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Background: Differentiating inflammatory from malignant lung lesions continues to be challenging in 
clinical routine, frequently requiring invasive methods like biopsy. Therefore, we aimed to investigate if 
inflammatory and malignant pulmonary lesions could be distinguished noninvasively using radiomics of 
apparent diffusion coefficient (ADC) maps and radiomic feature maps calculated from T2-weighted (T2w) 3 
Tesla (3T) magnetic resonance imaging (MRI) of the lung.
Methods: Fifty-four patients with an unclear pulmonary lesion on computed tomography (CT) were 
prospectively included and examined by 3T MRI with T2w and diffusion-weighted sequences (b values of 50 
and 800). ADC maps were calculated automatically. All patients underwent biopsy or bronchoalveolar lavage 
(BAL). Sixteen patients were excluded (e.g., motion artifacts), leaving 19 patients each with malignant and 
inflammatory pulmonary lesions. Target lesions were defined by biopsy or as the largest lesion (BAL-based 
pathogen detection), and two readers placed volumes of interest (VOIs) around the lesions on T2w images 
and ADC maps. One hundred and seven features were conventionally extracted from the ADC maps using 
PyRadiomics. T2w images were converted to 107 parametric feature maps per patient using a PyRadiomics-
based, pretested software tool developed by our group. VOIs were copied from T2w images to T2 maps 
for feature quantification. Features were tested for significant differences using the Mann-Whitney U-test. 
Diagnostic performance was assessed using receiver operating characteristic (ROC) analysis and interreader 
agreement by intraclass correlation coefficients (ICCs).
Results: Fifty-eight features derived from ADC maps differed significantly between malignant and 
inflammatory pulmonary lesions, with areas under the curve (AUCs) >0.90 for 5 and >0.80 for 27 features, 
compared with 67 features from T2 maps (5 features with AUCs >0.80). ICCs were excellent throughout.
Conclusions: ADC and T2 maps differentiate inflammatory and malignant pulmonary lesions with 
outstanding (ADC) and excellent (T2w derived feature maps) diagnostic performance. MRI could thus guide 
the further diagnostic workup and a timely initiation of the appropriate therapy.

2893

 
^ ORCID: Laura J. Jensen, 0000-0002-6436-5733; Damon Kim, 0000-0003-3145-7559; Thomas Elgeti, 0000-0002-7155-6044; Ingo G. 
Steffen, 0000-0003-2059-4275; Lars-Arne Schaafs, 0000-0002-2250-5419; Bernd Hamm, 0000-0002-9141-027X; Sebastian N. Nagel, 
0000-0002-9489-2913.

https://crossmark.crossref.org/dialog/?doi=10.21037/jtd-23-1456


Jensen et al. Inflammatory and malignant lung lesions: MRI radiomics2876

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2024;16(5):2875-2893 | https://dx.doi.org/10.21037/jtd-23-1456

Introduction

Since its emergence in the early 1980s, high-resolution 
computed tomography (HRCT) has become the method 
of choice for the diagnostic work-up of pulmonary 
parenchymal abnormalities (1,2). Free from the potentially 
harmful effects of radiation, magnetic resonance imaging 
(MRI) of the lungs emerged as a preferred modality 
over computed tomography (CT) in pediatric imaging 
and pregnant women (3,4). Limitations of pulmonary 
MRI include motion artifacts, a small signal-to-noise 
ratio due to low proton density of the lung, and poor 
detection of ground-glass opacities (3,5,6). Though still 
underused, MRI offers advantages for the diagnosis of 
various conditions affecting the pulmonary parenchyma 
by providing information on both soft tissue morphology 
and functional properties (4,7): MRI is feasible and 
valuable in immunocompromised patients with pneumonia 
and suspected fungal infection (5,8), free-breathing 
ultrashort echo time sequences have been reported to be 
highly sensitive in detecting pulmonary nodules (9-12) 
and promising results have been reported for diffusion-

weighted imaging (DWI) including prediction of lung 
cancer invasiveness, determination of tumor type, and 
discrimination of malignant and benign nodules (13-17). For 
example, Koo et al. investigated multiparametric contrast-
enhanced lung MRI, including T1-, T2-, and DWI, and 
identified decisive parameters for characterization of 
pulmonary nodules and prediction of malignancy (18). For 
DWI, different diffusion-sensitizing gradients are available 
to create apparent diffusion coefficient (ADC) maps, which 
can help identify malignancy by quantifying the diffusion-
related modification of signal intensity (19-21). 

Another approach to the quantitative assessment of 
the intrinsic properties of biological tissues is what is 
known as radiomics (22,23). For the last 15 years, radiomic 
features invisible to the human eye have been extracted 
from radiological images attempting to identify imaging 
biomarkers in their patterns or develop models combining 
such features for prediction of tumor entities, survival, and 
other biological endpoints (23-29). For example, Wang  
et al. suggested a radiomics model to predict the epidermal 
growth factor receptor status in non-small cell lung cancer 
using features derived from T2- and diffusion-weighted 
MR images (30). Another group recently conducted a 
retrospective analysis of 71 lung cancer lesions to develop 
a radiomics model based on features derived from T2-
weighted MR images to distinguish lung adenocarcinoma 
from squamous cell carcinoma with solid components  
>8 mm (31). Despite the growing number of studies, 
radiomic feature analysis has not yet entered clinical 
practice, primarily due to poor reproducibility (32). 
Parametric feature maps have been proposed as one option 
to improve reproducibility and to simplify the use of 
radiomics (33,34). With this technique, a stack of parametric 
maps, one for each feature, is calculated from the original 
image dataset using a PyRadiomics-based, pretested software 
tool developed by our group. The software decomposes the 
images into small volumes of interest (VOIs) with a fixed 
size and calculates feature quantities. The quantities are 
stored in a map (and reflected by brightness) with the same 
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Highlight box

Key findings
• Radiomic features derived from 3 Tesla (3T) lung magnetic 

resonance imaging (MRI) allow noninvasive differentiation 
of inflammatory and malignant lung lesions with outstanding 
diagnostic performance.

What is known and what is new? 
• Image-based differentiation of pneumonia and lung neoplasms can 

be challenging. 
• Radiomics extracted from apparent diffusion coefficient (ADC) 

maps and T2 feature maps show significant differences and can 
help distinguish inflammatory and malignant lung lesions.

What is the implication, and what should change now? 
• 3T lung MRI radiomics from ADC maps and T2 feature maps are 

straightforward to extract and could serve as a decision-making 
tool in clinical care.
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spatial information as in the original image (33,34). So far, 
the parametric map approach has been applied in phantom 
and liver MRI studies, but not in lung MRI (33,35).

We therefore conducted a study to investigate whether 
radiomics from ADC maps and T2w derived parametric 
feature maps generated from lung MRI datasets can help 
distinguish inflammatory from malignant pulmonary 
lesions. We present this article in accordance with the 
STARD reporting checklist (available at https://jtd.
amegroups.com/article/view/10.21037/jtd-23-1456/rc).

Methods

Study population

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study was 
approved by the Institutional Review Board of Charité – 
Universitätsmedizin Berlin (No. EA4/017/14) and informed 
consent was taken from all the patients. Patients with and 
without underlying oncological disease were enrolled 
randomly if they had an unclear pulmonary lesion (defined 
as a localized parenchymal abnormality) in a clinically 
indicated chest CT scan. The intended sample size was 50 
patients to achieve an area under the curve (AUC) of at least 
0.75 with an alpha of 0.05 and a power of 0.85. Patients 
with suspected pulmonary metastasis on the basis of the CT 
appearance and/or clinical history were not enrolled. All 
patients were treated at our hospital and received a clinically 
indicated CT scan of the chest before the MRI. Study 
participants underwent pulmonary MRI within a median 
of 2–3 days after initial CT. One patient was examined by 
initial MRI because of his young age and since the findings 
were suspicious, a CT scan followed to plan a transbronchial 
lung biopsy. This study used histopathology as the reference 
standard since this method most precisely characterizes 
the underlying lung pathology into inflammatory and 
malignant. The diagnosis of malignant lesions was based 
on pathological examination of tissue obtained by invasive 
biopsy, while a diagnosis of inflammatory lesions was 
based on microbiological pathogen detection from BAL 
(except for one case, in which the pathogen was detected 
in tracheobronchial secretions). Clinical information was 
available to the assessors of the reference standard. Biopsy 
documentation was used to identify the target lesion. When 
BAL was performed to confirm the diagnosis, the most 
extensive and best visible lesion was chosen as the target 
lesion. Exclusion criteria were (I) marked breathing artifacts 

in lung MRI, (II) no reliable delineation of the lesion on the 
ADC map, (III) no biopsy or BAL performed, (IV) unclear 
histopathological specimen, and (V) sarcoidosis. Although 
sarcoidosis can have an infectious cause, it was excluded 
because the clinical presentation and treatment differ from 
infectious pneumonia. A subset of the study population was 
included in earlier studies (8,36-38). Figure 1 shows the flow 
diagram of the study population, and patient characteristics 
are compiled in Table 1.

MRI examination and image acquisition

The MRI protocol included pulse sequences adapted from 
Biederer et al. and Attenberger et al. (5,39). No contrast 
medium was used. All MRI examinations were performed 
with the patient in supine position in the same 3 Tesla MRI 
scanner (Magnetom Skyra, Siemens Healthineers, Erlangen, 
Germany) using an 18-channel body phased-array coil 
positioned on the patient’s chest. The field of view (FOV) 
was adjusted to the patient’s size. Standard acquisition 
time was 53 seconds for the axial T2-weighted single-shot 
fast spin echo (FSE) sequences without fat saturation and  
3 minutes and 8 seconds for the DWI sequences (b values 
of 50 and 800 mm2/s). A DWI sequence without motion 
correction designed by the vendor for thoracic imaging 
was used. T2w images were acquired in inspiration (multi-
breath-hold, 2–3 acquisition steps, target breath hold time 
<20 s) and DWI/ADC during free breathing. ADC maps 
were automatically calculated by the scanner software. 
T2w images and ADC maps were retrieved from the 
picture archiving and communication system (PACS) in the 
DICOM format and pseudonymized. All MRI datasets used 
in the study were acquired from May 2014 to March 2021 
using the same imaging protocol. Table 2 summarizes the 
scanning parameters of the two MRI sequences used in the 
study patients.

Segmentation

Each target lesion was marked separately on the T2w 
images and ADC maps of each patient by placing three-
dimensional VOIs using 3D slicer (3D Slicer, Version 4.10.0, 
www.slicer.org). The readers were required to delineate as 
much of the target lesion as possible while excluding larger 
airways and keeping a minimum inner distance of a few 
pixels from the edge to avoid voxels in the margin, where 
the lesion and adjacent tissue overlap. Each lesion was 
segmented by two radiologists: one was a board-certified 

https://jtd.amegroups.com/article/view/10.21037/jtd-23-1456/rc
https://jtd.amegroups.com/article/view/10.21037/jtd-23-1456/rc


Jensen et al. Inflammatory and malignant lung lesions: MRI radiomics2878

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2024;16(5):2875-2893 | https://dx.doi.org/10.21037/jtd-23-1456

Included patients (n=54)
• Presence of a pulmonary lesion, suspected as inflammatory or 

malignant in a recent clinically indicated CT scan
• No contraindications for MRI

3T MRI: T2w and DWI/ADC
(informed consent)

Excluded (n=6)
• Marked breathing artifacts impairing interpretation (n=4)
• Lesion not reliably delineable on ADC map (n=2)

Biopsy 
or bronchoalveolar lavage

Inflammatory lesions 
(n=19)

Malignant lesions 
(n=19)

Excluded (n=2)
• No biopsy or bronchoalveolar lavage performed (n=2)

Excluded (n=8)
• Histopathological specimen was unclear or without 

detectable pathogen/malignant cells (n=7)
• Histopathological specimen revealed sarcoidosis (n=1)

Figure 1 Flow diagram of the study population. CT, computed tomography; MRI, magnetic resonance imaging; T2w, T2-weighted; DWI, 
diffusion-weighted imaging; ADC, apparent diffusion coefficient.

radiologist with over 11 years of experience and the other a 
board-certified radiologist with 6 years of experience. If not 
otherwise stated, the reading of reader 1 was considered. 
The two readers had visual information on target lesion 
location but were blinded to the type of lesion. For lesion 
delineation in ADC maps, readers were allowed to view the 
corresponding T2w images. 

Feature extraction from ADC maps

Features were conventionally extracted from VOIs in the 
ADC maps using PyRadiomics (Version 3.0) (40). Settings 
for extraction were adjusted as recommended by the 
PyRadiomics developers (see table available at https://cdn.
amegroups.cn/static/public/jtd-23-1456-1.pdf). A total of 
107 features were retrieved: 18 first-order features [energy, 
total energy, entropy, kurtosis, maximum, minimum, mean, 
median, interquartile range (IQR), skewness, range, mean 
absolute deviation (MAD), robust mean absolute deviation 
(RMAD), root mean squared (RMS), variance, uniformity, 
10th percentile, and 90th percentile] and 75 second- 
and higher-order features [24 gray level co-occurrence 

matrix (GLCM) features, 14 gray level dependence 
matrix (GLDM) features, 16 gray level run-length matrix 
(GLRLM) features, 16 gray level size zone matrix (GLSZM) 
features, 5 neighboring gray tone difference matrix 
(NGTDM) features], and 14 shape features (40).

Calculation of parametric feature maps from T2w images 
and feature quantification

Parametric feature maps were computed from the T2w 
image stack of each patient using a PyRadiomics-based, 
pretested and published software tool developed by our 
group (33,34). The evaluation of the ADC and T2w images 
differs in that the ADC images are analyzed directly, 
whereas the T2w images are first converted into parametric 
maps. For the ADC images, the features are hence 
calculated directly from the respective VOI. In contrast, the 
T2w images are first converted into parametric maps, from 
which the values of the features within the VOI are retrieved 
in the next step. The parametric maps are generated by 
dissembling the original image into a grid of voxels (while 
voxel size can be modified in the software script to adjust 

https://cdn.amegroups.cn/static/public/jtd-23-1456-1.pdf
https://cdn.amegroups.cn/static/public/jtd-23-1456-1.pdf
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Table 1 Characteristics of the study population

Pulmonary lesion Inflammatory Malignant 

Number of patients 19 19

Median age [IQR] (years) 59 [39–69] 66 [54–76]

Patient sex

Female 5 8

Male 14 11

CT appearance of target lesion

Solid 5 9

Semisolid 14 10

Ground-glass 0 0

Biopsy 

CT-guided puncture 1 (in addition to BAL and tracheobronchial secretions)* 6

Wedge resection – 2

Transbronchial lung biopsy – 11

Pathogen sampling

BAL 19 1 (in addition to biopsy)

Other 1 patient: tracheobronchial secretions (in addition to BAL)* –

Pathogen

Streptococcus pneumoniae 1 –

Haemophilus influenzae 2

Aspergillus fumigatus 8

Aspergillus fumigatus/Varicella zoster virus 1

Candida albicans 2

Mycobacterium tuberculosis 2

Klebsiella oxytoca 1

Pseudomonas aeruginosa/Escherichia coli/ 
Staphylococcus aureus

1*

Cryptogenic organizing pneumonia 1 

Histopathological analysis of lung lesion

Non-small cell lung cancer – 7

Non-Hodgkin lymphoma 6

Hodgkin lymphoma 3

Small-cell lung cancer 1

Germ cell tumor 1

Multiple myeloma 1

Primary/underlying disease 

AML 6 –

Table 1 (continued)
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Table 1 (continued)

Pulmonary lesion Inflammatory Malignant 

Non-Hodgkin lymphoma 5 6

ALL 2 –

Aplastic anemia 1 –

Hodgkin lymphoma 1 3

Primary CNS lymphoma 1 –

Gliosarcoma 1 –

Squamous cell carcinoma head/neck 1 –

Germ cell tumor – 1

Multiple myeloma – 1

Rectal cancer – 1***

Median interval between clinically indicated CT scan 
and study MRI (days) [IQR]

2 [0.75–5.25] (1 patient underwent MRI prior to CT)** 3 [1–6]

Mean volume of interest size T2-weighted (mm3) 13,252.79 17,606.45

Mean volume of interest size ADC (mm3) 25,526.84 29,472.67

Mean diameter of target lesion**** (mm) [IQR] 35.68 [22–52] 56.05 [35–67]

Mean number of lesions (≥3 mm diameter) per patient 
[IQR]

8.94 [2–13.5]***** 8.44 [1–12]*****

*, one patient underwent a CT-guided biopsy that was negative for malignant cells. No pathogen was identified by microbiological 
analysis of the biopsy sample or the BAL. Analysis of tracheobronchial secretions revealed pathogens (P. aeruginosa, E. coli, S. aureus). 
**, one patient was not examined by CT before MRI. Due to the patient’s young age, MRI was performed first. Since MRI findings were 
suspicious, a clinically indicated CT scan followed afterwards. ***, biopsy of the pulmonary lesion revealed non-small cell lung cancer and 
not metastasis of rectal cancer. ****, on T2-weighted images. *****, one patient with multiple lesions. IQR, interquartile range; CT, computed 
tomography; BAL, bronchoalveolar lavage; AML, acute myeloid leukemia; ALL, acute lymphocytic leukemia; CNS, central nervous system; 
MRI, magnetic resonance imaging; ADC, apparent diffusion coefficient. 

Table 2 MRI scanning parameters 

Parameter T2-weighted images Diffusion-weighted images/apparent diffusion coefficient map

Target TR/TE (ms) 500/28 6,800/56

Preset flip angle (degrees) 121 90

In-plane phase-encoding direction Columns (anterior to posterior) Columns (anterior to posterior)

Matrix 320×208 134×100

Slice thickness (mm) 5 5

Number of phase-encoding steps 206 140

Breathing regimen Multi-breath-hold (max. 20 s) Free-breathing

Scan time (s) 53 188

Magnetic field strength 3T

Patient position Supine, head first

MRI, magnetic resonance imaging; TR, repetition time; TE, echo time; T, Tesla. 
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Software-based 
calculation of 

parametric feature 
maps for 107 features

T2w 
original

First-order mean map

First-order range map

NGTDM strength map

GLSZM zone entropy map

Figure 2 Examples of T2w derived feature maps. The original image stacks are converted into parametric feature maps using a PyRadiomics-based 
pretested software tool developed by our group. On the left, the original T2-weighted image is shown. The column on the right shows exemplary 
parametric feature maps. T2w, T2-weighted; NGTDM, neighboring gray tone difference matrix; GLSZM, gray level size zone matrix.

the map’s resolution) and calculating feature quantity for 
each voxel. The feature quantity for each voxel, in turn, 
is reflected by brightness for each voxel, while spatial 
information is the same in the map as in the original image. 
Therefore, feature quantity can be directly retrieved from 
any location on the map. The rationale behind using the 
data differently is that ADC images are already calculated 
from different b-values and show functional information 
with low spatial resolution, whereas T2w images have 
greater anatomical detail and hence seem more suitable as 
a basis for parametric feature maps (34). Parametric feature 
maps should not be confused with T2 maps known, for 
instance, from cardiac MRI, since they do not contain any 
information on the T2 relaxation times of the examined 
tissues. After initial capacity analysis of the computing unit 

for spatial resolution of the feature maps, the voxel size 
was set to 5 mm (i.e., the software algorithm dissembled 
the original image into small VOIs of 5×5×5 mm,  
and the feature quantity was calculated from this small 
VOI and stored in the map in the same location as in the 
original image). Feature maps were calculated for the 
same 107 features as retrieved from the ADC maps. The 
same PyRadiomics configuration was used for the feature 
extraction from the ADC maps and the map generation 
from the T2w images (see table available at https://cdn.
amegroups.cn/static/public/jtd-23-1456-1.pdf). VOIs 
were copied from each original T2w image stack to the 
corresponding 107 feature maps, and feature quantity was 
then directly extracted from each map using the mean. 
Figure 2 presents the processing of the T2w images and 

https://cdn.amegroups.cn/static/public/jtd-23-1456-1.pdf
https://cdn.amegroups.cn/static/public/jtd-23-1456-1.pdf
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shows exemplary feature maps. The script we used is 
provided in the supplementary material (see table available 
at https://cdn.amegroups.cn/static/public/jtd-23-1456-2.
pdf).

Statistical analysis

Statistical analysis was performed in R (version 4.2.1, 
R Foundation for Statistical Computing) (41). Due to 
the small study population, normal distribution was 
not assumed. Differences in radiomic feature quantities 
between the two groups (malignant versus inflammatory 
pulmonary lesions) were tested for statistical significance 
using the Mann-Whitney U (MWU)-test from the R base 
package. The diagnostic performance of the individual 
features was defined by receiver operating characteristic 
(ROC) curve analysis using the pROC package for R (42).  
The resulting AUCs were rated as follows: 70–80% 
acceptable, 80–90% excellent, and 90–100% outstanding 
performance (43). Interreader agreement was assessed 
by calculating intraclass correlation coefficients (ICCs) 
(ICC3 according to the Shrout and Fleiss convention) 
using the psych package for R (Version 2.2.5) (44,45). A P 
value <0.05 was generally considered to indicate statistical 
significance.

Results

Differentiation of inflammatory and malignant 
pulmonary lesions

ADC maps
The MWU test identified 58 features that differed 
significantly between inflammatory and malignant 
pulmonary lesions (P<0.05). Diagnostic performance ranged 
from 0.69 (GLCM maximum probability) to 0.94 (first-
order root mean squared) in ROC analysis. Overall, AUCs 
of the decisive features were outstanding for 5 features, 
excellent for 27 features, acceptable for 25 features, and 
less than acceptable for one feature. Detailed results can 
be found in Table 3. Notably, features with outstanding 
diagnostic performance were first-order features, including 
simple mathematical features such as mean and median. 
AUCs for the outstanding features are shown in Figure 3.  
Exemplary boxplots of decisive features are shown in  
Figure 4. Figures 5,6 present examples of ADC maps. All 
results of the MWU test and ROC analysis for the ADC 

maps are provided in the supplementary material (see table 
available at https://cdn.amegroups.cn/static/public/jtd-23-
1456-3.xlsx and https://cdn.amegroups.cn/static/public/jtd-
23-1456-4.xlsx).

T2w derived feature maps
Sixty-seven of the T2w map-derived features significantly 
differed between inflammatory and malignant pulmonary 
lesions in the MWU test (P<0.05). Diagnostic performance 
ranged from acceptable to excellent, with excellent AUCs 
for 5 and acceptable AUCs for 62 features, as shown by the 
results compiled in Table 4. Except for first-order skewness, 
features with excellent performance are second- and 
higher-order features derived using complex mathematical 
equations. Still, the mathematics underlying skewness, the 
measure of the asymmetry of the distribution of values 
around the mean, is already very complex with X being a set 
of Np voxels included in the ROI (40): 
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AUCs of the features with excellent diagnostic 
performance are shown in Figure 7. Figure 8 shows 
parametric feature maps of the T2w map-derived features 
with excellent AUCs. All results of the MWU test and 
ROC analysis for the T2w maps are provided in the 
supplementary material (see table available at https://cdn.
amegroups.cn/static/public/jtd-23-1456-5.xlsx and https://
cdn.amegroups.cn/static/public/jtd-23-1456-6.xlsx).

Interreader agreement

Interreader agreement was excellent for all features from 
ADC maps (all ICCs >0.9; P<0.001). ICCs for T2w map-
derived features were excellent for all 93 features (all 
>0.9; P<0.001), excluding the 14 shape features, since the 
numerical values of these features were not usable due to 
the method used for calculating the maps (disassembly 
of the image into small voxels eliminating the properties 
of the shape features). Numerical values of the ICCs for 
ADC and T2w map-derived features are provided in the 
supplementary material (see table available at https://cdn.
amegroups.cn/static/public/jtd-23-1456-7.xlsx and https://
cdn.amegroups.cn/static/public/jtd-23-1456-8.xlsx).

https://cdn.amegroups.cn/static/public/jtd-23-1456-2.pdf
https://cdn.amegroups.cn/static/public/jtd-23-1456-2.pdf
https://cdn.amegroups.cn/static/public/jtd-23-1456-3.xlsx
https://cdn.amegroups.cn/static/public/jtd-23-1456-3.xlsx
https://cdn.amegroups.cn/static/public/jtd-23-1456-4.xlsx
https://cdn.amegroups.cn/static/public/jtd-23-1456-4.xlsx
https://cdn.amegroups.cn/static/public/jtd-23-1456-5.xlsx
https://cdn.amegroups.cn/static/public/jtd-23-1456-5.xlsx
https://cdn.amegroups.cn/static/public/jtd-23-1456-6.xlsx
https://cdn.amegroups.cn/static/public/jtd-23-1456-6.xlsx
https://cdn.amegroups.cn/static/public/jtd-23-1456-7.xlsx
https://cdn.amegroups.cn/static/public/jtd-23-1456-7.xlsx
https://cdn.amegroups.cn/static/public/jtd-23-1456-8.xlsx
https://cdn.amegroups.cn/static/public/jtd-23-1456-8.xlsx
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Table 3 Decisive features from ADC maps

Outstanding (AUC: 0.90–1.0) Excellent (AUC: 0.80–0.90) Acceptable (AUC: 0.70–0.80)
Below acceptable 
(AUC: <0.70)

First-order root mean squared 
(0.94)

First-order maximum (0.89) GLRLM gray level variance (0.79) GLCM maximum 
probability (0.69)

First-order mean (0.93) GLSZM size zone non uniformity 
normalized (0.89)

First-order variance (0.78)

First-order 90th percentile (0.93) GLSZM small area emphasis (0.89) GLDM gray level variance (0.78)

First-order median (0.93) GLDM dependence non uniformity 
normalized (0.88)

GLSZM gray level variance (0.78)

First-order 10th percentile (0.92) GLDM small dependence emphasis (0.88) NGTDM contrast (0.78)

GLSZM zone percentage (0.88) GLDM gray level non uniformity (0.78)

GLDM idm (0.86) GLRLM gray level non uniformity (0.78)

GLRLM run length non uniformity 
normalized (0.88)

GLCM MCC (0.77)

GLRLM short run emphasis (0.88) GLSZM gray level non uniformity (0.76)

GLRLM run variance (0.87) GLCM difference variance (0.75)

GLSZM large area emphasis (0.87) GLCM cluster tendency (0.75)

GLRLM long run emphasis (0.87) First-order kurtosis (0.74)

GLRLM run percentage (0.87) GLCM cluster prominence (0.74)

GLDM large dependence emphasis (0.86) NGTDM busyness (0.73)

GLCM inverse difference (0.84) Shape surface volume ratio (0.73)

GLSZM zone variance (0.86) GLCM idmn (0.72)

GLDM dependence variance (0.86) GLCM idn (0.72)

GLCM inverse variance (0.83) GLCM joint entropy (0.72)

NGTDM strength (0.83) GLCM imc2 (0.72)

First-order minimum (0.83) NGTDM coarseness (0.72)

First-order interquartile range (0.82) GLCM joint energy (0.71)

First-order robust mean absolute deviation 
(0.81)

Shape mesh volume (0.71)

GLCM difference average (0.80) Shape voxel volume (0.71)

First-order mean absolute deviation (0.80) GLRLM run length non uniformity (0.70)

GLCM imc1 (0.80) Shape minor axis length (0.70)

GLCM sum squares (0.80)

GLCM contrast (0.80)

ADC, apparent diffusion coefficient; AUC, area under the curve; GLRLM, gray level run-length matrix; GLCM, gray level co-occurrence 
matrix; GLSZM, gray level size zone matrix; GLDM, gray level dependence matrix; NGTDM, neighboring gray tone difference matrix; MCC, 
maximal correlation coefficient.
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Figure 3 AUCs for the ADC features with outstanding diagnostic 
performance. AUCs indicating outstanding diagnostic performance 
of features from the ADC maps that significantly discriminate 
between inflammatory and malignant lung lesions. Of note, 
all features are of the first-order type and ultimately represent 
brightness. AUCs, areas under the curve; ADC, apparent diffusion 
coefficient.
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Figure 4 Exemplary boxplots of ADC derived features. Boxplots for two ADC derived features—root mean squared and mean—for 
inflammatory and malignant pulmonary lesions. Mean can already be retrieved in a standard image viewing system by outlining a region of 
interest. ADC, apparent diffusion coefficient.

Discussion

The present study has shown that differentiating 
inflammatory from malignant lung lesions is possible using 
radiomic features from ADC maps and by retrieving feature 
quantities from T2w derived feature maps. While the 
diagnostic performance of ADC-derived features is superior 
to that from T2w derived maps (outstanding for ADC 
versus excellent for T2w), this is accomplished at the cost 
of a much longer acquisition time for DWI/ADC datasets. 
Yet, the powerful features extracted from ADC maps are 
basic and all represent brightness, what already allows their 
measurement using a standard image viewer in the routine 
clinical setting. Altogether, results are promising in that 
ADC maps and T2w derived feature maps can enhance 
decision making regarding further patient management and 
might also be helpful if biopsy is unsuccessful or refused 
(e.g., to start empirical antibiotic/antifungal treatment of 
inflammatory lesions).

While the ADC maps were directly calculated by the 
scanner software, we used our software tool to compute the 
feature maps after DICOM export of the T2w datasets (34).  
Our rationale behind the computation of T2 maps was (I) 
to compensate for differences in volume of interest sizes 
of target lesions, as shown in previous studies (33,35), 
and (II) to gain transparency of feature behavior and 
control of the data (while otherwise, calculation of feature 
quantities is more or less a black box) (33). Computation of 
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ADC map: malignant ADC map: inflammatory

Figure 5 Examples of ADC maps of a malignant and a benign pulmonary lesion. On the left, the ADC map of a 29-year-old male patient 
with a testicular germ cell tumor is shown. There was only a single pulmonary lesion located in the left lower lobe, which was removed by 
wedge resection in the further course, and the diagnosis of a metastasis was confirmed histopathologically. The image on the right shows the 
ADC map of a 24-year-old male patient with non-Hodgkin lymphoma as an underlying disease and a single pulmonary lesion in the right 
upper lobe. Bronchoalveolar lavage revealed Haemophilus influenzae, and the infiltrate resolved in the further course following initiation 
of antibiotic treatment. The lower ADC value in the left image indicates malignancy and is already visually perceptible. ADC, apparent 
diffusion coefficient.

ADC map: malignant ADC map: inflammatory

Figure 6 Examples of ADC maps of a malignant and a benign pulmonary lesion. On the left, the ADC map of a 78-year-old female patient 
shows a pulmonary lesion that turned out to be non-small cell lung cancer following a transbronchial biopsy. The right image is the ADC 
map of a 30-year-old male patient with non-Hodgkin lymphoma and a pulmonary lesion revealing to be a Streptococcus pneumonia after 
bronchoalveolar lavage. The infiltrate subsided quickly following antibiotic treatment. The examples illustrate that ADC values are not 
unambiguously distinguishable by visual perception alone. However, radiomics analysis of the entire and three-dimensionally segmented 
lesions (the volume of interest is outlined by yellow line) allowed differentiation of malignant and inflammatory. ADC, apparent diffusion 
coefficient.

parametric maps thus is an attempt to overcome the lack of 
reproducibility of radiomic features across different VOI 
sizes. Although technically feasible, we abstained from also 
calculating parametric maps of the ADC images, which 
already are calculated maps (20,21). Further processing 
them to obtain parametric maps would reduce transparency 
of results.

Differentiating inflammatory from malignant lung lesions 
continues to be a challenge in clinical routine, and invasive 

methods, like biopsy, are frequently needed. Prompt 
initiation of adequate treatment is crucial, particularly in 
immunocompromised patients (46). Therefore, a fast-track 
guide seems desirable. MRI is an emerging modality in lung 
imaging. Yet, motion artifacts caused by respiration and 
cardiac motion and a poor signal-to-noise ratio due to a low 
proton density of pulmonary tissue remain challenging (3). 
In line with this, we had to exclude four patients because of 
respiratory artifacts blurring the target lesion in ADC maps. 
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Table 4 Features from T2w derived feature maps

Outstanding 
(AUC: 0.90–1.0)

Excellent (AUC: 0.80–0.90) Acceptable (AUC: 0.70–0.80)
Below acceptable 
(AUC: <0.70)

– First-order skewness (0.86) GLCM imc1 (0.79) –

GLDM gray level non uniformity (0.80) GLSZM zone variance (0.79)

GLSZM gray level non uniformity (0.80) NGTDM busyness (0.79)

GLCM MCC (0.80) GLDM dependence non uniformity normalized (0.78)

GLRLM gray level non uniformity (0.80) First-order interquartile range (0.78)

First-order mean absolute deviation (0.78)

First-order robust mean absolute deviation (0.78)

GLCM imc2 (0.78)

GLRLM run variance (0.78)

GLSZM size zone non uniformity normalized (0.78)

GLCM inverse variance (0.78)

GLDM large dependence high gray level emphasis (0.78)

GLSZM large area high gray level emphasis (0.78)

GLDM dependence variance (0.77)

GLDM high gray level emphasis (0.77)

GLDM small dependence high gray level emphasis (0.77)

GLRLM long run emphasis (0.77)

GLRLM run percentage (0.77)

GLSZM large area emphasis (0.77)

GLSZM small area emphasis (0.77)

GLSZM zone percentage (0.77)

NGTDM contrast (0.77)

GLCM inverse difference (0.77)

GLCM idm (0.77)

GLCM joint average (0.77)

GLCM sum average (0.77)

GLDM large dependence emphasis (0.77)

GLDM small dependence emphasis (0.77)

GLRLM run length non uniformity normalized (0.77)

GLRLM short run emphasis (0.77)

GLRLM short run high gray level emphasis (0.77)

GLCM autocorrelation (0.77)

GLRLM high gray level run emphasis (0.77)

GLRLM long run high gray level emphasis (0.77)

Table 4 (continued)
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Table 4 (continued)

Outstanding 
(AUC: 0.90–1.0)

Excellent (AUC: 0.80–0.90) Acceptable (AUC: 0.70–0.80)
Below acceptable 
(AUC: <0.70)

GLSZM high gray level zone emphasis (0.77)

GLCM cluster tendency (0.76)

GLCM sum squares (0.76)

NGTDM strength (0.76)

First-order range (0.76)

First-order variance (0.76)

GLDM gray level variance (0.76)

GLRLM gray level variance (0.76)

GLSZM gray level variance (0.76)

GLSZM small area high gray level emphasis (0.76)

NGTDM complexity (0.76)

GLCM difference average (0.76)

GLSZM large area low gray level emphasis (0.75)

GLCM contrast (0.75)

GLCM difference variance (0.75)

GLCM cluster shade (0.75)

GLCM cluster prominence (0.74)

First-order uniformity (0.74)

GLRLM gray level non uniformity normalized (0.74)

GLSZM gray level non uniformity normalized (0.74)

GLDM large dependence low gray level emphasis (0.73)

GLCM difference entropy (0.73)

First-order entropy (0.73)

GLRLM long run low gray level emphasis (0.72)

GLSZM low gray level zone emphasis (0.71)

GLDM low gray level emphasis (0.70)

GLRLM short run low gray level emphasis (0.70)

GLRLM low gray level run emphasis (0.70)

T2w, T2-weighted; AUC, area under the curve; GLCM, gray level co-occurrence matrix; GLDM, gray level dependence matrix; GLSZM, 
gray level size zone matrix; GLRLM, gray level run-length matrix; NGTDM, neighboring gray tone difference matrix.

Recent technical advances in MRI, such as non-Cartesian 
data sampling (e.g., PROPELLER imaging) and ultrashort 
TE sequences, have improved the quality of lung MRI, 
allowing evaluation of lung tissue and large airways (3). 
Radiomics analysis has the potential to further enhance the 

diagnostic performance of lung MRI (37).
Overcoming the ambiguity of lung nodules reflected 

by their overlapping imaging appearance has been a 
concern of many investigators (47). For example, Yang et al.  
developed a helpful novel statistical model combining 
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Figure 8 Parametric feature maps of the T2w map-derived features with AUCs showing excellent diagnostic performance. Both rows show 
the original T2w image on the left and corresponding slices of parametric feature maps with excellent diagnostic performance. The upper 
row shows images of a 75-year-old male patient with a lesion in the left upper lobe that turned out to be non-small cell lung cancer after a 
CT-guided biopsy. The lower row shows images of a 59-year-old female patient with acute myeloid leukemia as an underlying disease and 
a pulmonary lesion in the left upper lobe. The lesion was treated for fungal pneumonia after bronchoalveolar lavage revealed Aspergillus 
spp. and resolved in the further course. GLDM, gray level dependence matrix; GLSZM, gray level size zone matrix; GLCM, gray level 
co-occurrence matrix; MCC, maximal correlation coefficient; GLRLM, gray level run-length matrix; T2w, T2-weighted; CT, computed 
tomography; AUCs, areas under the curve.
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Figure 7 AUCs for the T2w derived feature maps with excellent 
diagnostic performance. Excellent AUCs for T2w map-derived 
features discriminating between inflammatory and malignant lung 
lesions. All features with excellent diagnostic performance involve 
complex mathematical equations and, except for skewness, are second- 
and higher-order features. AUCs, areas under the curve; GLDM, gray 
level dependence matrix; GLCM, gray level co-occurrence matrix; 
GLSZM, gray level size zone matrix; GLRLM, gray level run-length 
matrix; MCC, maximal correlation coefficient; T2w, T2-weighted.

radiomics and T2-based quantitative parameters derived 
from T2-fBLADE-TSE sequences to differentiate between 
malignant and benign pulmonary nodules based on their 
findings in 107 pulmonary nodules in 96 patients (48). 
Another study presented a radiomics model using contrast-
enhanced axial T2-BLADE-TSE images to differentiate 
adenocarcinoma from squamous cell carcinoma with 
solid components >8 mm in 71 patients (31). In a study 
conducted to distinguish malignant from benign pulmonary 
nodules using multiparametric MR-derived radiomics in 68 
patients, features even outperformed traditional imaging 
parameters such as ADC (49). 

The fact that all ADC features with outstanding 
performance in our analysis also represent image brightness 
suggests that no true gain in information is obtained by 
radiomics analysis. Hence, as already outlined before, 
retrieving the mean value in a standard image viewer 
can already be helpful, since DWI has been shown to be 
valuable in differentiating benign and malignant pulmonary 
lesions in several studies (13,15,50). Nevertheless, there 
is no general consensus regarding a threshold below 
which ADC indicates malignancy. ADC values around  
1,000×10−6 mm2/s are regarded as normal, and lower values 
indicate restricted diffusion, which may possibly correlate 
with the higher cellularity of cancer tissue (19,51). Durmaz 
et al., who reported promising results for ADC values 
in distinguishing benign from malignant cavitary lung 
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lesions, found significantly lower ADC values for malignant 
compared with benign lung lesions with a wall thickness of 
≥5 mm on an initial CT scan in a study population of 45 
patients, which is consistent with our results (50). 

In the present study, we calculated two-value ADC maps 
with b values 50 and 800 mm2/s. Wan et al. showed superior 
performance for ADC with diffusion coefficients of 0 and 
≥500 compared to 0 and <500 in differentiating between 
benign and malignant solitary pulmonary lesions in a 3T 
MRI study on 89 patients comparing different two-value 
combinations from a total of 14 different b-values (15). 
In their study, they placed ROIs in solid lesion portions 
at the level of the largest transverse diameter whereas we 
segmented the entire lesion. Çakmak et al. conducted a 1.5T 
MRI study including 47 patients to discriminate between 
benign and malignant pulmonary lesions. They compared 
the diagnostic performance of the minimum ADC (0 and 
600 mm2/s) and lesion-to-spinal cord signal intensity ratio 
(on DWI), showing superior diagnostic performance for 
ADC. Yet, in contrast to our study, they also did not segment 
the entire lesion to calculate the minimum ADC value but 
calculated the average of three ROIs per lesion (13).

Our study has some limitations. We investigated a 
rather small study population of 38 patients (19 with 
inflammatory and 19 with malignant pulmonary lesions). 
Further, the study population is rather heterogeneous 
since patients with and without a history of cancer were 
included. Patients were chosen carefully for inclusion (based 
on invasive diagnosis confirmation) to ensure the validity 
of our results, and inconclusive cases were excluded. Also, 
four patients had to be excluded due to breathing artifacts 
and two patients because the target lesion was not readily 
identified in the ADC map. A further limitation is that T2w 
images allowed more precise segmentation than ADC maps. 
Performing segmentation solely from ADC maps without 
other anatomical MR images would have been challenging. 
Overall, the stability of radiomics is known to be limited 
across different MR systems, field strengths, and vendors, 
impeding the introduction of MR radiomics into clinical 
care and restricting the generalizability of our results across 
centers and scanners (19,32,52).

Conclusions

In conclusion, 3T MRI allows noninvasive differentiation 
of inflammatory and malignant pulmonary lesions based 
on radiomic feature quantification with outstanding (ADC) 
and excellent (T2w derived feature maps) diagnostic 

performance. MRI could thus guide the further diagnostic 
workup and a timely initiation of the appropriate therapy.
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from all the patients.
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