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A B S T R A C T

Purpose: To determine the agreement between five different methods of ictal EEG source imaging, and to
assess their accuracy in presurgical evaluation of patients with focal epilepsy. It was hypothesized that
high agreement between methods was associated with higher localization-accuracy.
Methods: EEGs were recorded with a 64-electrode array. Thirty-eight seizures from 22 patients were
analyzed using five different methods phase mapping, dipole fitting, CLARA, cortical-CLARA and
minimum norm. Localization accuracy was determined at sub-lobar level. Reference standard was the
final decision of the multidisciplinary epilepsy surgery team, and, for the operated patients, outcome one
year after surgery.
Results: Agreement between all methods was obtained in 13 patients (59%) and between all but one
methods in additional six patients (27%). There was a trend for minimum norm being less accurate than
phase mapping, but none of the comparisons reached significance. Source imaging in cases with
agreement between all methods was not more accurate than in the other cases. Ictal source imaging
achieved an accuracy of 73% (for operated patients: 86%).
Conclusion: There was good agreement between different methods of ictal source imaging. However,
good inter-method agreement did not necessarily imply accurate source localization, since all methods
faced the limitations of the inverse solution.
ã 2016 The Author(s). Published by Elsevier Ltd on behalf of British Epilepsy Association. This is an open

access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

There is compelling evidence for the role of electric source
imaging (ESI) in the localization of interictal epileptiform
discharges [1–5]. However, the irritative zone generating the
interictal EEG discharges might not necessarily coincide with the
seizure-onset zone [6]. Ictal source imaging faces additional
technical challenges (artifacts occurring during seizure, absence of
ictal EEG correlate in scalp recordings, propagation of ictal
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activity), and it has received less attention compared to interictal
analysis [5].

Several methods of ictal source imaging have been previously
described and validated in clinical practice [7–13]. However, it is
not known to what extent the different methods lead to the same
source location, and which is the best approach for localizing ictal
sources. It was hypothesized that concordance between different
methods/inverse solution was associated with a higher localiza-
tion-accuracy [14].

The objectives of this study were: to investigate the
agreement between different analysis strategies of ictal source
imaging, to assess their accuracy in the presurgical evaluation of
patients with epilepsy, and to test the hypothesis that higher
inter-method agreement was associated with higher localiza-
tion-accuracy.
psy Association. This is an open access article under the CC BY license (http://

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.seizure.2016.09.017&domain=pdf
mailto:sbz@filadelfia.dk
http://dx.doi.org/10.1016/j.seizure.2016.09.017
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/j.seizure.2016.09.017
http://www.sciencedirect.com/science/journal/10591311
www.elsevier.com/locate/yseiz


2 S. Beniczky et al. / Seizure 43 (2016) 1–5
2. Methods

2.1. Patients and recordings

Thirty-eight seizures from 22 consecutive patients (10 females)
who met the inclusion criteria, were analyzed. The age of the
patients was between 17 and 49 years (mean: 33.8 years). The
mean duration of epilepsy, from the onset to the Long Term
Monitoring was 17 years (median: 12.5, range: 2–48 years).
Inclusion criteria were: patients who undergone long-term video-
EEG monitoring for presurgical evaluation, who had had at least
one seizure recorded, and for whom the multidisciplinary epilepsy
surgery team was able to decide on the localization of the
epileptogenic zone. Exclusion criteria was the absence of identifi-
able ictal EEG activity.

Patients gave their informed consent prior to the admission to
the epilepsy monitoring unit (EMU). EEGs were recorded using 64
scalp electrodes according to the 10–10 setting.

Seventeen patients (77%) had epileptogenic lesion on the MRI.
Supporting document 1 in the online version at DOI: 10.1016/j.
seizure.2016.09.017 shows demographic and clinical information
(including neuroimaging and electrophysiology) for all patients.

2.2. Ictal source imaging

Anonymized ictal EEG recordings were retrospectively ana-
lyzed, blinded to all clinical data, using BESA Research 6.1 software.
Five different source analysis methods were applied: phase-
mapping (PM), dipole fitting, CLARA, cortical-CLARA and minimum
norm estimation (MN). The analysis methods are described in
detail elsewhere [12,13]. Briefly:

2.2.1. Phase mapping
The first detectable oscillatory pattern at seizure-onset was

marked and the spectral peak was determined using FFT. By
combining the real and imaginary peak FFT coefficients at different
phase angles, phase maps were calculated, i.e., voltage maps at
various relative latencies by transforming phase into time [13,15].

2.2.2. Averaging of seizure onset waveforms and source imaging
The alternative approach to PM was based on averaging the ictal

onset waveforms [12]. The averaged signals were analyzed using
various inverse methods: discrete multiple dipole fitting to analyze
onset and peak [16,17], a distributed source model in the brain
volume, i.e., classical LORETA analysis recursively applied (CLARA),
a similar distributed source model, but constrained to the cortex
(cortical CLARA), and a cortex-constrained minimum norm
estimation [18,19].

Iterative application of LORETA in the brain volume as used in
CLARA [20,21] is a well-known and widely used method [22,23].
Here, two iterations were performed. The initial image was
regularized using a SVD cutoff of 0.005%; the two iterations were
regularized with a cutoff of 0.01%.

Cortical CLARA was applied as a modification of the volume
CLARA algorithm by constraining the source space to the cortical
surface. For this, a graph Laplacian operator [24] was used that
smooths along the cortical surface in contrast to the volume CLARA
where the Laplacian smooths in all three dimensions [25]. The
initial cortical CLARA image and the 10 following iterations used a
SVD cutoff of 0.005%.

Thus, dipole fitting and CLARA provided equivalent centers of
activation in the brain volume, whereas cortical CLARA and MN
provided equivalent centers of activation along the cortical folds.

The cortex-constrained minimum norm was applied on the
averaged data with depth and spatio-temporal weighting based on
the signal subspace correlation measure [26]. Noise was estimated
from the baseline interval. For each channel, separate noise
weights were used for the diagonal noise covariance matrix.

2.2.3. Head model
The new standard head model of BESA Research 6.1 for adults

(age 20–24) was used [27]. This is based on a head template
created by non-linear morphing and averaging of 10 adult heads
into one standard head with the goal to render the cortical folds
optimally. Currently, this standard template is the only one
having sufficiently good rendering of all tissues needed for the
computation of the forward, finite-elements model (FEM) in BESA
MRI [28,29]. The full set of standard 10–10 electrodes was warped
onto the head template according to the rules of the 10–10 system
how to place electrodes relative to the landmarks, i.e., nasion,
inion, and pre-auricular points. These landmarks could be
identified on the reconstructed standard head surface. Thus,
standard electrode coordinates and FEM lead fields vectors were
available to compute the forward model for the 64 electrodes
used in this study.

2.3. Reference standard (“gold standard”)

We compared the source images with two sets of reference
standards. For all patients, source images were compared with the
final decision of the multidisciplinary epilepsy surgery team. In
addition, for the 20 patients who underwent respective epilepsy
surgery, we also compared the centers of the source images with
the resected areas and the surgical outcome one year after the
operation [30]. Patients were considered seizure-free if they were
in Engel class I.

2.4. Evaluation of the source models

The source images were evaluated by one of the authors (IR)
who was blinded both for the clinical and for the raw-EEG data.
Center source locations were scored at sub-lobar level [31]. In
temporal lobe cases, we considered a source as mesial temporal if it
localized to the mesial, basal or antero-polar part of the temporal
lobe; other temporal localizations were scored as lateral-neocor-
tical in concordance with previous studies, using simultaneous
scalp and intracranial recordings [7,32–35].

The scored sub-lobar source locations were compared with the
reference standard, and classified as concordant, partially concor-
dant or discordant. A full match at sub-lobar level between the
source locations and the gold standard was considered concordant.
When the source images involved several sub-lobar structures,
including the one in the reference standard, or, in patients with
several seizures when at least one seizure was concordant and the
other(s) were not, source location was considered partially
concordant. All other cases were considered discordant.

Nine patients had two or more seizures with identifiable ictal
EEG correlate. We analyzed each seizure separately in these
patients; when all seizures in a patient were concordant with the
reference standard, the patient was considered “concordant”;
when only a part of the seizures were concordant with the
reference standard, the patient was scored as “partially concor-
dant”; when all seizures were discordant with the reference
standard, the patient was considered “discordant”.

We compared the incidence of concordant cases among the five
methods using Fisher’s exact test [36].

3. Results

Figs. 1 and 2 show source imaging results in patients with a
temporal and a frontal focus. Supporting document 1 in the online
version at DOI: 10.1016/j.seizure.2016.09.017 contains clinical data
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Fig. 1. Ictal source imaging in a patient with left temporal focus.
(A) Phase mapping: the source-channel corresponding to the lateral anterior part of the left temporal lobe shows the build-up of the ictal activity. The power-spectrum
demonstrates a peak at 4.1 Hz, predominating at the lateral anterior part of the left temporal lobe; additional activity is seen at the basal part of the left temporal lobe. Phase-
maps show a topography that is consistent with the left anterior temporal lobe.
(B) Spatiotemporal dipole model: the red dipole corresponds to the onset phase of the averaged ictal waveform. It is located at the anterior-inferior part of the left temporal
lobe. The blue dipole corresponds to the propagation phase (peak of the averaged discharge), and it is localized more laterally compared to the onset.
(C) CLARA: the source-model is localized in the anterior-superior part of the left temporal lobe.
(D) Cortical-CLARA: the distributed source model localizes to the left temporal pole.
(E) Minimum norm: the distributed source model is more widespread, however, still localized to the antero-polar region of the left temporal lobe.
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and reference standards for all patients. Fourteen patients had
temporal foci, and 8 patients had extra-temporal foci (frontal: 5,
parietal: 2, occipital: 1). Supporting document 2 in the online
version at DOI: 10.1016/j.seizure.2016.09.017 shows source imag-
ing in a patient with deep focus (periventricular heterotopia).

In 13 patients (59%) all methods of source imaging agreed on
localization at sub-lobar level. In additional six patients (27%) there
was agreement among all-but-one method. In three patients there
was agreement between 3 methods.

The accuracy of the various methods is summarized in
Tables 1 and 2. Source models yielded accurate solutions,
concordant at sub-lobar level with the reference standard in
Fig. 2. Ictal source imaging of a patient with right frontal focus.
(A) Phase mapping: the source-channels corresponding to the right-frontal and mid-front
a peak at 9.5 Hz in these channels. Phase-maps show a distribution corresponding to t
(B) Spatiotemporal dipole model: the red (onset) and blue (propagation) dipoles are lo
suggesting propagation to the opposite wall of the sulcus.
(C–E) Distributed source models are localized to the lateral part of the right frontal lob
45–72% of the patients. This increased to 68–77% when including
patients with partially concordant cases.

Twenty patients were operated on, and 14 became seizure-free
(70%). In this subgroup of 14 patients, considering the location of
the resection as reference standard, the accuracy of the source
models was between 57–71%. When including patients with
partially concordant source images, accuracy increased to 71–93%.

Although there was a trend for less accurate localization with
MN, none of the comparisons reached level of significance. Similar
results were obtained, when comparing ictal source imaging with
the intracranial recordings (Supporting document 3 in the online
version at DOI: 10.1016/j.seizure.2016.09.017).
al regions show the build-up of the ictal activity. The power-spectrum demonstrates
he lateral part of the right frontal lobe.
calized in the same region of the right frontal lobe. Their orientation is different,

e ((C) CLARA; (D) cortical-CLARA; (E) minimum norm).
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Table 1
Number (%) of concordant patients.

Phase maps Dipole CLARA Cortical CLARA Minimum norm

All patients (n = 22) 16 (73%) 13 (59%) 13 (59%) 13 (59%) 10 (46%)
Seizure-free patient (n = 14) 12 (86%) 10 (71%) 10 (71%) 9 (64%) 8 (57%)

Table 2
Number (%) of concordant and partially concordant patients.

Phase maps Dipole CLARA Cortical CLARA Minimum norm

All patients (n = 22) 16 (73%) 17(77%) 16 (72%) 17 (77%) 15 (68%)
Seizure-free patient (n = 14) 12 (86%) 10 (71%) 12 (86%) 13 (93%) 12 (86%)
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In three out of the six operated patients who did not become
seizure-free, ictal source imaging was discordant with the site of
the resection (50%). The proportion of ictal source imaging results
discordant with the site of resection was lower among operated
patients who became seizure free (two out of 14 patients; 14%).

Ten out of the 13 patients with agreement between all methods
had accurate source localizations (77%). This figure was not
significantly higher compared to the other patients. Nine of the
13 patients with agreement among all methods were operated and
became seizure-free. However, in one of these patients all source
models localized outside the resected area; in all others source
models coincided with the reference standard.

Five patients did not have epileptogenic lesion on the MRI. Ictal
source imaging was concordant with the reference standard in four
of these patients, and discordant in one patient. The non-lesional
patient with discordance between the resected site and the ictal
source imaging did not become seizure-free (Engel IV).

In six out of the eight patients with extratemporal foci (75%),
ictal source imaging indicated locations that were concordant with
the reference standard, and all but one of the six patients became
seizure-free after operation. This was similar to the results in the
sub-group of patients with temporal foci, where 10 out of the
14 patients had correct localization using ictal source imaging
(71%).

In patients with more than one analyzed seizure, we
investigated whether the seizure-by-seizure analysis of the ictal
location was different in successive seizures. In five patients, all
seizures had the ictal source model in the same sub-lobar area;
four of these five patients had source locations concordant with the
reference standard, and one patient had partially concordant
source locations. Four patients had ictal sources in different
locations, for the different seizures; none of these patients were
concordant with the reference standard, three patients were
partially concordant and one patient was discordant. Thus, the
incidence of concordant cases was significantly higher among the
patients in whom all seizures had the same ictal source (p = 0.046).

4. Discussion

There is a wide variety of available methods and inverse
solutions for source imaging of epileptiform EEG activity. Due to
the underdetermined nature of the inverse problem, each method
operates with specific additional constraints in order to localize
the source. But what is the best approach? Does agreement
between several methods or different inverse solutions imply an
accurate localization?

The inter-observer variability in clinical EEG-reading has been
addressed in many studies [37,38]. However, the agreement
between different source imaging methods has received little
attention so far. Averaged interictal epileptiform discharges from
two patients have been analyzed independently by different
groups, who applied different source localization strategies [14].
Most of the methods led to correct localizations of the interictal
epileptiform discharges.

We have investigated the inter-method agreement for ictal
source imaging, using different analysis strategies and inverse
solutions, based on time-frequency methods (phase mapping),
spatiotemporal dipole model and various distributed source
models (CLARA, cortical-CLARA, MN). Our results suggest that
there is a good agreement between various methods of ictal source
imaging. In spite of the different type of constrains/inverse
solutions, in 86% of cases there was agreement at sub-lobar level
between at least four of the five applied methods, and in 59% of
cases all methods were in agreement.

Full agreement among all applied methods does not guarantee
an accurate source localization. This suggests that the major
limitation of ictal source imaging relies in the underdetermined
nature of the inverse solution, which cannot be circumvented by
applying several methods.

Although MN seemed to have lower accuracy than the other
methods, none of the comparisons reached level of significance, so
we cannot point out any of the methods as superior to the other
ones. The ictal source imaging in our study reached an accuracy of
73% (and for the seizure-free, operated cases: 86%). This is
comparable with other functional imaging methods [4].

Although ictal source imaging in patients with extratemporal
foci, faces additional technical challenges, in our series, we found
that accuracy of ictal source imaging in this sub-group of patients
was similar to those with temporal foci. Visualizing the ictal signals
in source space has improved the identification and analysis of the
ictal signals (Fig. 2A).

Since the study was retrospective, the results of the ictal source
imaging did not influence the clinical decision making, and hence,
clinical utility in these patients could not have been determined.
Nevertheless, the analysis was done blinded to all other clinical
data, thus the high accuracy (73–86%) was not influenced by
information from other modalities. In the sub-group of non-
lesional patients, accuracy (80%) was similar to the patients with
epileptogenic lesion on the MRI.

In this study we used the same conductivity values for source
imaging in all patients. An in-vitro study using freshly excised
cerebral cortex in epilepsy surgery patients, suggested that
electrical conductivity varies as a consequence of clinical variables,
such as underlying pathology and seizure duration [39]. Better
understanding of how disease affects cortical electrical conductiv-
ity and ways to measure it non-invasively (for example using
diffusion tensor imaging), could increase the accuracy of the
inverse solutions [39].

Ictal source imaging was able to localize correctly, at sub-lobar
level, even deep foci (Supporting document 2 in the online version
at DOI: 10.1016/j.seizure.2016.09.017 shows MRI and source
imaging in a patient with periventricular heterotopia).
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Our results in patients with multiple analyzed seizures
suggested that patients in whom ictal sources from all seizures
localized to the same sub-lobar region, were more often
concordant with the reference standard. However, the sample
size was relatively small (nine patients with multiple seizures) and
further studies are necessary to elucidate the impact of inter-
seizure agreement.

In conclusion, our results support the clinical reliability of ictal
source imaging methods and advocate for their implementation in
the presurgical evaluation of patients with intractable focal
epilepsy.
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