate a PM cost for each probe, we first calcu-
lated the average OG RT on non-PM probes at each level
of difficulty. We performed this analysis separately for
each participant. We included only correct OG responses;
however, a control analysis including all OG task re-
sponses produced qualitatively similar results. There was
a practice effect of decreasing overall RTs between early
experimental blocks and late experimental blocks (F; 77
= 87.1, p < 0.001). To account for these practice effects,
we calculated his baseline separately for the first half
(early) and second half (late) of the experiment. For the
behavioral sample in Experiment 1, early trials came from
blocks 1-3, and late trials from blocks 4-6. The MRI
sample in Experiment 2 had one practice block outside of
the scanner (data not recorded), so for those participants
early trials came from main task blocks 1-2, and late trials
from blocks 3-5. This protocol created 30 baseline values
for each participant, as follows: 15 difficulties X 2 time
bins (early/late). To create the PM cost for each individual
probe from PM trials, we first determined the relevant
baseline value (the value with the same difficulty and time
bin as the probe) and subtracted that value from the OG
RT on that probe. This enabled us to estimate the PM cost
for every probe of the experiment. After obtaining PM cost
values for each probe, we then calculated the degree to
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which PM cost shifted over the course of each trial (PM
cost slope). The PM cost slope was determined by cal-
culating the difference in average PM costs of the first
three probes versus the final three probes of a trial (ex-
cluding the very last probe in which the PM target ap-
peared), and then dividing by the number of probes in the
trial. To account for lapses in motivation and to exclude
trials where there was a lack of correct OG probes for
calculating a PM cost slope, we excluded any trial where
OG task accuracy fell below the chance level of 50% [this
led to an average of 9.9% (SE = 1.0%) of trials per
participant being excluded].

Because this paradigm involves long PM trials (mean,
28 s; range, 8-36 s), it produced few behavioral PM
reports per participant. Therefore, to increase statistical
power, we performed a nonparametric bootstrap analysis
(Efron, 1979) using data sampled from all participants (for
for examples see: Kim et al., 2010; Lewis-Peacock et al.,
2016). On each bootstrap iteration (n = 10,000) of this
analysis, 78 participants were selected at random with
replacement. By using random selection with replace-
ment, this form of analysis allows us to see to what extent
the results are generalizable (Thompson, 1993). We used
logistic regression to test the relationship between PM
accuracy and PM cost slope and/or PM intention evi-
dence (EV) on the different trial types. The stability of the
effects across all iterations was analyzed to assess
population-level reliability.

Code accessibility

The code described in the article will be made freely
available on-line at [https://osf.io/bgsc4/]. All code for this
experiment was run using Psychophysics Toolbox version
3 in Matlab 2014b on a 21.5 inch iMac computer with
operating system OSX 10.11. All statistical analyses of
behavioral data were performed using R (version 3.4.1; R
Core Team, 2017).

Results

Ongoing task performance

Participants performed well on the OG task (mean ac-
curacy = 83.64%, 95% Cl = 75.49-91.79%) as summa-
rized in Figure 2 (Extended Data Table 2-3, compare
experiments 1, 2). There was no interaction between trial
type (PM trials vs non-PM trials) and task difficulty
(Binteraction = 6.2 * 1074, 95% Cl = —0.001 to 0.002,
Pinteraction = 0-468) on OG task accuracy. OG accuracy
(OG Acc) decreased as difficulty increased, and there was
a small, but reliable, main effect of trial type between PM
and non-PM trials (By = —0.026, 95% Cl = —0.027 to
—0.025, pgg < 0.001; B,,, = 0.008, 95% Cl = 0.001-
0.016, ppm = 0.024; marginal P =0.57; Fig. 2A). The main
effect of trial type indicated a dip in OG accuracy of <1%
on PM trials compared with non-PM trials. A follow-up
analysis compared OG accuracies from PM and non-PM
trials at each difficulty level, finding that accuracies were
only reliably different at difficulty level 8 on fixed-difficulty
trials (p = 0.025, after Bonferroni correction factor 15). On
dynamic trials (increasing and decreasing difficulty), the
main effect of PM task on OG accuracy was not signifi-
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Figure 2. Behavioral performance. a, Ongoing task accuracy across difficulties, error ribbons = 1 SEM. PM, Dual-task trials with a
PM intention; Non-PM, ongoing task only without a PM intention. b, Ongoing task RT (correct responses only) across difficulties, error
ribbons = 1 SEM. ¢, PM cost (the difference between ongoing task RT for PM trials vs Non-PM trials) was computed for each
participant at every difficulty level. Violin plots represent the distribution of by-participant average costs at each difficulty. PM cost is
highest at easy difficulty levels (dark red) and decreases as task difficulty increases (dark blue). d, Polynomial model fits validated the
use of linear models, which allowed us to calculate the shift in PM cost on each trial (for further analysis details, see text below,
Extended Data Figure 2-1, Extended Data Table 2-3). Next, PM cost slopes were calculated as the change in PM cost within each
trial. Violin plots show the average within-trial PM cost slopes for decreasing (Dec), fixed (Fix), and increasing (Inc) trials across
participants. *p < 0.05. e, PM accuracy for each participant across trial types. f, Logistic regression bootstrap analysis linking PM
cost slope to PM accuracy for decreasing (red) and increasing (blue) trials. Each individual red/blue line shows the predicted
relationship for each bootstrapped sample (n = 10,000). White lines reflect the fixed-effects relationship for the original sample. =p

< 0.05.

cant (8,,, = 0.007, 95% Cl = —8.5 = 107° to 0.015, Pom
= 0.052). We also found that at the hardest difficulty level
of the OG task (level 15), participants were still performing
well above chance (mean = 61.43, f;, = 80.39, p <
0.001, 95% CIl = 59.90-62.95%).

One of the primary methods for inferring PM strategy
use is measuring the difference in RTs between PM and
non-PM ftrials on an ongoing task (Einstein and McDaniel,
2005). A large difference in OG RTs between PM and
non-PM trials implies the use of proactive control,
whereas a small difference implies the use of reactive
control. Here, we found an interaction in OG RTs between
condition (PM and non-PM trials) and difficulty level (lev-
els 1-15; Binteraction = 0.011, p < 0.001, 95% CI = 0.010—-
0.013; Fig. 2B). At the hardest difficulty level, RTs were
well below the response deadline of 1900 ms (t;; =
38.401, p < 0.001, mean RT = 1264 ms, 95% Cl =
977-1551 ms), demonstrating that participants were per-
forming below ceiling. The difference in OG RT between
PM and non-PM trials (referred to as “PM cost” from here
on) was then calculated for each participant at each dif-
ficulty level. These data were replotted in this fashion, and
they reveal that average PM costs varied systematically
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as a function of OG task difficulty (Bgeet = —10.35, p <
0.001,95% CI = —12.29 to —8.42; Fig. 2C). This suggests
that PM strategy shifted flexibly between proactive con-
trol and reactive control as the OG task increased in
difficulty, and vice versa.

To evaluate whether this linear shift in PM strategy
across task difficulty levels held within individual trials, we
computed first-, second-, and third-order polynomial re-
gressions between PM cost and OG difficulty separately
for each trial. If PM strategy selection was bimodal (i.e., an
all-or-none “flip” between proactive and reactive control),
then individual trials should be best fit by a third-order
polynomial. However, if the relationship was more fluid,
then a first- or second-order polynomial should fit the data
better. Additionally, if the data demonstrate a dramatic
U-shaped or asymptotic curve, instead of a linear fit, a
second-order polynomial should fit better than a first-
order polynomial. We compared values for Akaike infor-
mation criterion with a correction for small sample sizes
(AIC,) for each model for correct responses on each trial
and used Akaike weighting to compare relative model fits.
We found that a first-order polynomial (linear model) fit
best for nearly all trials [Extended Data Fig. 2-1; data
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visualization: mean = 93.43%, 95% CIl = 92.62-94.24%;
Akaike weight (WAIC) = 0.873, 95% CIl = 0.865-0.880],
compared with second-order fits (mean = 5.72%, 95% CI
= 4.99-6.45%; Akaike weight = 0.111, 95% CI = 0.104-
0.119), or third-order fits (mean = 0.85%, 95% CI =
0.68-1.02%; Akaike weight = 0.016, 95% Cl = 0.012-
0.019). One concern with fitting models on a by-trial basis
is that noise may bias model selection toward the models
with fewer parameters. To address this concern, we per-
formed a less conservative AIC (without the small sample
correction term) model selection analysis and then a sep-
arate bootstrap analysis where polynomial fits were cal-
culated for a random subsample of trials. Both of these
analyses corroborate our original finding and indicate that
a linear fit is the most likely descriptor for a majority of
trials (Extended Data Fig. 2-2). This result provides evi-
dence that the engagement of different control strategies
often changes fluidly and linearly in accordance with shifts
in OG task demands within a PM trial.

Next, we evaluated whether changes in PM cost within
a trial were different for increasing-, decreasing-, and
fixed-difficulty trials. To do this, we computed a within-
trial measure of linear shift in PM cost from the beginning
of the trial to the end of the trial, which we shall refer to as
“PM cost slope.” We found that PM cost slopes varied
systematically across trial types (Fp 154 = 47.02, p <
0.001; Fig. 2D). PM cost slopes were negative on increas-
ing trials (mean = —1.14 ms/s, 95% Cl = -2.24 to -0.42,
tz7) = 2.07, p = 0.042), and were positive on decreasing
trials (mean = 6.03 ms/s, 95% Cl = 5.44-6.62, t;7 =
10.23, p < 0.001) and fixed trials (mean = 3.34 ms/s, 95%
Cl = 2.07-4.61, tz7 = 5.24, p < 0.001). In this task
design, a PM target appeared at the end of every PM trial.
Thus, positive PM cost slopes (i.e., a shift toward proac-
tive control) on fixed-difficulty trials likely arose from an
increase in PM expectancy as each trial progressed (Ok-
sanen et al., 2014; Bowden et al., 2017). Although expec-
tancy should impact all trial types equally, there were
meaningful differences between conditions. Planned pair-
wise comparisons revealed that PM cost slopes increased
stepwise from increasing trials to fixed trials (F77) = 37.14,
p < 0.001) and from fixed trials to decreasing trials (F ;7 =
15.1, p < 0.001).

Prospective memory task performance

On average, participants identified the PM target on
three-quarters of the trials (mean PM accuracy = 74.57%,
95% Cl = 56.82-92.31%), with no differences in accuracy
across trial types (F» 154 = 0.679, p = 0.508; Fig. 1E). The
false alarm rate, defined as PM target responses on
probes where the target was not present, was low (mean
= 0.60% of probes, 95% CI = —0.72% to 1.92%). Be-
cause PM accuracy was stable across the dynamic trial
types (increasing- and decreasing-difficulty trials), and
OG accuracy was not impacted by the presence of the
PM task on these trials, we concluded that participants
were not sacrificing accuracy on one task to perform the
other. Therefore, any RT differences on the OG task dur-
ing PM trials could reasonably be interpreted as reflecting
differences in strategy used to perform the PM task,
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rather than a speed/accuracy trade-off between the dual
tasks.

Linking shifts in PM strategy to PM performance

We hypothesized that not only would individuals dem-
onstrate gradual shifts in PM strategy in response to
changing task demands, but that changes in PM strategy
would be related to PM performance. Based off of the
dual methods of control (DMC) framework (Braver, 2012)
and dynamic multiprocess view of prospective memory
(Scullin et al., 2013), we reasoned that on decreasing- and
fixed-difficulty trials, when the resources to implement
proactive control became readily available, proactive con-
trol would benefit PM performance. However, on
increasing-difficulty trials, ongoing task demands make it
difficult to implement the proactive control mechanisms of
strategic monitoring and/or sustained representation of
the PM target. Therefore, individuals may benefit from
shifts toward reactive control strategies on these trials, as
they attempt to preserve performance on the PM task in
the face of increasing demands. To evaluate this hypoth-
esis, we tested the relationship between PM cost slope
and PM accuracy across all trial types.

We used bootstrapped logistic regression to relate
these two measures separately for increasing and de-
creasing trials (Fig. 2F). On decreasing trials, larger posi-
tive PM cost slopes (reflecting a shift toward proactive
control) were related to better PM performance (Byec=
0.018, p < 0.001, 95% CI = 0.008-0.028). On increasing
trials, larger negative PM cost slopes (reflecting a shift
toward reactive control) were numerically related to better
PM performance, but this relationship did not reach sta-
tistical significance (B;,.= —0.006, p = 0.119, 95% CI =
—0.015t0 0.004). Critically, there was an interaction of PM
cost slope and trial type on PM accuracy, with the direction of
PM cost slope leading to different consequences on increasing
versus decreasing trials (Bieraction = 0-024, p < 0.001, 95%
Cl = 0.011-0.037). On fixed trials (data not shown), the
relationship between PM cost slope and PM accuracy
was positive (B = 0.020, p = 0.003, 95% CI = 0.006-
0.033), which was similar to the situation in decreasing
trials (B4 = 0.001, p = 0.423, 95% Cl = —-0.015 to
0.017), but was significantly more positive than on in-
creasing trials (B4 = 0.025, p = 0.001, 95% CI = 0.009—
0.041).

The relationship between PM cost slope and PM accu-
racy survived after controlling for other possible explana-
tory variables. We first compared the by-trial AIC- and
variance-explained (R?) values for predicting PM accuracy
on increasing and decreasing trials using the following five
different factors: average OG RT, average OG accuracy,
OG RT slope, average PM cost, and PM cost slope. We
ran a bootstrap analysis (n = 3000 iterations) comparing
models that included the interaction of trial direction and
each of these factors for predicting PM accuracy, and we
extracted AIC and R? scores from each iteration. The AIC
scores were converted to Akaike weights (Wagenmakers
and Farrell, 2004) for comparison across models. The
model using PM cost slope as a predictor of PM accuracy
had a significantly higher Akaike weight (mean = 0.99, SE
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Figure 3. fMRI decoding of PM intentions. a, Brain regions significantly engaged by the addition of the PM task to the OG task (GLM
contrast PM > Non-PM, FDR corrected at p < 0.001; Extended Data Table 3-1, ROI list). al, Anterior insular cortex, dACC, dorsal
anterior cingulate cortex, dIPFC, dorsolateral prefrontal cortex, IPS, Intraparietal sulcus, LOC, lateral occipital cortex, mOCC, medial
occipital cortex, rlPFC, rostrolateral prefrontal cortex, VTC, ventral temporal cortex. These regions were used as the initial feature
mask to train and test fMRI pattern classifiers for PM intention-related activity. To more directly identify regions primarily responsible
for PM intention representation during this task, we performed a surface-based searchlight analysis. That analysis indicated that the
VTC and LOC were more important for PM processing (for more details, see Extended Data Figure 3-2). b, PM EV (the difference
between classifier evidence for the category of the PM target and the nontarget category) was computed for each participant
at every difficulty level, and group data are shown in violin plots. PM intention evidence was highest at easy difficulties (dark red)
and lowest for the most difficult levels (dark blue). ¢, The relationship between PM intention evidence and PM accuracy was
computed using bootstrapped logistic regression (n = 10,000 iterations) for decreasing (red) and increasing (blue) trials. *p <

0.05.

= 0.001) than any other model (all other means, <0.01).
The R? value for the model containing only PM cost slope
was also the highest (mean R? value: PM cost slope =
0.08, average PM cost = 0.03, average OG RT = 0.03,
average OG Acc = 0.005, OG RT slope = 0.005).

To see whether this relationship held at the subject
level, we also performed partial regressions comparing
how much PM cost slope predicted PM accuracy while
controlling for the other variables. After controlling for
average OG RT, average OG accuracy, average PM cost,
and OG RT slope one at a time, PM cost slope still
explained a significant proportion of variation in PM ac-
curacy (R? = 0.09, p = 0.009; R? = 0.12, p = 0.002; R? =
0.12, p = 0.001; R? = 0.12, p = 0.002; respectively).

This same by-trial relationship between PM cost slope
and PM accuracy existed across participants as well.
Participants who on average showed larger shifts toward
proactive control (more positive PM cost slopes) bene-
fited more on decreasing trials, and participants who
showed larger shifts toward reactive control (more nega-
tive PM cost slopes) benefited more on increasing trials
(Binteraction = —0.018, p = 0.002, 95% CI = —0.013 to
—0.024; data not shown). In summary, these results pro-
vide behavioral evidence that individuals shifted PM strat-
egy from moment to moment in response to changing OG
task demands. These shifts in cognitive control were
adaptive because their direction and magnitude were re-
lated to successful PM performance.

Neural measures of PM intentions

For the participants who performed this task in the MRI
scanner (N = 28), we evaluated whether a neural measure
of PM intention-related brain activity (Lewis-Peacock
et al., 2016) could provide additional insight into the link

November/December 2019, 6(6) ENEURO.0250-19.2019

between PM strategy selection and memory performance.
First, we identified regions that were significantly engaged
by the PM task above and beyond the OG task in isolation
(Fig. 3A). These regions are consistent with previous lit-
erature on PM intention maintenance (McDaniel et al.,
2013; Beck et al., 2014; Cona et al., 2015; Lewis-Peacock
et al., 2016). From these brain regions, fMRI pattern clas-
sifiers were used to quantify the degree of PM intention-
related processing across each trial. The strength of PM
intention processing was operationalized as the differ-
ence in classifier evidence for the PM-relevant category
versus the PM-irrelevant category (e.g., “face minus
scene” for a face-target PM trial). Trained classifiers per-
formed well above chance at predicting the PM target
category of the current trial (classifier AUC: for faces:
86.94, SE = 0.01; for scenes = 88.54, SE = 0.01; for
non-PM trials: 83.76, SE = 0.01; and for rest = 99.62, SE
= 4.7 = 10™%. Across trials, this neural measure varied
systematically with OG task difficulty (Fig. 3B). The neural
evidence of PM intention processing decreased as task
demands increased (8 = —0.005, p < 0.001, 95% CI =
—0.008 to —0.002, marginal r* = 0.039).

However, within trials the neural measure of PM inten-
tion processing did not vary systematically across time
points (mean slope of PM EV = 0.007 EV/s, 95% CI =
—0.002 to 0.016, to7 = 1.57, p = 0.128). There were also
no differences in by-trial PM intention evidence slopes
across increasing, decreasing, and fixed-difficulty trials
(Fio,54) = 1.35, p = 0.269). The stable level of PM intention
processing over the course of a single trial may be a
measurement limitation due to the temporal sluggishness
of the BOLD signal. Alternatively, it could also reflect the
engagement of a prospective “retrieval mode” (Guynn,
2003, 2008; Cona et al., 2014), which has been described
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Figure 4. Model comparisons using behavioral and neural metrics to predict PM performance. Model weights and R? values were
computed across bootstrap iterations (n = 10,000) to test model differences. a, wAICs across bootstrap iterations for each
model. b, Explanatory power of each model (R?) shown as distributions across bootstraps. Medians are indicated by dashed

gray lines.

as a more sustained and relatively inflexible component of
proactive control that involves PM items being held in
some prioritized state of working memory (Underwood
et al., 2015). Therefore, we computed the average classi-
fier evidence for the PM intention on each trial and related
this (rather than the slope) to PM accuracy. A mixed-effect
ANOVA found that there were no overall differences in
average PM intention evidence across trial types (F(5 54 =
0.40, p = 0.670). This result was expected because in-
creasing and decreasing trials spanned the same range of
difficulty levels (e.g., 1-15 vs 15-1). We found that aver-
age PM intention evidence correlated positively with PM
accuracy on decreasing trials (Byec = 0.754, p = 0.017,
95% Cl = 0.047-1.50; Fig. 3C, red) and fixed trials (Bs, =
0.976, p = 0.039, 95% Cl = —0.121 to 2.062; data not
shown), but not on increasing trials (8, = 0.280, p =
0.255, 95% CI = —0.679 to 1.123; Fig. 3C, blue). There
were no reliable differences in this statistic between in-
creasing trials and either decreasing ftrials (Binteraction=
0.474, p = 0.199, 95% Cl = —0.627 to 1.623) or fixed
trials (Binteraction = 0-223, p = 0.361, 95% Cl = —1.119 to
1.473).

Combining behavioral and neural measures to
predict PM performance

We sought to test whether combining both the time-
sensitive but indirect behavioral metric of PM cost slope
(putatively reflecting dynamic shifts in PM strategy) and
the coarser but more direct neural metric of PM intention
evidence (putatively reflecting sustained PM engagement)
could improve our prediction of PM accuracy on a trial-
by-trial basis. There was no by-trial correlation between
these measures (mean r = 0.02, 95% Cl = —0.36 to 0.39,
p = 0.92), suggesting that the two metrics could provide
unique information about task performance. We per-
formed a bootstrap analysis to calculate the AIC values
for models predicting PM accuracy, including all possible
combinations of the predictors PM cost slope, PM inten-
tion evidence, and trial type (increasing/decreasing). We
then selected the best performing model that included (1)
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a neural and a behavioral metric, (2) only a behavioral
metric, or (3) only a neural metric. Next, we converted AIC
scores for these three models to wAIC values, allowing us
to directly compare AIC values as conditional probabilities
(Wagenmakers and Farrell, 2004). The results show that
the combined Behavior and Neural model (i.e., the full
model including all main effects; all two-way interactions;
and the three-way interaction of PM cost slope, PM in-
tention state, and trial direction) was the best model
(Wilcoxon median Akaike weight = 0.889, Wilcoxon 95%
Cl = 0.883-0.896, p < 0.001; Fig. 4A). This combined
model was significantly more likely than either the best
Behavior-Only model (Wilcoxon median ratio = 149.91,
Wilcoxon test, 95% Cl = 135.47-165.63, p < 0.001) or
the best Neural-Only model (Wilcoxon median ratio = 4.5
x 10°, Wilcoxon test, 95% Cl = 3.9+ 10°t0 5.2 * 10%, p <
0.001).

The Behavioral and Neural model explained the most
variance in PM accuracy, with an R? value of approxi-
mately double that of the best Behavior-Only model (R? =
0.052 vs 0.028; Fig. 4B). Having found that the full Behav-
ioral and Neural model was the best predictor of PM
performance, we further investigated the reliability of each
relationship in the combined model using the bootstrap
approach. In this analysis, we were also interested in
whether the relationships we found independently be-
tween PM accuracy and PM cost slope and then between
PM accuracy and PM intention evidence would be quali-
fied by any reliable interactions in the full model. We found
that, although including the three-way interaction term
and multiple two-way interaction terms resulted in the
lowest overall AIC score, the only statistically reliable
interaction was that of PM cost slope and trial direction (o
= 0.026), confirming that the analysis shown in Figure 2F
holds in a more comprehensive model. Additionally, we
found that PM intention evidence had a reliably positive
relationship to PM accuracy on decreasing-difficulty trials
(mean = 0.751, p = 0.019), but that relationship was not
reliable on increasing-difficulty trials (mean = 0.284, p =
0.257), also confirming the analysis shown in Figure 3C
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holds in a more comprehensive model. In summary, our
model tests revealed the following three main results: (1)
including both the neural and behavioral metrics of pro-
active control improved prediction of PM accuracy over
using either metric independently; (2) PM cost slope was
differentially predictive of PM accuracy for increasing ver-
sus decreasing trials, replicating the relationship from our
behavior-only analysis above; and (3) higher levels of PM
intention evidence were positively related to PM perfor-
mance on decreasing-difficulty trials, but there was no
reliable relationship on increasing-difficulty trials.

Discussion

This study investigated how navigating an environment
with rapidly shifting cognitive demands impacts how
we remember to perform future actions. A delayed-
recognition PM task was combined with a dynamic visual
search OG task that varied in difficulty from moment to
moment. When task difficulty was low, there was greater
behavioral interference from the PM task (PM cost: slower
RTs in the OG task) and stronger neural representation of
the PM intention (PM intention evidence: classifier evi-
dence for the PM target category in PM-sensitive brain
regions). Both of these measures reflect components of
proactive control (Braver, 2012) and were negatively cor-
related with OG task difficulty. The behavioral measure
varied within a trial according to the task demands,
whereas the neural measurement was stable within a
given ftrial but varied across trials. Combining these be-
havioral and neural measures provided the best prediction
of PM accuracy from trial to trial. Together, these results
suggest that individuals dynamically adjust their PM strat-
egy in response to changes in environmental demands.
Critically, we found that these shifts in PM strategy were
adaptive because greater shifts (in the appropriate direc-
tion toward proactive or reactive control) were related to
improvements in PM performance. The present results
demonstrate that the ability to flexibly adjust cognitive
control strategies, in response to changes in environmen-
tal demands, is an important contributor to successful
execution of delayed intentions.

We computed the following two distinct metrics of pro-
active strategy use: a time-sensitive behavioral measure
of PM cost, and a more tonic neural measure of PM
intention processing. The amount of PM costs (the behav-
ioral measure) has been repeatedly linked to levels of
strategic monitoring for the PM intention (Smith, 2003;
Einstein and McDaniel, 2005). Here, we found that
changes in the amount of PM costs over the course of a
trial were associated with better performance (Fig. 2F).
The DMC framework suggests that proactive control
would be favored on decreasing-difficulty trials, when the
OG task becomes progressively easier, because attention
and working memory resources should be readily avail-
able to accomplish both the OG task and PM task suc-
cessfully. On these trials, strategically monitoring for the
PM intention may be worth the extra cost incurred in RTs
on the OG task. Our results support this idea, showing
that when participants reallocated cognitive resources to
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use proactive control on the PM task (positive PM cost
slopes within a trial), PM performance improved.

However, we found that in increasing-difficulty trials,
there was an opposite relationship between PM cost
slope and PM accuracy, where larger PM cost slopes
were related to moderately worse PM performance. The
DMC framework predicts that as difficulty increases, the
ability to strategically monitor for the PM intention can be
compromised, and reliance on proactive control may lead
to deficits in PM performance. Such deficits may arise
from interference in working memory caused by failed
attempts to maintain a robust representation of the PM
target in the presence of distractors, a reduced ability to
shift attention between the two tasks to strategically mon-
itor for the PM cue effectively, or a reduced ability to
perform the PM intention even after noticing a prospective
cue (West et al., 2007a; Zuber et al., 2016; Ballhausen
et al., 2017). Consistent with these ideas, we found that
when participants attempted to maintain high levels of
proactive control even as the OG task difficulty increased
(i.e., PM cost slopes were positive on these trials), PM
performance suffered. The relationship between PM cost
slope and PM accuracy on increasing-difficulty trials sug-
gests that reactive control can be used successfully in
situations that are not well suited for proactive control
(e.g., under high cognitive load). The results from this
study build on previous research that demonstrated in
some circumstances there is a benefit to using proactive
control (Smith 2003; Shelton and Scullin, 2016), as we
found on decreasing- and fixed-difficulty trials, and some
circumstances where there is no benefit (Einstein and
McDaniel, 2005; Scullin et al., 2010a,b), as we found on
increasing-difficulty trials.

In our study, participants knew that a PM target would
reappear relatively soon after it was introduced (between
2 and 30 s later with 100% fidelity). The DMPV framework
(Scullin et al., 2013; Shelton and Scullin, 2017) posits that
in contexts similar to our experiment, where PM occur-
rences are highly probable, individuals are biased toward
and benefit from using proactive control. On trials with
fixed difficulty, we found a consistent increase in PM
costs across each ftrial (positive PM cost slopes), and
greater increases in cost were related to better PM per-
formance. This indicates a beneficial, perhaps default,
shift toward proactive control in this paradigm for which
there is an increasing probability of a PM event through-
out each trial. Shifts toward proactive control were even
stronger (and beneficial for performance) on decreasing-
difficulty trials as more cognitive resources became avail-
able over time. This result is in line with previous work
showing that, given the available resources, individuals
will increase monitoring as the expectancy of the PM
event increases, and that increased monitoring is benefi-
cial to PM performance (Kuhimann and Rummel, 2014;
Loft, et al., 2014; Bowden et al., 2017).

Additionally, although overall PM accuracy on increas-
ing and decreasing trials was equivalent, the range of
accuracies differed between trial types. On decreasing-
difficulty trials, participants performed the PM task dra-
matically better when shifting toward proactive control
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and worse when shifting toward reactive control. On
increasing-difficulty trials, while this relationship was nu-
merically reversed, the difference in performance across
strategy types was reduced (Fig. 2F). In other words, on
decreasing-difficulty trials there was a clear and large
benefit to PM performance when PM cost slopes were
positive, while on increasing-difficulty trials PM perfor-
mance was more similar in respect to PM strategy. Addi-
tionally, when collapsing across all trials, we found a small
performance advantage to using proactive control. On
trials when the PM target appeared while PM costs were
high, detection accuracy of the PM target was high (mean
= 76.62%, SEM = 1.94%, average N = 37.7 trials/par-
ticipant). On trials where PM costs were absent (indicating
no evidence of proactive control) when the PM target
appeared, accuracy was worse (tze = 4.684, p < 0.001),
but still relatively good and well above floor (mean =
67.81%, SEM = 2.67%, N = 12.1 trials/participant). The
behavioral data from our study suggest that over short,
highly predictable intervals (<30 s), proactive control is
the more reliable strategy for PM intention fulfillment, but
only when monitoring for and maintenance of a PM inten-
tion can be adequately performed. In other circum-
stances, such as those with high concurrent demands,
individuals benefit from offloading the PM task to reactive
control in the form of equal performance with less cost.
Future work should investigate the impact of strategy
flexibility across longer delays between encoding and
retrieval of intentions, and whether a proactive benefit
may still be observed.

Many models of PM have focused on the relationship
between proactive and reactive control. Some studies
(Gilbert et al., 2013) propose a central executive process
that allocates resources toward either proactive or reac-
tive control along a continuum, or strikes some balance
between attention and external stimuli versus internal
stimuli (Cona et al., 2015). The two-component model by
Guynn (2003, 2008) of proactive control dissociates a
flexible, strategic monitoring component from a more
tonic component, referred to as the “PM-retrieval mode,”
which involves sustained maintenance of the PM task set.
This second component is described as load invariant
and relatively inflexible, while the first component is
thought to be dynamically sensitive to environmental fac-
tors (Underwood et al., 2015). Recent work has suggested
that the PM-retrieval mode is also able to be strategically
adjusted to some extent (Whitehead and Egner, 2018), but
the amount of cognitive resources needed to maintain it
can negatively affect monitoring ability (Ballhausen et al.,
2017).

In the present study, we propose that the behavioral
measure of PM cost reflects the strategic monitoring
component of this model, whereas the neural measure of
PM intention evidence reflects the PM-retrieval mode
component. Our results implicated neural regions com-
monly associated with working memory (Eriksson et al.,
2015; Extended Data Table 3-1, specifics) in supporting
PM performance. We found that on decreasing-difficulty
trials (which, according to the behavioral analysis, favor a
shift toward proactive control), PM intention maintenance
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was positively correlated with memory performance, but
on increasing trials (which favor a shift toward reactive
control) it was not (Fig. 3C). Although individuals some-
times exhibited a high level of PM readiness, this did not
influence task performance in situations that favored re-
active control. These results are again in line with previous
research suggesting that PM intention maintenance could
be beneficial to PM performance in some situations but
was not necessary for successful realization of PM inten-
tions in all situations (Cona et al., 2014).

We find that our behavioral and neural metrics provide
complementary but independent information about PM
performance, approximately doubling the predictive
power of our model when the neural measure of PM
intention maintenance was combined with the behavioral
metric of PM cost slope (Fig. 4B). This result suggests that
our measures are capturing different components of pro-
active control, though the current design does not specify
the relative contribution of strategic monitoring versus PM
intention maintenance. A future direction will be to use
more time-sensitive neural measures like EEG (electroen-
cephalogram) and eye-tracking to measure the active
maintenance of PM intentions in dynamic environments,
as well as to better identify late-retrieval mechanisms that
are characteristic of reactive control strategy use.

Contrary to previous studies that have indicated a key
role for the anterior prefrontal cortex (aPFC) in represent-
ing prospective intentions (Gilbert, 2011; Momennejad
and Haynes, 2012, 2013), we found that regions known to
support perception and working memory for the PM in-
tentions used here [i.e., the ventral temporal cortex (Girill-
Spector and Weiner, 2014; D’Esposito and Postle, 2015)
for face and scene stimuli] were most important for iden-
tifying PM intention maintenance (as identified by a
surface-based searchlight analysis; Kriegeskorte et al.,
2006; Oosterhof et al., 2016; Extended Data Fig. 3-2). The
searchlight results suggest that PM item retrieval is pri-
marily mediated by these more posterior regions, while
the prefrontal region may have a more abstracted involve-
ment, like PM state or rule maintenance (i.e., maintaining
whether or not one has a prospective intention at the
moment). However, the lack of above chance PM inten-
tion decoding in the PFC may be related to a lower
signal-to-noise ratio or due to the “mixed selectivity” of
prefrontal neurons (Bhandari et al.,, 2018). Further re-
search is needed to better understand how and where PM
intentions are represented and the specific role of classi-
cally identified regions like the anterior prefrontal cortex.

Our results are consistent with the dual mechanisms of
cognitive control framework (Braver et al., 2007; Braver,
2012) and the dynamic multiprocess view of PM (Scullin
et al.,, 2013; Shelton and Scullin, 2017). Both dual-
mechanism frameworks posit that individuals can use two
different methods of cognitive control to fulfill prospective
intentions, and that they can flexibly adjust their control
strategy in response to environmental factors, such as
cognitive load or PM target expectancy. However, neither
framework formally describes whether that adjustment is
a fluid process or an all-or-none “switch” between strat-
egies. Here, our evidence suggests that there are graded
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levels of control between proactive and reactive strate-
gies that people engage along a continuum.

An alternative explanation for the present results is that
shifts in PM cost may not reflect shifts between proactive
and reactive control strategies per se, but rather shifts
between stronger and weaker levels of proactive control.
Unitary models of PM such as the preparatory attention
and memory “PAM” theory (Smith, 2003, p. 200) propose
that successfully fulfilling prospective intentions relies on
some level of proactive preparation in all situations. How-
ever, we believe this interpretation of our data are less
likely than the dual-mechanisms account. According to
the PAM model, we should expect extremely poor PM
performance when evidence of proactive control is ab-
sent, however this was not the case. As mentioned pre-
viously, performance on trials where there were no
observed costs on end probes (n — 3 ton — 1 before PM
— target), PM accuracy was still higher than the PAM
model would predict (mean = 67.81%, SEM = 2.67%).
PM performance was also strong on trials where the
neural measure of PM intention evidence was absent
(mean = 81.1%, SE = 3.2%, average N = 11.5 trials/
participant), and also on trials where both PM cost and
PM intention evidence were absent (mean = 70.5%, SE =
6.5%, average N = 2.8 trials/participant). Incidentally, the
link between PM cost and PM accuracy in the present
study closely replicates prior work using a similar, though
static, task design (Lewis-Peacock et al., 2016). In that
experiment, the researchers found that on blocks where
participants were biased toward reactive control, PM ac-
curacy was 66.0% (SEM = 4.1%), and when participants
were biased toward proactive control, PM accuracy was
71.2% (SEM = 3.0%).

One limitation of the current study is its reliance on the
behavioral PM cost measure to infer PM strategy use.
While this has become a standard approach, PM cost is
nonetheless an indirect measure of PM strategy, the un-
derlying source of which is still under debate (Boywitt and
Rummel, 2012; Ball et al., 2015; Heathcote et al., 2015;
Strickland et al., 2017). We sought to complement this
indirect measure with a more direct measure of PM inten-
tion processing using fMRI pattern classifiers to track PM
intention maintenance. However, fMRI is sluggish and not
ideal to observe time-sensitive shifts in neural coding. It is
possible that our neural measure incorporates aspects of
both PM intention maintenance as well as strategic mon-
itoring. However, these neural measures were not corre-
lated with PM cost slopes, which are believed to reflect
changes in monitoring. In addition, previous work has
found that in contexts where participants are biased to-
ward reactive control, the level of monitoring is not related
to PM performance (Harrison and Einstein, 2010; Loft
et al.,, 2014); however, it is related to PM performance
when participants are biased toward proactive control
(Loft et al., 2014; Ball et al., 2015; Lewis-Peacock et al.,
2016).

In conclusion, we developed a novel dual-task para-
digm to show that people solve prospective memory
problems by flexibly shifting between proactive control
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and reactive control in response to changes in ongoing
cognitive demands. We found evidence for two different
components of proactive control—strategic monitoring,
measured behaviorally, and PM intention maintenance,
measured neurally—which independently fluctuate and
contribute to PM performance. These shifts were adaptive
in that adjustments of control toward the strategy favored
for a given situation (e.g., shifting toward proactive control
when demands decreased across time) led to better PM
performance. These results extend dual mechanism ac-
counts of PM by demonstrating that cognitive flexibility
(i.e., adapting cognitive control strategies to the environ-
ment) is beneficial for remembering to perform future
intentions.
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