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Effect of flavor on neuronal 
responses of the hypothalamus and 
ventral tegmental area
A. M. van Opstal1, A. A. van den Berg-Huysmans1, M. Hoeksma2, C. Blonk2, H. Pijl3, 
S. A. R. B. Rombouts1,4,5 & J. van der Grond1

Although it is well known that food intake is affected by the palatability of food, the actual effect 
of flavoring on regulation of energy-homeostasis and reward perception by the brain, remains 
unclear. We investigated the effect of ethyl-butyrate (EB), a common non-caloric food flavoring, on 
the blood oxygen level dependent (BOLD) response in the hypothalamus (important in regulating 
energy homeostasis) and ventral tegmental area (VTA; important in reward processes). The 16 study 
participants (18–25 years, BMI 20–23 kg/m2) drank four study stimuli on separate visits using a crossover 
design during an fMRI setup in a randomized order. The stimuli were; plain water, water with EB, 
glucose solution (50gram/300 ml) and glucose solution with EB. BOLD responses to ingestion of the 
stimuli were determined in the hypothalamus and VTA as a measure of changes in neuronal activity 
after ingestion. In the hypothalamus and VTA, glucose had a significant effect on the BOLD response 
but EB flavoring did not. Glucose with and without EB led to similar decrease in hypothalamic BOLD 
response and glucose with EB resulted in a decrease in VTA BOLD response. Our results suggest that the 
changes in neuronal activity in the hypothalamus are mainly driven by energy ingestion and EB does not 
influence the hypothalamic response. Significant changes in VTA neuronal activity are elicited by energy 
combined with flavor.

In understanding the complexity of eating behavior, understanding the regulation of energy balance by is essen-
tial. Energy balance and intake is regulated by the brain by two major regulatory systems: the homeostatic sys-
tem and the reward systems1–3. The hypothalamus is known to control energy homeostasis through glucose and 
energy sensing and appetite regulation1,3. The hypothalamus has been shown to respond directly to the ingestion 
of glucose and plays a pivotal role in central glucose sensing4–9. This central glucose sensing and metabolism have 
been established as an essential part of control of feeding and hunger10. In addition to the hypothalamus, hunger 
and appetite are also controlled in conjunction with the orbitofrontal cortex, insula and the reward system1,11. The 
reward, or mesolimbic, system is responsible for the hedonic response to food. An important brain area involved 
in this hedonic response is the ventral tegmental area (VTA). The VTA forms the basis of dopamine signaling in 
the mesolimbic system, which is a key substrate for reward prediction and response12. Furthermore, the VTA is 
anatomically and functionally connected with the hypothalamus and integrates homeostatic signals with reward 
responses and therefore plays a pivotal role in regulating palatable feeding13–15. Indeed, the VTA has been shown 
to have a (reward) response to both taste stimuli and the ingestion of energy8,9,16.

Pleasantness of food, affected by factors such as flavor and texture, has a direct influence on feeding behavior 
by making food palatable and attractive and thereby eliciting a reward response in the brain11,13,17. In this respect, 
pleasant flavoring might cause overeating and cause an energy misbalance18. Flavor of food might also be involved 
in energy balance as flavor is an important part of the palatability of food and plays a role in satisfying and the 
rewarding effects and consumption volume of food17,19. In this respect, pleasantness of food enhances the satiat-
ing effect of high-fat and high-carbohydrate meals20. Additionally, flavor of food without ingestion of energy has 
been shown elicit responses from the brain and the periphery. Ingestion of a fat aroma with low fat content has 
been shown to elicit and modulate responses from the gustatory system21. Also, sweetness that is rated as pleasant 
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without caloric intake has been shown to elicit an insulin response when applied only to oral cavity22,23. Although 
the evidence for the effect of taste on the cephalic phase insulin response is limited, these results do suggest that 
the flavor of food, independent of energy content, might influence the central regulation of the peripheral energy 
metabolism in addition to activation of the reward pathway in the brain. Furthermore, when glucose is paired 
with a congruent flavoring the perception of flavor is enhanced, and results in a greater feeling of satiety24–26. 
Therefore flavoring may have an effect on the responses in both the VTA and hypothalamus to glucose inges-
tion and energy ingestion in general. Additionally, the added perceived sweetness and satiation by flavoring is 
interesting to investigate as this might be used as a strategy towards reduction of energy content as less nutritive 
sweetener could be used to reach the same level of overall sweetness26.

Taken together, earlier research indicates that flavor may affect both homeostatic and hedonic aspects involved 
in energy intake. We aimed to gain a better understanding of the homeostatic and hedonic brain responses to fla-
voring and energy content separately and the combination of both stimuli. Therefore we investigated the changes 
in neuronal activity, as measured by BOLD response, to the ingestion of glucose, Ethyl-Butyrate (EB) a common 
fruity food flavoring, and a combination of both glucose and EB in the hypothalamus and VTA in normal weight 
young men. We hypothesized that flavoring with EB, with and without glucose, could affect the neuronal activity 
in the hypothalamus and VTA.

Results
Subject characteristics.  Sixteen participants were enrolled in the study. All participants successfully com-
pleted the all study visits. Table 1 shows the subject characteristics of the study participants. All showed normal 
fasting glucose (3.9–5.5 mmol/L) and insulin levels (<20 mIU/L) and these levels were not different between visits.

Hunger and flavor scores.  Subjective VAS scores for feelings of hunger and for rating of flavor of the study 
stimuli are shown in Table 2. Before consumption, no significant differences were found between visits. The plain 
water and water flavored with EB stimuli initiated a significant increase in VAS scores for hunger. The flavor VAS 
score for water with EB was significantly lower compared with the other three study stimuli. The VAS score for 
flavor for the combined stimulus of glucose and EB was not significantly different from water and glucose stimuli 
but was rated significantly more pleasant than EB alone.

Hypothalamic activity changes.  Mean hypothalamic BOLD responses per study stimulus are shown in 
Fig. 1 for illustration (top panel). Compared to baseline BOLD signal(before ingestion), ingestion of water led to a 
mean positive 0.63% BOLD response. Ingestion of water flavored with EB led to a mean positive BOLD response 
of 0.18%. Both water with glucose and water with glucose combined with EB led to a mean negative BOLD 
response of −0.54% and −0.38%, respectively.

When determining the effect of energy content and the presence of EB flavoring on the hypothalamic BOLD 
response we found that energy content had a significant effect on hypothalamic activity (p = 0.006), however the 
EB flavoring did not have a significant effect (p = 0.430). Energy content and EB flavoring did not have a signifi-
cant (p = 0.310) interactive effect on the BOLD response, possibly due to the lack of effect of EB alone.

n = 16

Age (years) 20.6 ± 1.3

Height (m) 1.83 ± 0.05

Weight (kg) 72.4 ± 5.5

BMI (kg/m2) 21.7 ± 1.1

Glucose Fasted* 4.7 (4.2–5.4)

Post glucose ingestion* 6.9 (5.7–8.1)

Insulin Fasted* 6.5 (3.5–15.0)

Post glucose ingestion* 25.0 (9.5–80.0)

Table 1.  Subject characteristics. Values in mean ± standard deviation. Glucose and insulin levels in median and 
range. Glucose levels in mmol/L, normal fasted range: 3.9–5.5 mmol/L, Insulin levels in mU/L, normal fasted 
range: <20 mU/L. *Average fasted blood levels over all four visits and the average post ingestion levels for two 
visits with glucose stimuli per subject measured 30 minutes after ingestion.

Water EB Glucose Glucose + EB

VAS hunger pre-ingestion 5.4 ± 2.3 5.8 ± 2.1 5.4 ± 2.2 5.9 ± 2.1

VAS hunger post-ingestion 6.6 ± 1.8 6.8 ± 1.6 5.5 ± 2.4 5.7 ± 2.3

Delta VAS hunger 1.2 ± 1.2 0.9 ± 1.6 0.2 ± 2.2 −0.3 ± 1.6

VAS flavor 5.2 ± 1.4 3.9 ± 1.5 5.4 ± 1.6 5.3 ± 2.5

Table 2.  Visual analogue scale (VAS) scores for hunger and flavor. Values in mean ± standard deviation. VAS 
consisted of a 10 cm line scored from 0 to 10, anchors for the VAS score for hunger 0: ‘not hungry’ and 10: 
‘extremely hungry’, anchors for the VAS score for flavor 0: ‘very unpleasant’ and 10: ‘very pleasant’
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Compared to the plain water response, water flavored with EB did not lead to significant BOLD response 
(p = 0.204). On the contrary, both ingestion of glucose with and without EB resulted in a significant negative 
BOLD response (glucose only p = 0.008, and glucose flavored with EB p = 0.017). The addition of EB to glucose 
did not lead to significantly additive effect compared to glucose without flavoring (p = 0.870). Ingestion of glucose 
flavored with EB ingested at 0 °C did not lead to different response compared to ingestion at room temperature. 
When looking at the response over different time periods (Fig. 1 bottom panel, min 9–12, min 13–17 and min 
18–21) we found that the response to glucose and glucose combined with EB was significantly different from 
water over all three time periods (p = 0.011, p = 0.013 and p = 0.023 for glucose and p = 0.026, p = 0.042 and 
p = 0.025 for glucose combined with EB).

Ventral tegmental area activity changes.  Mean VTA BOLD responses per study stimulus are shown in 
Fig. 2 for illustration (top panel). Compared to baseline BOLD signal (before ingestion), ingestion of water led to 
a mean positive 0.38% BOLD response. Ingestion of water flavored with EB led to a mean positive BOLD response 
of 0.59%. Similar to the hypothalamic response, both water with glucose and water with glucose combined with 
EB led to a mean negative BOLD response of −0.31% and −0.93%.

When determining the effect of energy content and the presence of EB flavoring on the overall BOLD response 
we found that energy content had a significant effect on VTA activity (p = 0.007), however the EB flavoring did 
not have a significant effect (p = 0.612). Energy content and EB flavoring did not have a significant (p = 0.363) 
interactive effect on the BOLD response, possibly due to the lack of effect of EB alone.

Figure 1.  Hypothalamic mean BOLD signal change and BOLD time courses. BOLD responses to all four study 
stimuli (Mean % change with SEM). Percentage change from pre-ingestion (0–5 minutes) to post-ingestion 
(minute 9–21 post ingestion) were calculated. P-values in the top panel for the differences in percentage change 
between study stimuli were tested against the water intervention with linear mixed model analysis using the 
entire response. P-values in the bottom panel for differences in percentage change between study stimuli were 
tested against the water intervention with linear mixed model analysis per time segment (min 9–13, min 14–17 
and min 18–21). Grey areas in the time course graphs indicate period during which the stimuli were consumed, 
data points were excluded from the analysis.
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Compared to the plain water response, water flavored with EB did not lead to an altered BOLD response 
(p = 0.786). Ingestion of glucose only, resulted in a non-significant decrease in BOLD response (p = 0.187). On 
the contrary, glucose flavored with EB mean difference led to a significant decrease in BOLD response (p = 0.028), 
although this BOLD response was not significantly stronger compared to glucose only (p = 0.317). Ingestion of 
glucose flavored with EB ingested at 0 °C did not lead to different response compared to ingestion at room tem-
perature. When looking at the response over different time periods (Fig. 2 bottom panel, min 9–12, min 13–17 
and min 18–21) we found that the response to glucose combined with EB was significantly different from water 
during the first minutes of the response (p = 0.021) but that this difference disappeared during the later minutes.

Associations between blood values, subjective ratings of hunger and flavor and the hypotha-
lamic and VTA activity changes.  Mixed model analysis showed that increased ratings of hunger before 
stimulus ingestion were associated with a positive shift of the BOLD response in both the hypothalamus (+0.2%, 
p = 0.043) and VTA (+0.2%, p = 0.012). Moreover, ratings of hunger after stimulus ingestion were also associated 
with a positive shift of the BOLD response in both the hypothalamus (+0.2%, p = 0.042) and VTA (+0.03%, 
p = 0.001). Subjective rating of pleasantness of flavor did not have a significant association with the BOLD 
response in either the hypothalamus (p = 0.512) and VTA (p = 0.573). Blood glucose levels were not significantly 
associated with the BOLD response of the hypothalamus or VTA. Insulin levels after ingestion were positively 
associated with the BOLD response in the VTA (+0.2%, p = 0.009).

Figure 2.  Ventral Tegmental Area (VTA) mean BOLD signal change and BOLD time courses. BOLD responses 
to all four study stimuli (Mean % change with SEM). Percentage change from pre-ingestion (0–5 minutes) to 
post-ingestion (minute 9–21 post ingestion) were calculated. P-values in the top panel for the differences in 
percentage change between study stimuli were tested against the water intervention with linear mixed model 
analysis using the entire response. P-values in the bottom panel for differences in percentage change between 
study stimuli were tested against the water intervention with linear mixed model analysis per time segment 
(min 9–13, min 14–17 and min 18–21). Grey areas in the time course graphs indicate period during which the 
stimuli were consumed, data points were excluded from the analysis.
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Discussion
The results of this study show that in the VTA the combination of glucose with EB flavoring led to a significant 
decrease in neuronal activity, which was threefold stronger than to glucose alone. EB flavoring in plain water (no 
caloric content) did not have any effect on the response of the VTA. In the hypothalamus the ingestion of glucose, 
and not EB, was associated with changes in neuronal activity.

The perception of sweetness, with and without energy content, has been shown to elicit a response from 
the reward system13,16. Sweetness is regarded by the brain as a predictor of energy content of the ingested food 
or drink16,27,28. VTA is active in expectation of reward13, sweet flavoring could therefore lead to an increase in 
VTA activity because of the expectation of incoming energy content. Interesting in this context are non-nutritive 
sweeteners, which are increasingly used in foods and beverages, because they deliver sweet taste without any 
caloric content29,30. However, the flavoring we used in our study is not necessarily perceived as sweet on its own 
without the addition of glucose or another sweetener. Additionally, the EB stimulus was rated as less pleasant then 
the other stimuli and therefore might not have been rewarding by itself. This could explain why we did not find a 
significant response from the VTA, although the activity did appear to increase, with just the EB flavoring added 
to plain water8,9,16. Additionally, EB could have effects on other brain areas that we missed by measuring only the 
responses of the hypothalamus and VTA.

Adding flavoring to sugars has been shown to amplify the sweet taste and palatability which could increase the 
rewarding response19,20. Additionally, when glucose is paired with a congruent flavoring, the perception of flavor 
is also enhanced24,25, and could subsequently lead to a stronger reward response. This is in line with our find-
ing that EB combined with glucose elicited the most pronounced response from the VTA. Furthermore, energy 
coupled with flavoring has been shown to lead to stronger subjective feelings of satiation and short term satiety 
compared to either stimulus separately26, which can also be linked to a stronger reward response by the brain. The 
strongest response to the combined stimulus in the VTA could be explained by the VTAs role in regulating palat-
able eating by integrating energy content with reward via the VTAs anatomical and functional connections with 
the hypothalamus13–15. The strongest response to the combined stimulus could also be explained by the fact that 
this stimulus could be the most intense perceptual stimulation that affects multiple sensory modalities including 
both gustatory and olfactory aspects but also trigeminal sensation. However, we did not measure perceptual 
intensity ratings of the stimuli so we cannot determine of this was the case. The strongest effect of combined fla-
voring and glucose on the VTA could indicate that added flavoring can be used as strategy towards reduction of 
energy content, as our results indicate that the response to energy content could be strengthened when combined 
with flavoring therefore allowing for a possible lower total energy content.

In addition to reward effects, flavor might affect the neuronal activity of the hypothalamus as sweet taste 
without caloric intake has been shown to elicit an insulin response22. However, other studies indicate that taste 
only elicits or modulates a hormonal response in combination with caloric content, as regulated by the hypothal-
amus5,30,31. Earlier studies by our group have shown that the ingestion of glucose solution leads to a decreased 
activity throughout the brain and specifically in the hypothalamus8,9,32. The results from the current study confirm 
once again that hypothalamic activity decreases after glucose ingestion and show that the driving force of the 
hypothalamic response is indeed the ingestion of energy and not the flavor indicated by the lack of response to 
flavoring without energy content. Our result are also concordant with the results of other previous studies show-
ing that flavor without energy does not affect the hypothalamus4–7.

Our data show that stronger feelings of hunger, both before and after stimulus ingestion, had a positive effect 
on activity change adjusted for treatment in both the hypothalamus and VTA. This indicates that a stronger feel-
ing of hunger lessened the decrease in activity in the hypothalamus. In a state of hunger, the brain - and specifi-
cally the hypothalamus and VTA - have been shown to have a high activity5,6,13,33, which could thus decrease after 
energy intake and with satiety. Our finding that a higher subjective score for hunger leads to a larger decrease in 
activity in the hypothalamus and the VTA support this theory. This suggests that these responses might reflect an 
objective evaluation of (perceived) energy content and reward.

A limitation of this study is the generalizability as we only investigated a relatively small sample of male volun-
teers and it can be expected that sex differences are present, since it is known that there are several sex-specific dif-
ferences in energy metabolism34. Additionally, we only investigated lean subjects and earlier studies have shown 
different hypothalamic function in obesity35. A limitation of our study design was the use of water as a negative 
control. Water might not be a negative control as could elicit a response a response from the hypothalamus as 
fluid balance is also regulated by the hypothalamus. However, since all our stimuli contained or were dissolved in 
water we this effect would be found with all stimuli. We did not measure thirst in our participants and therefore 
we could not correct for the effect of this per study visit on a possible response of the hypothalamus to regulate 
fluid balance. Furthermore, our combined stimulus of EB with glucose is a very complicated stimulus with gus-
tatory and olfactory effects. The combined stimulus could lead to various combined effects on that might be dif-
ferent from just the additive effects of glucose plus flavoring. Unfortunately our current design does not allow us 
the determine these effects. A strength of our study was our crossover study design, which allowed for a reliable 
within-subject comparison between interventions as participants were their own controls.

Taken together, our results suggest that the response of the VTA is strongest to a combination of both flavor 
and energy and that the hypothalamic response is mainly driven by energy ingestion. Although neither response 
seemed dependent on subjective ratings of pleasantness in the basal brain areas investigated here, the levels of 
hunger do influence the responses in these areas. This suggests that the responses by the hypothalamus and VTA 
might be mostly involved in subconscious rather the conscious regulation of satiety, appetite and feeding behavior 
and is mainly driven by energy demand and intake.
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Methods
Study participants.  Sixteen healthy, normal-weight men participated in our study. Participants were 
recruited via local advertisements and through the use of mailing lists. All participants were between the ages of 
18 and 25 and had a body mass index (BMI) ranging from 20 to 23. Exclusion criteria were the following: a history 
of diabetes or disturbed glucose metabolism; any genetic, psychiatric, renal, hepatic or chronic disease; recent 
fluctuations in weight >3 kg; current smoking; current alcohol consumption >21 units/week and use of recre-
ational drugs; recent blood donation or participation in other biomedical research (within the last 3 months); 
use of medication affecting glucose of lipid metabolism; contra-indications for MRI-scanning. The protocol was 
approved by the Medical Ethics Committee of the Leiden University Medical Center (LUMC) and registered at 
clinicaltrails.gov under number NCT03202342. All investigations have been conducted according to the princi-
ples expressed in the Declaration of Helsinki. Written informed consent was obtained from all participants after 
complete written and verbal description of the study was given.

Experimental procedure.  We used a randomized, controlled, crossover study design. A batch-wise rand-
omization procedure, respecting 1st order, was followed. The randomization was performed by an independent 
person. Participants arrived at MRI facilities of the Leiden University Medical Centre (LUMC) after an overnight 
fast on a separate study occasion for each stimulus. After blood sampling and recording pre scanning visual 
analogue scores (VAS), participants were positioned in the MRI scanner where the study stimuli were ingested 
within the scanner bore through a per oral tube during fMRI scanning. Study procedures are illustrated in Fig. 3. 
The different stimuli used and investigated were; plain water, water with ethyl-butyrate (EB), glucose solution and 
glucose solution with ethyl-butyrate (EB) (glucose solutions consisted of 50 grams of glucose dissolved in 300 ml 
water),stimuli were ingested at room temperature. Water was plain, non-chlorinated tap water. Ethyl-butyrate 
is a commonly used food flavoring with a fruity flavor and is an FDA and EU approved food flavoring under 
title 21 section 182.60 and EU Regulation 1334/2008 & 178/2002. EB was delivered in a liquid form dissolved 
in glycerol by Unilever Research and Development Vlaardingen B.V. EB and was first diluted to a lower concen-
tration and then added to the 300 ml plain water or glucose solution to a concentration of 0.01%. The stimuli 
were tasted before the start of the study to determine the dose of EB that would be appropriate. Glucose samples 
were perceived to be sweetest. EB alone dissolved in water was perceived as slightly sweeter than water, but when 
combined with glucose did not enhance the sweetness when compared to glucose alone. EB alone as well as glu-
cose alone were perceived to be fruity, and the combination of glucose with EB resulted in an enhancement of 
fruitiness. In the present trial, an additional fifth stimulus was investigated, consisting of a glucose solution with 
EB ingested at 0 °C, to investigate the effects of temperature. As the aim of the current study was to determine 
the effects of flavoring only and the effects of temperature have been described in an earlier study by our group8 
the results of this condition are therefore only briefly shown and not discussed further in the current study. The 
stimuli were ingested five minutes after the start of the fMRI scan.

Blood sampling and VAS scores.  Blood samples were used to ascertain a normal glucose metabolism 
in each participant. On every test day, 2 blood samples (5 ml each) were drawn by venipuncture in an antecu-
bital vein; one sample was taken before scanning and the other one after the scanning procedure, 30 minutes 
after ingestion of the study solution. Sample handling and analysis was performed by the laboratory for Clinical 
Chemistry at LUMC. Plasma glucose was measured using a fully automated Hitachi 704/911 system. Plasma 
insulin was measured by a Radio Immuno Assay (Medgenix, Fleurus, Belgium). A total amount of 10 ml blood 
was taken on each study day. Participants were asked to rate their feelings of hunger in advance of the scanning 
procedure and afterwards, using a visual analogue scale (VAS) which consisted of a 10 cm line, with ‘not hungry’ 
and ‘extremely hungry’ as anchors. Additionally, after the MRI scan pleasantness of the drink was rated using a 
similar VAS using ‘very unpleasant’ to ‘very pleasant’ as anchors.

MRI data acquisition.  The MRI was performed using a 3 Tesla whole body MRI scanner (Philips Achieva, 
Philips Healthcare, Best, The Netherlands) equipped with a 32-channel head coil. The protocol for structural MRI 
comprised a scout view for planning, a high resolution 3DT1-weighted sequence for registration purposes and a 
mid-sagittal high resolution single slice for accurate hypothalamus and VTA localization (repetition time 550 ms, 
echo time 10 ms, field of view 208 × 208 mm, voxel size = 0.52 × 0.52 × 14 mm). Mid-sagittal fMRI was performed 
for 21 minutes in total, by a T2* weighted, gradient echo-planar imaging (EPI) sequence mid-sagittal single slice 
that renders BOLD contrast (repetition time 120 ms; echo time 30 ms; flip angle 30°; field of view 208 × 208 mm; 
voxel size = 0.81 × 0.90 × 14 mm; 21 k-line excitations for each dynamic volume, scanning time of one dynamic 
image 2.52 seconds for a total of 500 data points). A slice thickness of 14 mm was chosen to encompass the hypo-
thalamus in the left to right direction and a single slice technique was used for sufficient signal to noise ratio.

High resolution mid brain functional MRI analysis.  Data was pre-processed as described previously7. 
In short data was averaged for each set of 4 subsequent volumes, reducing the 500 dynamic scans to 125 time 

Figure 3.  Study procedures. Illustrative depiction of the study procedures and timing during the study visits.
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points used for further analysis. Regions of interests (ROIs) were drawn manually, using subject-specific T1 
images to define anatomical borders. Three ROIs were drawn: the hypothalamus, the VTA and a reference area. 
The ROI for the hypothalamus was drawn as described earlier using the optic chiasm, mammillary bodies, thal-
amus and anterior commissure as anatomical landmarks7. Using literature describing the VTA region36,37 we 
defined the ROI for the VTA in the midbrain using the top of the cerebral aqueduct and the mammillary bodies 
as anatomical landmarks (example ROIs shown in Fig. 4). To correct for scanner drift, a third internal reference 
ROI was selected superior to the genu of the corpus callosum in the grey matter. BOLD signals derived from the 
hypothalamus and the VTA were corrected for BOLD signals obtained from this reference ROI by dividing the 
ROI BOLD signals by the reference BOLD signal. Percentage BOLD change from corrected baseline was calcu-
lated by dividing the post ingestion BOLD signal by the average baseline BOLD signal for the individual post 
ingestion dynamic scans/measurement time points (n = 125) and for the total post ingestion period (minute 8–21 
of the fMRI scan).

Statistical analysis.  Statistical analysis was performed using SPSS version 23. Differences in blood levels 
and VAS scores between pre- and post-ingestion and between study stimuli were tested with repeated measure 
ANOVA. All fMRI results are reported as BOLD change relative to baseline (0–5 minutes pre-drinking BOLD 
signal). To determine the main effect of energy content (presence of glucose yes or no) and flavor (presence of EB 
yes or no) on the study stimuli linear mixed model analysis was performed using energy content and the presence 
of flavoring and the study occasion as fixed effects and subject*study occasion as a random factor and the BOLD 
measurement time points as a covariate. To determine the interaction between energy content and flavoring the 
same mixed model was performed with an interaction term of both factors as a fixed effect. Statistical analysis of 
the difference in treatment effect between the study stimuli was performed by similar linear mixed model analysis 
using the study stimulus and study occasion as fixed effects, time point as a covariate and subject*occasion as a 
random factor using plain water as a negative and glucose solution as a positive reference stimulus. To determine 
the association between blood levels and the subjective ratings of hunger and flavor of the study stimulus and the 
BOLD response of the hypothalamus and VTA additional similar mixed models were used where these variables 
were added as covariates. All these mixed model analyses were applied on the n = 125 point dataset and therefore 
consider the entire response. To determine whether the difference in treatment effect changed during the meas-
ured time period we performed additional mixed model analysis over three time bins (min 9–12, min 13–17 and 
min 18–21).

Data Availability
The raw data supporting the conclusions of this manuscript will be made available by the authors, without undue 
reservation, to any qualified researcher.
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