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Background. Understanding the functional role(s) of the more than 20,000 proteins of the vertebrate genome is a major next
step in the post-genome era. The approximately 4,000 co-translationally translocated (CTT) proteins – representing the
vertebrate secretome – are important for such vertebrate-critical processes as organogenesis. However, the role(s) for most of
these genes is currently unknown. Results. We identified 585 putative full-length zebrafish CTT proteins using cross-species
genomic and EST-based comparative sequence analyses. We further investigated 150 of these genes (Figure 1) for unique
function using morpholino-based analysis in zebrafish embryos. 12% of the CTT protein-deficient embryos resulted in specific
developmental defects, a notably higher rate of gene function annotation than the 2%–3% estimate from random gene
mutagenesis studies. Conclusion(s). This initial collection includes novel genes required for the development of vascular,
hematopoietic, pigmentation, and craniofacial tissues, as well as lipid metabolism, and organogenesis. This study provides
a framework utilizing zebrafish for the systematic assignment of biological function in a vertebrate genome.
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INTRODUCTION
The increasing availability of genomic and EST sequence data for

model genetic organisms has greatly facilitated genome-wide

approaches for gene discovery and analysis. We used a morpho-

lino-based gene ‘knockdown’ strategy (Figure 1) to assess the role

of members of the secretome in vertebrate development and

function[1]. A software pipeline (Figure 2) for comparative

genomic data mining was developed to identify CTT proteins en

route to the endoplasmic reticulum, cell membranes, or external

regulatory sites[2,3]. Utilizing the TargetP and SignalP algorithms

for signal peptide and cleavage site prediction, reference CTT

protein sets were created from completed genome projects (H.

sapiens, F. rubripes, and M. musculis) and compared to sequence data

from the TIGR Zebrafish Gene Indices (versions 6.1, 8, 12, and

16) and the Zebrafish Genome Project (Sanger, build Zv2 – Zv6)

to identify putative CTT proteins for reverse genetic analysis. To

overcome the 39 bias of most EST sequence information, the

combined comparative analysis and secreted protein predictive

software ensured that target proteins selected possessed N-

terminally complete sequence information.

Morpholino phosphorodiamidate oligonucleotides (MOs), neu-

trally charged nucleic acid analogs created by replacing the ribose

sugar with a morpholine moiety and the phosophodiester

backbone with a phosphorodiamidate linkage[4], were used to

target the putative 585 CTT proteins identified for loss-of-function

studies in zebrafish embryos[1]. The translational initiation site

(TIS) of the respective CTT-coding sequence was identified with

the assistance of AMOD, MO design software created for these

studies[3]. The use of MO-based reversed genetics necessitates

TIS identification as MOs are most effective through Watson-

Crick base pairing of RNA target sequences at or upstream (59) of

the TIS. AMOD-assisted design helped to ensure target sequences

were chosen with appropriate properties of efficacy and unique-

ness of target sequence.

RESULTS
Following injection of MOs against CTT proteins by the joint

effort of multiple laboratories, we observed distinct developmental

phenotypes in 18 of the first 150 genes investigated using this

approach. Each of the research partners have contributed different

zebrafish screening approaches resulting in the novel observations
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Figure 1. Schematic of overall MO screen. (A) A bioinformatics pipeline was developed to determine the subset of N-terminally complete CTT
homologs representing the testable putative proteins of the zebrafish secretome. (B) AMOD software was developed to standardize and increase the
efficiency of the MO design process to allow more rapid screening. (C) A MO database, MODB, was developed to manage, share, and data mine all
MO design and outcome information. (D) Following MO synthesis and distribution to the participating labs, MOs were investigated using a variety of
assays in zebrafish embryos that allowed functional annotation of 18/150 of the putative CTT proteins investigated. Results of investigations were
recorded in MODB for data mining. AMOD software was used to design a second sequence-independent MO to assess specificity of the initial MO
tested.
doi:10.1371/journal.pone.0000104.g001
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summarized here. The complete results of the ongoing screen have

been stored in the Arnold and Mabel Beckman Center for

Transposon Research Morpholino Database (MODB, http://

www.secretomes.umn.edu/MODB/) for access to MO-specific

information and phenotype data mining with the goal of

accelerating the assignment of gene function to sequence. Criteria

for inclusion in Table 1 include: 1) MO-induced effects were not

accompanied by non-specific effects sometimes observed with MO

treatment (unpublished observations), 2) phenotypes were ob-

served in .50% of embryos injected at doses less than or equal to

5 ng, and 3) phenotypes were dependent on MO dose. In

addition, 15/16 of the phenotypes in Table 1 were reproducible

when two sequence-independent MOs were tested and, further-

more, these demonstrated synergistic effects when both MOs

against the same target gene were injected together (criteria for

specificity as in[5,6]). Thus, the first three criteria above provide

a high specificity threshold, i.e. predict that additional target sites

reliably reproduce the initial phenotype. The current annotation

based on multiple-species sequence homology for each of these

genes (TIGR, Esemble Zv6) proscribes these genes to a variety of

distinct proteins that are not from the same family or other

similarity in functional or structural classification.

MO injection into vascular fli-1:eGFP and hematopoietic gata-

1:DsRed double reporter transgenic (Tg) embryos (Figure 3A and

3K) resulted in a variety of specific developmental phenotypes

without any accompanying gross morphologic effects (Figure 3).

Reduced axial or a lack of intersegmental circulation was observed

following injection of syndecan-2 MO (Figure 3B). Observations of

blood flow in the Tg (gata-1: DsRed) injected embryos confirmed

these results as evidenced by an incomplete lack of circulation

(Figure 3L). Injection of heparin sulfatetransferase-6-O 2-sulfotransfer-

ase(HSST6O-2)-MO produced gaps within the caudal vein plexus

(Figure 3C, small arrow heads) that appeared to disrupt blood flow

in Tg (gata-1: DsRed) injected embryos (Figure 3M). MAGP1-MO

injected embryos resulted in a loss of integrity in the caudal vein

plexus (Figure 3D, arrow) with disrupted blood flow (Figure 3N).

A group of related phenotypes characterized by a premature

return of caudal vein blood flow was observed as a direct result of

screening in Tg (fli-1:eGFP) and Tg (gata-1:DsRed) double trans-

genic embryos. MOs targeting Ephrin B2 (Figure 3O, arrow),

SPPL2b (Figure 3P, arrow), predicted protein LOC407708

(Figure 3Q), and C1q (Figure 3R) resulted in embryos that failed

to develop the more extended pattern of flow in the tail as

compared to wild-type embryos (Figure 3K). Interestingly, the lack

of complete flow was not a result of defects in gross vascular

development as MO-injected Tg (fli-1:eGFP) embryos appeared

normal (Figure 3E, 3F, 3G, and 3H, respectively) and lumeniza-

tion was normal as determined by microangiography (data not

shown).

The pattern of blood flow in Tg (gata-1:DsRed) embryos was also

particularly useful in the identification of two new hematopoietic

phenotypes. Synaptotagmin13-MO injections produced predominant

areas of blood pooling (Figure 3S). Injection of SLC27A2-Like-MO

was even more severe as a little blood was observed. Neither

observation following MO injection was attributed to defects in

vascular development as the Tg (fli-1:eGFP) fluorescent pattern

remained intact. In combination, the results from the vascular and

hematopoietic assays of the MO screen highlight the utility of

transgenic reporter strains to identify unique phenotypes that

would not be detectable using other criteria such as morphology

and suggest novel roles for CTT proteins in vascular and

hematopoietic development.

To screen for genes that regulate lipid processing and organ

development in zebrafish, we developed an assay to study

zebrafish larvae at stages before the mouth opens and swallowing

begins. BODIPY-C12 (530/550) fatty acid was injected into the

yolk and three day old embryos harvested for lipid extraction

(Figure 4A). Although C12-BODIPY was poorly metabolized by

Figure 2. Selection of candidate genes for MO targeting. (A) Co-
translationally translocated vertebrate protein sequences (CTT Proteins)
were identified using an in silico prediction pipeline to create the
reference CTT protein sequence sets. (B) Zebrafish Tentative Conse-
quence (TC) sequences were compared to the reference protein
sequence sets using BLASTX. Zebrafish TC sequences possessing highly
homologous regions located near the reference protein sequence N-
termini and possessing clear translational initiation sites were selected
for further analysis. (C) The corresponding zebrafish TC peptides were
then analyzed by the in silico prediction pipeline and sequences
possessing a signal peptide selected for morpholino design. (D) E.g.
zebrafish sequence SP1991 was selected on the basis of its strong
homology to the N-terminus of reference protein gi_14768182. Analysis
identified a strong translation initiation site near the 59 end of the
SP1991 nucleotide sequence and in silico predictions identified a clear
signal peptide near the N-terminus of the translated peptide.
doi:10.1371/journal.pone.0000104.g002
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L-cell fibroblast[7], it appears to be well incorporated into

triacylglycerol, cholesterol ester, phosphatidylcholine, and phos-

phatidylethanolamine in zebrafish embryos. This method allowed

screening of embryos with defects prior to the onset of ingestion on

embryonic day 5. Morpholino injections that alter the pattern or

rate of accumulation of lipid fluorescence, as well as those that

produce specific alterations in larval morphology, are recorded.

We found one MO that had altered BODIPY-C12 utilization.

Specifically, MO-injected embryos had poorly absorbed yolk

(Figure 4D & E) and lower incorporation of BODIPY-C12 into

phosphatidylcholine and lysophosphatidylcholine (Figure 4C).

This MO was identified as apoC2 by syntenic analysis (Figure 4B).

The poor yolk absorption was a surprising result in that the main

function reported for apoC2 from studies in humans and

Figure 3. Defects in vasculogenesis and hematopoeisis observed in Tg (fli-1:eGFP (green)) or Tg (gata-1:DsRed (red)) embryos following MO
inactivation of select CTT genes. (A) Normal vascular development observed in untreated Tg (fli-1:eGFP) embryos. (B, L) Decreases in the number of
vascular sprouts (arrow heads) observed following injection of MO targeting Syndecan-2[20]. (C, M) Gaps within the caudal vein plexus (small arrow
heads) observed following injection of MO targeting heparin sulfatetransferase-6-O 2-sulfotransferase (HSST6O-2)[21]. (D, N) Loss of integrity in the
caudal vein plexus (arrow) observed following injection of MO targeting MAGP1[22]. Premature return in caudal vein flow shown by gata-1:dsRed
expression to varying severities (arrowheads) following injection of MOs targeting Ephrin B2 (E,O), SPPL2b (F,P), predicted protein LOC407708 (G, Q),
and C1q (H, R). Note: the premature return defects were not shown by fli-1:eGFP expression (E, F, G, H), however, were confirmed by other vascular
markers (data not shown). (K) Normal blood development observed in untreated Tg (gata-1:DsRed) embryos. Decreased number of blood cells
observed in 2 dpf embryos following injection with MO against Synaptotagmin13 (S) or Novel Protein similar to SLC27A2 (T). Accompanying panels
(I) and (J) display no major vasculature defects for each of these genes respectively.
doi:10.1371/journal.pone.0000104.g003
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mammalian tissue culture is the activation of lipoprotein lipase[8].

Ongoing studies are exploring if yolk absorption is dependant on

lipoprotein lipase activity or whether apoC2 has other functions in

the developing zebrafish embryo.

Morphological criteria, including standard staging and anatom-

ical landmarks[9], were used to identify eight additional

phenotypes from the MO screen. As the otic vesicle matures in

1 dpf embryos, otoliths form and are easily identifiable throughout

subsequent developmental stages as shown for 2 dpf embryos in

Figure 5A and 5B. Following injection of CHCHD4-MO, the

otoliths failed to form (Figure 5C and 5D). Observations in up to

5 dpf embryos confirmed the observed defect. Development of the

eye begins around the 4-somite stage with the appearance of the

optic primordium and continues through development of the lens

placode during the 20-somite stage providing the opportunity to

assess development of the eye (Figure 5E and 5F) in the MO

screen. In AMBP-MO injected embryos, a quantifiable decrease in

the globe of the eye was observed as early as 2 dpf, and could be

easily differentiated by 3 dpf (Figure 5G). Closer examination by

H&E tissue staining demonstrated disrupted tissue architecture

evident at 3 dpf (Figure 5H). We have also observed a phenotype

involving development of the tail and trunk (Figures 5I and 5J).

Following injection of SSRdelta-MO, a ventral curvature of the tail

was characteristic of 1 dpf embryos ([5J]). Interestingly, this target

is a protein component of the Translocon Complex, predicted to

be involved in protein secretion. Consistent with the bent axis

phenotype, SSRdelta is strongly expressed in the developing

midline (data not shown).

The differentiation of cells in the retinal epithelium and the

dorsolateral skin melanophores around the onset of the phar-

yngula period (24h) continue to develop into four distinct stripes

on the larval trunk and tail around the late second to third day of

development (Figure 5K and 5L). Changes in the development of

this pigment pattern were observed in three different CTT target

genes. Following injection of ATP6V0C-MO, very few differenti-

ated melanophores were observed in the eye or trunk at 1 dpf

Figure 4. ApoC2 is required for yolk lipid procesing. Embryos at the 1–8 cell stage were initially injected with a MO of interest. At 24 hpf,
a fluorescent fatty acid (BODIPY-C12) was injected into the yolk. (A) 48 hpf embryo injected with BODIPY-C12 at 24 hpf. Embryos were then kept in
the dark until 72 hpf when they were scored for morphologic phenotype. Embryos (4/tube) were homogenized in 50% methanol and extracted TLC
plates were then scanned to reveal triacylglycerol (TG), diacylglycerol (DG), initial substrate (C12) and phospholipids (phosphatidylcholine (PC) and
lysophosphatidylcholine (LPC)). Fluorescent intensities were quantified and the total fluorescence of all lipids was determined. (B) For each MO
injected, data were expressed as a percent of total lipids and compared to a phenol red control to obtain the percent of control (C) A second
experiment comparing BODIPY-C12 incorporation in control and Apo2c MO injected embryos. A given experiment represents a mean of at least three
individual lipid extracts with 4 embryos each. * p,0.05 (D) Syntenic analysis indicates that the zebrafish EST sequence with homology to Apoc2, is the
fish ortholog of that gene. (E,F) Morphology of embryos injected with apoC2 MO. Arrowheads indicate enlarged yolk.
doi:10.1371/journal.pone.0000104.g004
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(Figure 5M). Although some melanophores did appear by late

2 dpf (Figure 5N), the far fewer differentiated cells that were

present appeared punctate rather than stellate in comparison with

their wild-type counterparts (Figure 5L). JAM2-MO injection

resulted in a similar lack of differentiated melanophores at 1 dpf

(Figure 5O) but was characterized by morphologically normal

pigmented cells at late 2 dpf that were not organized as well into

the striped pattern (Figure 5P) recognizable at this time in the wild-

type counterparts (Figure 5L). Injection of UBXD2-MO resulted in

a notable delay in the onset of pigment cell differentiation at 1 dpf

(Figure 5Q) compared to wild-type embryos (Figure 5K) and these

embryos were distinctly abnormal at late 2 dpf (Figure 5R). Two

Figure 5. Morphological defects observed following MO inactivation of select CTT genes. (A, B) Otolith morphology observed in 2 dpf untreated
embryos. (C, D) Absence of otoliths, in otherwise normal 2 dpf embryo, following injection of MO targeting CHCHD4. (B, D) Enlarged view of otic
capsules; arrows denote normally formed (B) or absent (D) otoliths, respectively. (E, F) Eye morphology in 3 dpf embryos. (G, H) Abnormally small eyes
observed in 3 dpf embryo following injection of MO targeting AMBP. (F, H) Enlarged view of histological sections of eye in un-affected (F) and
affected (H) embryos. Note differences in both the size and tissue organization of the affected eye. (I) Wild-type morphology of 1 dpf embryo. (J)
Ventral curvature phenotype observed in 1 dpf embryos injected with MO targeting SSRdelta. (K, L) Normal pigmentation observed in untreated 1
and 2 dpf embryos. Reduction in pigment observed in 1 and 2 dpf embryos, respectively, following injection of MO targeting ATP6V0C (M, N)[23], or
junction adhesion molecule 2 (JAM2) (O, P), or UBX domain containing 2 (UBXD2) (Q, R)).
doi:10.1371/journal.pone.0000104.g005
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craniofacial phenotypes, not dependent on p53-induced head cell

death (unpublished observations), were also observed following

injections with HSC70-MO and a MO targeting a novel cysteine-

containing protein (Table 1). The results from the morphological

screen underscore the importance of including these basic, easily

observed criteria in the MO screen to identify novel regulatory

functions of sensory organs and pigment cell development.

DISCUSSION
Although providing many mutant alleles for the study of vertebrate

development, forward-genetic screens in zebrafish have drawbacks

such as the large number of mutations within a gene and the

considerable time required to clone and characterize these alleles.

In contrast, a MO reverse-genetic approach in zebrafish embryos

does not suffer from these drawbacks and has distinct advantages

associated with F0 screening and a priori knowledge of the gene

sequence. With the expanding collections of EST information and

genome projects underway for multiple species, targeted discovery

screening approaches using MOs as described here are now

feasible. Using comparative genomic data mining strategies, we

have targeted a select subset of the genome, the vertebrate

secretome, by design. In addition, we focused our investigation of

the role of CTT proteins in higher-order biological processes of

vertebrates (such as organogenesis). Our strategy to allow partial

open reading frames and improved secreted protein predictions in

eukaryotic transcriptomes provides valuable tools for the analysis

and annotation of eukaryotic genomes. As with many other

studies, including MO screens in X. laevis and C. intestinalis[10,11],

these studies suggest TIS targeting MOs are effective inhibitors of

gene expression for the study of vertebrate development provided

background effects (unpublished observations) and specificity

concerns[5] are addressed (such as confirming that at least two

sequence independent MOs produce the same phenotype).

Confirmation in at least the case of ATP6V0C-MO that the

phenotype observed was also validated by the hi1207mutant of an

insertional mutagenesis screen[12], further demonstrated the

validity and sensitivity of the screen.

Mutagenesis work provides one estimate for the rate of visible

effects due to single gene mutation in zebrafish. Saturation

estimates using visible morphological phenotyping criteria suggest

2000-2400 total genes of unique function can be identified using

that approach[13,14]. Assuming the zebrafish genome includes

24-36,000 genes (numbers extrapolated from the human and fugu

genome projects[15,16], this suggests that 1 in 10 to 1 in 18 genes

when mutated will yield a detectable phenotype visible during the

first 5 days in development. Of those, only 30% result in

developmentally ‘specific’ defects[14], suggesting that the rate at

identifying biologically specific phenotypes from a random gene

set is ,2–3%.

Data from this MO screen suggests a phenotypic detection rate

of ,12% (18/150). We attribute this high discovery rate to several

factors. First, some of the noted phenotypes would not have been

detected using standard morphological criteria, including MOs

with defects in lipid metabolism and vascular function. Second, we

believe the secretome is enriched for key genes involved in

regulatory and signaling function(s) and will be more likely to elicit

phenotypes with regional or ‘specific’ defects. Third, translational

blocking MOs are able to target both maternal and zygotic

messages[1], suggesting some functions can be uncovered using

MOs that would not have been detected using standard

mutagenesis approaches. Finally, the ability of MOs to elicit a full

range of phenotypes due to altered dosing may identify

hypomorphic-like phenotypes that would be too difficult to

analyze from a strong, near-null allele. We consider the current

12% detection rate to be a lower estimate of observable specific

phenotypes from the screen, as additional screening will examine

the morpholino collection using a variety of novel assays (such as

newly generated enhancer and gene trap lines; Balciunas et al.,

2004; Kawakami et al., 2004; Parinov et al., 2004) and may reveal

developmental and/or functional aspects not readily visible by

morphological criteria.

The 150 gene screen conducted here is too small to extrapolate

to an entire genome proper, but the core observations that some

phenotypes are only detectable after the use of non-visible assays

suggests that current 2000 gene numbers[14] are likely under-

estimates. In addition, with a few notable exceptions[17–19], the

role of the maternal genome in early development has been

largely underexplored through the focus on conventional, zygotic-

based genetic analyses. Developing a comprehensive dataset on

the conserved vertebrate secretome, including the extant of

maternal involvement in gene function, should help answer the

question: How many genes are required to make a vertebrate

embryo?

Assuming the vertebrate genome encodes ,2500 conserved

members in the secretome[3], this pilot study of 150 members

suggests that an additional ,250 phenotypes are yet to be

uncovered after a genome-wide screen using this approach.

Investigation of the current annotation associated with CTT

protein phenotypes observed in this screen does not suggest any

common specific functional classification associated with CTT

gene. As a result, we continue to expect to see a variety of

phenotypes from the ongoing screen in processes including

embryonic patterning, sensory organ formation, lipid metabolism,

and blood and vascular development. Evidence of the significant

impact of this work is provided by our previous and continuing

reports characterizing phenotypes of CTT proteins from this

screen[20–23] and suggests a broad role of CTT proteins in

developmental regulatory mechanisms. Our observations of CTT

proteins in association with biological and biochemical pathways

that may be uniquely vertebrate, e.g. neural crest formation and

most organogenesis pathways, highlight the significant capacity of

this approach to further understand clinically relevant develop-

mental processes. In addition, molecules identified as crucial for

development in vivo may likely serve as key substrate molecules for

potential small molecule drug target intervention and for the

establishment of conditions for stem cell manipulation such as

in vitro organ formation. As a result there is much to be gained

by the continuation of this study in understanding vertebrate

development, identifying novel medical intervention targets,

and ultimately improving the understanding of human genetic

disease.

MATERIALS AND METHODS

Identifying CTT proteins of the zebrafish secretome
Identification of these gene targets was expanded from a previously

reported pilot analysis[2] using a defined vertebrate secretome[3].

Briefly, homology between the tentative consensus sequences

(TCs) from EST information of the Institute for Genomic

Research (TIGR) Zebrafish Gene Index[24] and the H. sapiens,

M. musculus or F. rubripes protein reference secretomes (via

BLASTX) was used to select a set of candidate CTT protein

sequences. To enrich this set with N-terminally complete peptides,

sequences were retained only if the N-termini of the homologous

sequence pair aligned within a 50 amino acid threshold (homology

threshold as described in Klee 2001) and/or there was a clearly

predicted translation start site on the TC sequence. In cases where

zebrafish EST sequences with good homology and alignment to
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the reference protein lack the necessary 59UTR sequence

information for MO target oligo design, we attempted to use

ENSEMBL (http://www.ensembl.org, multiple build versions)

zebrafish genomic data to extend the EST sequence data. The N-

terminally complete peptides from selected TC sequences were

then analyzed using the TargetP[25] and SignalP[26] algorithms

to identify putative CTT proteins for MO design.

MO sequence site selection and design
Utilizing the selected CTT zebrafish sequence data identified

above, AMOD software[27] was used to display the identities and

alignments (above) for manual confirmation and selection of the

translation initiation site (TIS). Once a TIS is selected, AMOD

displays all potential 25mer MO target oligos upstream of the

putative start site in the zebrafish EST sequence. For each

potential MO target sequence, AMOD calculates oligo-specific

properties considered in design such as G, and C content.

Antisense morpholino oligos are selected with 40–60% GC

content, less than 37% G content, and a lack of any consecutive

tri- or tetra-G nucleotide sequences. In addition, AMOD displays

intra-sequence and inter-sequence homology between one or two

selected oligo targets to minimize self or pair sequence homology.

Acceptable oligos are selected by the user, and MO design

sequence is written to an output file.

Parallel to the development of the bioinformatics pipeline to

identify CTT proteins and design MOs, semi-automated filtration

steps were undertaken to prioritize genes used for MO targeting.

Genes lacking extensive annotation were prioritized in order to

minimize overlap with work done by other zebrafish labs

worldwide and genes deposited in GenBank were excluded

entirely. We gave higher priority to novel genes by selecting for

those sequences not possessing ENSEMBL human homologs or

possessing homologs annotated as ‘‘not described’’ in the

ENSEMBL database. Finally, we have also depreciated the value

of a single protein family related to the ‘‘zebrafish egg envelope

protein ZP3’’ that appears frequently (35 times) within the current

secretome collection.

Embryo maintenance and staging
Wild-type zebrafish were purchased from Segrest Farms (Gibson-

ton, FL, USA). Embryos were collected following group mating

and raised at 30uC as described previously[9,28].

Morpholino injection
All MOs were purchased from Gene Tools, LLC (Philomath, OR,

USA), prepared, and injected into 1–4 cell stage embryos as

previously described[1,28]. For sequence information see Arnold

and Mabel Beckman Center for Transposon Research Morpho-

lino Database (MODB, http://www.secretomes.umn.edu/

MODB/). Initial injections of MOs were at 1.5, 3, 4.5, and 6 ng

in greater than 50 wild-type, Tg (fli-1:eGFP), Tg (gata-1:DsRed), or

double Tg embryos. Dosage was subsequently refined based on

efficacy and toxicity profiles observed for each MO.

Fluorescence analysis of transgenic zebrafish for

vascular and hematopoietic development
GFP/DsRed expression in embryos was examined using Zeiss

Axioscope 2 compound microscope (Carl Zeiss, USA) and images

were captured using the Axiocam digital camera as described

previously[28,29]. MO-injected embryos were compared with

uninjected controls from the same clutch at 30 and 38 hpf for

visualization of DsRed blood cells and EGFP vasculature.

BODIPY-C12 assay
Embryos are injected with a MO that targets a gene of interest as

described above. At 24–30 hours post fertilization (hpf), the

embryos are injected a second time with BODIPY-C12 (530/550-

Invitrogen/Mol. Probes) fatty acid (approx. 0.1 ng/embryo)

directly into the yolk. The embryos are stored in the dark until

72 hpf, at which time the embryos are separated into groups of

four and homogenized using a bath sonicator or pestle. The lipid

fraction is then subjected to TLC and analyzed with a fluorescence

scanner for any perturbation of lipid processing. Immediately after

phenotypic analysis, embryos (4/tube) are homogenized in 50%

methanol and extracted (water:methanol:chloroform; 1:1:2; v/v).

Lipid extracts are then subjected to thin layer chromatography

(TLC) to determine the levels of fluorescent acyl chain in-

corporation. Fluorescent intensities are quantified (ImageQuant,

Molecular Dynamics) and the total fluorescence of all lipids

combined is determined. For each MO injected, data are

expressed as a percent of total lipid fluorescence and then

compared to the phenol red injected control. Prior to injection,

BODIPY-C12 is purified via TLC and resuspended (10% Ethanol:

90% H2O) and stored for no more than 1 week. Antisense

injections that alter the pattern or rate of accumulation of lipid

fluorescence, as well as those that produce specific alterations in

larval morphology are recorded for future analysis.

Lipid extraction and analysis
Lipids from embryos are extracted into CHCl3[30]. Neutral lipids

and phospholipids are separated by TLC in heptane/isopropyl

ether/acetic acid (60:40:4; v/v) or CHCl3 /methanol/40%

methylamine (60:20:5; v/v), respectively. Triacylglycerol and

phospholipids are quantified by glycerol[31] and phosphate[32]

analyses, respectively. Hydrolysis products are separated by TLC

in CHCl3/methanol/H2O (65:25:4; v/v) and the fatty acids and 1-

acyl-lysophospholipid areas are scraped and extracted.

Morphological assessment and histology
MO-injected embryos were assayed during the first three days of

development using specific morphological and molecular criteria

based on staging and anatomical landmarks as described pre-

viously[9]. Development of pigment was visually monitored from

24–48 hours for presence of melanophores or alterations in

melanophore distribution (xanthophores and iridophores were

not examined). Histological sections were fixed in 10% phosphate

buffered formalin, embedded in paraffin, serial sectioned (7 mi-

cron), and stained with hemotoxylin and eosin (H&E) (Personal

communication-Keith Cheng).
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