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This study outlines methods for modeling disability-adjusted life-years (DALYs) in common decision-modeling fra-
meworks. Recognizing the wide spectrum of experience and programming comfort level among practitioners, we out-
line 2 approaches for modeling DALYs in its constituent parts: years of life lost to disease (YLL) and years of life
lived with disability (YLD). Our beginner approach draws on the Markov trace, while the intermediate approach
facilitates more efficient estimation by incorporating non-Markovian tracking elements into the transition probability
matrix. Drawing on an existing disease progression discrete time Markov cohort model, we demonstrate the equiva-
lence of DALY estimates and cost-effectiveness analysis results across our methods and show that other commonly
used ‘‘shortcuts’’ for estimating DALYs will not, in general, yield accurate estimates of DALY levels nor incremental
cost-effectiveness ratios in a modeled population.

Highlights

� This study introduces 2 DALY estimation methods—beginner and intermediate approaches—that produce
similar results, expanding the toolkit available to decision modelers.

� These methods can be adapted to estimate other outcomes (e.g., QALYs, life-years) and applied to other
common decision-modeling frameworks, including microsimulation models with patient-level attributes and
discrete event simulations that estimate YLDs and YLLs based on time to death and disease duration.

� Our findings further reveal that commonly used shortcut methods for DALY calculations may lead to
differing results, particularly for DALY levels and incremental cost-effectiveness ratios.
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Disability-adjusted life-years (DALYs) measure disease
burden in a population. Conceptualized in the Global
Burden of Disease (GBD) study, DALYs quantify the
total sum of years of life lived with disability (YLD), plus
years of life lost to premature mortality from the disease
(YLL; i.e., DALY= YLD+ YLL).1

In addition to their role in describing levels and trends
in disease burdens worldwide, DALYs are a primary
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health outcome in evaluations of health interventions in
low- and middle-income countries. In these settings,
resource allocation decisions are guided by modeled
assessments of the incremental costs per DALY averted
under alternative (often competing) strategies to improve
population health.i

Despite the prominent role of DALYs in global health
policy, scant methodological guidance is available for
adapting and/or structuring decision-analytic models for
DALY outcomes. This methodological gap has its roots
in health economics education, where textbooks and
training exercises focus almost exclusively on quality-
adjusted life-year (QALY) outcomes—the primary health
outcome used for health technology assessments and pol-
icy decision making in high-income countries. DALYs
differ from QALYs in important and model-relevant
respects, including the use of reference life tables to calcu-
late YLLs and standardized disability weights to calculate
YLDs.ii To the extent DALY-specific modeling consid-
erations are taught, they are often considered in isolation
and without a firm methodological grounding in how one
might structure a model to measure DALY outcomes.

As a consequence, and in practice, health economic
applications often resort to shortcuts and other ‘‘hacks’’
for calculating DALYs. For example, practitioners may
simply estimate a ‘‘QALY-like’’ DALY that is based on
a diseased state occupancy payoff of 1 minus the disabil-
ity weight. Other approaches define a diseased-state pay-
off using the disability weight as an estimate of YLDs
and accumulate person-years in an absorbing death state
(due to disease) as an estimate of YLLs. As this study
will show, these shortcuts do not provide an accurate
representation of DALY levels in a population.

This study outlines methods for direct incorporation
of DALY outcomes in common decision-modeling envir-
onments. Our primary focus is on discrete-time Markov
cohort models; however, our framework extends directly
to microsimulation and is also easily adapted for
continuous-time discrete event simulation models.

To maintain consistency within the literature, we build
on an existing didactic disease progression model.4 The
underlying discrete-time Markov cohort model is time
homogeneous; that is, transition probabilities do not vary
as a function of age/time in the model. However, our
methods and code are developed to accommodate time-
inhomogeneous models. Finally, recognizing the wide
spectrum of experience and programming comfort level
among practitioners, we offer 2 approaches for modeling
DALYs (beginner, intermediate) and provide replication
materials for implementing our approaches in R and
Microsoft Excel.

Background

This section provides background information sufficient
for a conceptual understanding of DALYs and how to
estimate them in a decision-analytic model; it is not
intended as a comprehensive treatment of the subject.
For an extensive discussion of the history, assumptions,
and controversies around DALYs, see Arnesen and
Nord (1999),5 Mathers (2020),6 and Parks (2014).7

Years of Life Lived with Disability (YLD)

To quantify YLDs, conditions are assigned disability
weights (D) ranging from 0 to 1, with 0 representing the
absence of the condition and 1 corresponding to death.
Disability weights are derived from general population
surveys. Weights are standardized across geographies
and are routinely updated and published on the GBD
Web site. In addition, some countries have developed
national disability weight sets to reflect local health and
cultural contexts.8,9

For a given condition c, YLDs are calculated using an
incidence-based approach, where YLDs are defined as
the condition’s disability weight multiplied by the aver-
age number of years a person lives with the disease (Lc):

YLD cð Þ=Dc � Lc: ð1Þ

Years of Life Lost to Disease (YLL)

YLLs are determined by a loss function, which is typi-
cally defined as the number of years lost to premature
mortality. This value is often taken from a life table that
provides information on remaining life expectancy at the
age of premature death, a,

YLL að Þ=Ex að Þ: ð2Þ
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For example, if an individual dies of a disease at age 60
y, and the remaining life expectancy for a 60-y-old is
30 y, then the YLL value for that individual would take
a value of 30.

Choices over the specific value of remaining life expec-
tancy will depend on the context and research question
at hand.10 Historically, the GBD has used an exogenous,
external reference life table based on the maximum
potential life span among humans.8,9 More recent GBD
estimates draw on reference life tables based on the low-
est observed age-specific mortality rates among geogra-
phies with populations greater than 5 million in 2016.11

DALYS

DALYs are simply the sum of these 2 components:

DALY c, að Þ= YLD cð Þ+ YLL að Þ: ð3Þ

Discounting

In the original GBD study, additional age-weighting and
time-discounting practices were applied to DALY calcu-
lations.1 These methods, respectively, weighted the bur-
den of illness more during adulthood than early
childhood and old age and valued present health over
future years of illness by discounting YLD and YLL
measures by 3% per year. From 2010 onward, both
practices were discontinued to make the DALY a more
descriptive measure.8

While the GBD no longer uses age and time discount-
ing, the World Health Organization’s Choosing Interven-
tions that are Cost-Effective (WHO-CHOICE) program
recommends consideration of time discounting of health
outcomes.12,13 This creates a methodological tension
between the GBD approach to quantifying disease bur-
den and WHO approaches for cost-effectiveness analysis
and health technology assessments.

To be comprehensive, we adopt the WHO-CHOICE
recommendation and include discounting in our DALY
modeling approach, although practitioners who do not
wish to discount can simply set the discount rate to zero.
One minor point of departure from standard methods is
that we maintain the continuous-time discounting used
in the original GBD DALY equations, which differs
slightly from the more common use of discrete time dis-
counting in Markov cohort models. We do so to allow
for consistent discounting of YLDs and YLLs, since
YLL values draw on continuous-time discounting to cal-
culate a present value of remaining life expectancy at the
time of death.

For an annual discount rate r, for condition c, and at
age a, the equation for YLDs is

YLD cð Þ=Dc

1

r
1� e�r Lcð Þ
� �� �

ð4Þ

Similarly, YLLs are calculated as

YLL að Þ= 1

r
1� e�rEx að Þ
� �

ð5Þ

It is important to note that the discounting shown in
equation 4 and equation 5 yields the present value of
YLD and YLL outcomes at a single point in time when
the duration of disease (Lc) and time of death from dis-
ease (a) are known. For a decision model in which not
all cohort members start ill, that point in time very likely
occurs at some point after the baseline period, and differ-
ent illness durations and death times will, of course,
occur across individuals in a modeled cohort. As such,
we must discount YLL and YLD outcomes further, to
time point t= 0, to align outcomes to the same starting
point. This additional discounting step will become
apparent in the next section.

Overview of the Decision Problem

We build on an existing progressive disease model in
which healthy individuals develop a disease with 2 health
states (‘‘sick’’ and ‘‘sicker’’).4 Individuals can also transi-
tion to an absorbing death state due to causes unrelated
to the disease (i.e., ‘‘background’’ mortality) or due to
disease-specific causes.

We consider outcomes under 4 strategies:

� A standard-of-care strategy based on the baseline
model parameters

� Strategy A, which improves the quality of life among
individuals with the disease but does not affect dis-
ease progression

� Strategy B, which reduces the rate of progression
from sick to sicker by 40%

� Composite strategy AB, which implements strategies
A and B independently and concurrently

A state transition diagram is shown in Figure 1. In the
figure, nodes are health states and edges depict transi-
tions among them. Edge labels are defined in terms of
transition intensities (rates). Other key model parameters
are summarized in Table 1.

As depicted in Figure 1, the underlying Markov model
is time homogeneous; that is, transition rates do not vary

Leech et al. 485



as a function of age/time. This is merely a simplification
that builds on an existing time-homogeneous model con-
structed for didactic purposes.4 We do, however, index
all formulas and other model-relevant objects with the
subscript t to allow for time-inhomogenous models. Our
replication code is also written to accommodate time-
inhomogeneous models.

Methods

Transition Matrices

With the model parameterized, we next define the
matrices that govern transitions. The state transition dia-
gram represented in Figure 1 is not yet well-suited to cal-
culate DALY outcomes, however. A primary reason is
that transitions to the absorbing death state capture
transitions due to all causes of death. To calculate YLLs,
we must separately track the timing and number of
deaths due to disease.

To accommodate this need, we developed 2
approaches for modeling DALY outcomes. We categor-
ize each based on the level of experience and skill
required:

1. Approach 1 (beginner): Separate death state: rede-
fine the health states to include a separate cause-
specific death state, as depicted in Figure 2.iii We
then construct a Markov trace tracking state occu-
pancy in each cycle and use changes in the number

of cause-specific deaths across cycles to calculate
YLLs.

2. Approach 2 (intermediate): Non-Markovian track-
ers: Augment the transition matrices to include a
non-Markovian transition state for cause-specific
deaths. This approach allows for efficient calculation
of YLD, YLL, and DALY outcomes (often useful
for microsimulation or probabilistic sensitivity anal-
yses) because it sidesteps the need to derive a Mar-
kov trace.

Each approach facilitates the design and execution of a
decision-analytic model that correctly calculates YLD,
YLL, and DALY outcomes as well as other common
outcomes such as life-years, QALYs, and costs. In prac-
tice, approaches 1 and 2 will produce identical results.
We show in Results section that other shortcut-based
approaches previously used in the literature, such as
modeling a QALY-like DALY and/or accumulating time
in the absorbing death state, will not in general yield sim-
ilar results.

Beginner approach 1: Cause-specific death state. Under
this approach, we separate deaths from disease versus
other causes by defining a separate health state for cause-
specific mortality; Figure 2 shows an updated state tran-
sition diagram.

Transitions among health states are defined in terms
of continuous rates (‘‘intensities’’) and are captured
within an intensity matrix Qt,

Figure 1 State transition diagram for the progressive disease model.
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Qt =

H

S1

S2

DOC

DS

H S1 S2 DOC DS

�(r HS1t + r HDt) r HS1t 0 r HDt 0

r S1Ht �(r S1Ht + r S1S2t + hr S1t � r HDt)) r S1S2t r HDt hr S1t � r HDt � r HDt

0 0 (hr S1t � r HDt) r HDt hr S2t � r HDt � r HDt

0 0 0 0 0

0 0 0 0 0

2
6666664

3
7777775

Cell values in row i, column j of Qt capture the (continu-
ous time) transition rate from health state i to health
state j. Qt has diagonal elements defined as the negative
sum of the off-diagonal row values (i.e., the row sums of
Qt are zero). This ensures that the Markov model is
‘‘closed,’’ that is, the total cohort size neither grows nor
shrinks over time.

We next embed the transition intensity matrix into a
discrete time transition probability matrix by taking the
matrix exponential of Qt for a defined cycle length (‘‘time
step’’) Dtiv:

Pt = eQtDt: ð6Þ

Embedding the sick-sicker model results in a transition
probability matrix Pt with the following probabilities
defined:

Pt =

H

S1

S2

DOC

DS

H S1 S2 DOC DS

p HHt p HS1t p HS2t p HDOCt p HDSt

p S1Ht p S1S1t p S1S2t p S1DOCt p S1DSt

0 0 p S2S2t p S2DOCt p S2DSt

0 0 0 1:0 0

0 0 0 0 1:0

2
6666664

3
7777775

Embedding the transition probability matrix using equa-
tion 6 ensures that the resulting transition probabilities

Table 1 Model Parameters

Parameter Name Value Description

v_tx_names (SoC,A,B,AB)0 Treatment strategies (vector)
n_tx 4 Number of treatment strategies
cycle_correction Half-cycle Cycle correction method
v_tr_names (H,S1,S2)0 Transient health state names (vector)
v_ab_names (DOC,DS)0 Absorbing health state names (vector)
n_states 5 Total number of health states
horizon 500 Model time horizon (years)
r_v_disc_h 0.03 Annual discount rate for health outcomes
r_v_disc_c 0.03 Annual discount rate for cost outcomes
Delta_t 1 Time step (cycle length; 1 = annual, 1/12 = monthly, etc.)
age0 25 Age at baseline
r_HS1 0.15 Transition rate: healthy to sick
r_S1H 0.5 Transition rate: sick to healthy
r_S1S2 0.105 Transition rate: sick to sicker
r_HD 0.002 Transition rate: disease-free background mortality
hr_S1 3 Hazard ratio: mortality from sick state
hr_S2 10 Hazard ratio: mortality from sicker state
dw_S1 0.25 Disability weight: sick [S1]
dw_S2 0.5 Disability weight: sicker [S2]
c_H $2,000 Cycle occupancy cost: healthy [H]
c_S1 $4,000 Cycle occupancy cost: sick [S1]
c_S2 $15,000 Cycle occupancy cost: sicker [S2]
c_D $ 0 Cycle occupancy cost: death [D]
c_trtA $12,000 Cycle occupancy cost: treatment A [S1,S2]
dw_trtA 0.05 Disbility weight: treatment A [S1]
c_trtB $13,000 Cycle occupancy cost: treatment B [S1,S2]
hr_S1S2_trtB 0.6 Hazard Ratio: S1 to S2 disease progression under treatment B

Source: Alarid-Escudero et al. (2023)4 and the authors’ assumptions.
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capture the underlying continuous-time disease process.
In particular, P captures the possibility of multiple tran-
sitions within a single cycle.v

Intermediate approach 2: Non-Markovian tracking sta-
tes. This method maintains the overall structure as
depicted in the original Figure 1 but augments the transi-
tion probability matrix with non-Markovian compo-
nents to facilitate accounting of disease-related deaths.vi

Approach 2 offers a more generalized method that
allows practitioners to accurately account for costs and/
or health payoffs (such as YLLs) that are defined by

transitions among health states rather than occupancy in
a health state. DALY outcomes can also be calculated
directly, without the need to derive a vector of disease-
related death transitions from the Markov trace (as
required for approach 1).

Figure 3 shows a state transition diagram with the
tracking state added. The tracking state (shown as red
nodes) simply records transitions as cohort members
move from either diseased state to the absorbing death
state due to causes related to the disease.

In general, tracking states can either count the total
number of transitions that have occurred up to a given

Figure 2 State transition diagram for progressive disease model with separate cause-specific death state.

Figure 3 State transition diagram with transition state in red.
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cycle (i.e., an ‘‘accumulator’’ state) or track the total
number of new transitions that occur within a single
cycle (i.e., a ‘‘transition’’ state).vii To calculate YLL out-
comes, we will add a transition state that records the
total number of new disease-related deaths in each cycle.

To implement approach 2, we add a transition state
row and column to the transition intensity matrix. This
transition state, called trDS, is included in the augmented
intensity matrix Qt below:

Qt =

H S1 S2 D trDS

H

S1

S2

D

trDS

�(r HS1t + r HDt) r HS1t 0 r HDt 0

r S1Ht �(r S1Ht + r S1S2t + hr S1t � r HDt) r S1S2t hr S1t � r HDt hr S1t � r HDt � r HDt

0 0 �(hr S2t � r HDt) hr S2t � r HDt hr S2t � r HDt � r HDt

0 0 0 0 0

0 0 0 0 0

2
6666664

3
7777775

Two aspects of Qt are worth highlighting. First, Qt is
divided into a Markovian submatrix and the non-Mar-
kovian tracking row and column. This division is made
apparent using dotted vertical and horizontal lines. Criti-
cally, the Markovian submatrix remains closed; that is,
the diagonal elements remain unchanged so that the row
sums of the submatrix remain zero, even after the addi-
tion of the tracking column along the ‘‘edges’’ of Qt. This
ensures that the Markovian submatrix can be used to
calculate state occupancy for a closed cohort that neither
gains nor loses cohort members over time.

Second, 2 transition intensities—from the S1 (sick) and
S2 (sicker) states to death—appear in the tracking column.
This ensures that trDS will track all relevant transitions to
death due to the disease. Because we are operating on the
rate scale, we can net out non–disease-related deaths as
captured by the background mortality rate among healthy
individuals (i.e., r HD). Other approaches might draw on
cause-deleted life tables to incorporate death transition
rates that net out deaths from the disease itself.viii

As above, we obtain the transition probability matrix
by embedding Qt into the discrete time step (equation 6).
However, the resulting transition probability matrix
treats trDS as an absorbing state (i.e., individuals are
retained in trDS with probability 1). Using the terminol-
ogy introduced above, this absorbing state could serve as
an accumulator state that (in the constructed Markov
trace) records the total number of people who have died
from the disease up to any given cycle. This may be a
decision-relevant health outcome to consider on its own;
indeed, so long as the Markovian submatrix remains

closed, there is no limit to the number of accumulator
and/or transition states one might add along the ‘‘edges’’
of a transition matrix.ix

To change trDS to a transition state, we simply replace
the absorbing probability of 1 in the cell trDS, trDS½ � with
a 0. This cell-level change is highlighted in gray in the
bottom right cell of P below:

Pt =

H S1 S2 D trDS

H

S1

S2

D

trDS

p HHt p HS1t p HS2t p HDt p HDSt

p S1Ht p S1S1t p S1S2t p S1Dt p S1DSt

0 0 p S2S2t p S2Dt p S2DSt

0 0 0 1:0 0

0 0 0 0 0:0

2
666666664

3
777777775

Outcomes

We next define formulas for estimating outcomes. Our 2
approaches differ in how outcomes are calculated.
Approach 1 requires a Markov trace that tracks occu-
pancy in each cycle; for YLL outcomes, we use this
information to calculate the number of new disease-
related deaths in each cycle. Approach 2 does not require
this extra step, as both cycle-specific and total outcomes
are calculated directly.

Markov trace. YLL outcomes calculated under approach
1 require a Markov trace or a matrix summarizing occu-
pancy in each health state in each cycle. Define s0 as the
initial state occupancy (column) vector at time t = 0. The
vector s0 has size k, where k is the total number of states
(including transition tracking states, if applicable). This
vector summarizes the number or fraction of the cohort
in each health state at baseline. Health state occupancy at
time t is calculated as

..
..
..
..
..
..
..
..
..
..
..
..
.

............................................................

..
..
..
..
..
..
..
..
..
..
.

..............................................................................................................................................
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s>t = s>0 P1P2 . . .Pt ð7Þ

where Pt is the k 3 k transition probability matrix at time
t.j

We apply equation 7 at each cycle to construct a Mar-
kov trace S, which has dimensions v 3 k,

S=

s01 s02 . . . s0k

s11 s12 . . . s1k

..

. ..
. . .

. ..
.

sv�1, 1 sv�1, 2 . . . sv�1, k

2
6664

3
7775 ð8Þ

where each row represents state occupancy at time
t= 0, 1, . . . ,v� 1.

Note that the rows in S run from t= 0 to v� 1; this
reflects an assumption that t = 0 represents the begin-
ning of the first cycle and transitions occur only after the
time interval of the cycle is complete (i.e., at the end of
the cycle). If we were to instead assume transitions before
the time interval of the cycle (i.e., at the beginning), we
would set the matrix to run from t = 1 to v instead.

YLD. To calculate YLDs, we define a k 3 1 disability
weight payoff vector dYLD. For the model as represented
in Figure 2, define

dYLD =

H

S1

S2

DOC

DS

0

dwS1 1
rDt

(1� e�rDt )Dt

dwS2 1
rDt

(1� e�rDt )Dt

0

0

2
66664

3
77775,

where dwS1 and dwS2 are the disability weights for the
sick and sicker states, respectively. In addition, rDt

is the
cycle discount rate, which is calculated as

rDt
= rDt ð9Þ

where r is the annual discount rate and Dt is the cycle
length.

In the YLD payoff vector, the term 1
rDt

1� e�rDtð Þ is
included as a continuous-time discounting factor for the
defined time step Dt. This term is included to discount
time within each cycle to maintain the continuous-time
discounting approach used in the original GBD
equations.16,xi

To fully discount outcomes, we still must discount all
future outcome values back to baseline (t = 0).

Discounted years of life lost to disability (YLD) at cycle
t is given by

YLDt = s>0 P1P2 . . .PtdYLD 3 e�rDt
t: ð10Þ

Total discounted YLDs are obtained by summing cycle-
specific discounted YLD outcomes:

YLD=
Xv�1

t = 0

YLDt: ð11Þ

We can incorporate additional cycle adjustments (e.g.,
half-cycle adjustment or an adjustment based on Simp-
son’s rule) by defining an adjustment factor ct that multi-
plies the cycle-specific discounting factor (i.e., e�rDt

t) with
other cycle-specific adjustment values,

YLD=
Xv�1

t = 0

YLD tð Þ=
Xv�1

t = 0

s>0 P1P2 . . .PtdYLD 3 ct

� �
, ð12Þ

where, at a minimum, ct = e�rDt t and can also include
any other cycle-correction value (e.g., 0.5 for half-cycle
correction or a Simpson’s rule coefficient, etc.).18

Finally, an equivalent way to calculate YLD outcomes
is through matrix multiplication of the Markov trace
matrix and the YLD payoff vector,

YLD=
Xv�1

t= 0

SdYLD � c ð13Þ

where c is an v 3 1 vector of cycle discounting/correction
factors ct and� is the element-wise multiplication (Hada-
mard product) operator.

Years of life lost to disease (YLLs): approach 1. As
noted in the Background section and equation 5, YLLs
are based on the present value of remaining life expec-
tancy among disease-related deaths. In a discrete time
Markov model, these deaths may occur in any cycle,
although, like YLDs, the fully discounted value is calcu-
lated relative to baseline (t= 0).

Define at as the age of the cohort at cycle t, that is,

at = a0 + t � Dt ð14Þ

where a0 is the age of the cohort at t = 0.
We next define Ext as the present value of remaining

life expectancy of the cohort in cycle t.
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Following the GBD discounting approach, Ext is
given by

Ext =
1

r
1� e�rEx atð Þ
� �

ð15Þ

where Ex atð Þ is the remaining life expectancy at age a.
Ex atð Þ is drawn from either an exogenous (reference) life
table (i.e., an external life table representing maximum
length of life observed in the modern world) or an endo-
genous life table (i.e., a life table representing life expec-
tancy of the modeled population), depending on the
objectives of the modeling exercise.9

To calculate YLLs, we use the Markov trace to calcu-
late mt, the total number of new deaths from disease-
related causes in each cycle. We calculate mt by taking
the difference in state occupancy in the disease-related
death column (DS) in adjacent cycles. As above, we can
incorporate additional discounting and cycle adjustments
into a cycle correction term ct and calculate total dis-
counted (and cycle-corrected) YLLs as

YLLt =mtExt 3 ct ð16Þ

The total discounted YLLs are given by

YLL=
Xv�1

t= 1

YLLt =
Xv�1

t = 1

mtExt 3 ct ð17Þ

Years of life lost to disease (YLLs): approach 2. YLLs
under approach 2 can be calculated in a similar way as
YLDs, since we have augmented the model with a
transition-tracking state that directly estimates new
deaths in each cycle. Define the YLL payoff vector
dYLL, t, which has value Ext for the transition-tracker
health state (trDS) and zeros elsewhere:

dYLL, t =

H

S1

S2

DOC

DS

0

0

0

0
1
r

1� e�rEx(at)
� �

2
66664

3
77775

We can now apply similar equations as used for YLD
outcomes to calculate fully discounted YLLs:

YLL=
Xv�1

t = 0

YLL tð Þ=
Xv�1

t = 0

s>0 P1P2 . . .PtdYLL, t 3 ct

� �
ð18Þ

Alternatively, using the Markov trace, we stack each
k 3 1 payoff vector (using d>YLL, t as rows) into an v 3 k

payoff matrix D and obtain total adjusted YLLs as

YLL=
Xv�1

t = 0

sum S�Dð Þ � c ð19Þ

where the sumðÞ operator sums each row across the k col-
umns that result from S�D.

DALY shortcut methods. We also consider 2 shortcut
methods for estimating DALYs that researchers might
use to simplify model calculations, both of which tend to
overestimate the benefits of interventions. First, we exe-
cute a method that defines cycle payoffs based on the dis-
ability weight for the diseased health states and assigns a
payoff value of 1.0 for cycles in the disease-related death
state. This method accumulates time in the death state as
an estimate of YLLs and is included in the TreeAge Pro
software package as a template/example for calculating
DALYs.xii

Second, we consider a simpler QALY-like DALY
method. This approach defines the cycle occupancy pay-
off for the sick and sicker states as 1 minus the disability
weight. As is common practice, under this method the
healthy state receives a payoff value of 1.0, while the
death state receives a value of 0.0.

Results

Comparison of DALY Outcomes under All 3 Approaches

Table 2 draws on the sick-sicker model parameters and
shows YLD, YLL, and DALY outcomes estimates. Note
that because approaches 1 and 2 yield identical values,
we present only 1 set of estimates in the table.

Comparison with ‘‘Shortcut-Based’’ DALY Approaches

Table 3 reports cost, effect, and incremental cost-
effectiveness ratio (ICER) results for our 2 DALY
approaches. The table also includes results under 2
‘‘shortcut’’ DALY strategies.

Table 3 also includes outcomes under alternative
‘‘shortcut’’-based DALY estimation approaches. The
death state occupancy method yields DALY estimates
that are 34% higher than our approaches and results in
an ICER that is 25% lower for strategy B versus the
standard of care. The ICER for strategy AB is calculated
relative to strategy B, so the only difference is the
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additional improvement in quality of life from strategy
A. This improvement works exclusively through the
YLD channel, as there is no differential effect on mortal-
ity. With this key information in mind, we note that the
ICER for AB versus B is more similar between our
approaches and the death state occupancy method.

QALY-like DALY estimates are, not surprisingly,
higher than the other DALY estimates, owing to their
conceptual difference with DALYs (i.e., QALYs accu-
mulate and reward the quality and extension of life,
while DALYs accumulate years lost to disease). Again,
ICERs for strategy A versus the standard of care are
about 25% lower, while they are very similar to our
DALY approaches for the AB strategy that differentially
improves quality of life.

Discussion

This study extends the methodological toolkit available
to decision modelers by introducing 2 DALY estimation
methods. Our approaches are designed to fit a spectrum

of experience and skill, thus making our methods accessi-
ble to any practitioner who aims to include DALYs in
their decision model. Our results demonstrate that both
beginner and intermediate approaches yield similar val-
ues for DALY levels and ICERs in a progressive disease
model constructed for didactic purposes. Finally, we also
show that other shortcuts suggested for DALY outcomes
do not in general yield similar results for either DALY
levels or ICERs.

Our methods also extend to other common decision-
modeling frameworks. For example, approach 2 directly
estimates YLDs and YLLs in each cycle and can there-
fore be adapted to efficiently execute microsimulation
models in which cycle transition probabilities depend on
patient attributes or disease history. Discrete event simu-
lation models, moreover, can apply the YLD and YLL
equations provided (equation 5 and equation 4) to simu-
lated time to death and duration of disease values.

A subset of our results yielded similar values when
comparing DALY shortcuts to our DALY approaches,
so it is useful to walk through the circumstances in which

Table 3 Comparison of Cost-Effectiveness Analysis Results

Approaches
1 and 2

Shortcut 1: Accumulate
Death State Occupancy

Shortcut 2:
QALY-like DALY

Cost
Standard of care $158,566 $158,566 $158,566
Strategy B: reduce disease progression $265,561 $265,561 $265,561
Composite: strategy A + strategy B $384,996 $384,996 $384,996
Strategy A: quality of life improvement $292,352 $292,352 $292,352

DALY
Standard of care 7.155 9.625 21.872
Strategy B: reduce disease progression 5.734 7.741 23.699
Composite: strategy A + strategy B 4.894 6.875 24.579
Strategy A: quality of life improvement 6.469 8.918 22.59

ICER
Standard of care Ref Ref Ref
Strategy B: reduce disease progression $75,320 $56,808 $58,567
Composite: strategy A + strategy B $142,058 $137,860 $135,813
Strategy A: quality of life improvement Dominated Dominated Dominated

DALY, disability-adjusted life-year; ICER, incremental cost-effectiveness ratio.

Source: Article Notebook; QALY, quality-adjusted life-year; Ref, reference.

Table 2 Years of Life Lived with Disability, Years of Life Lost to Disease, and Disability-Adjusted Life Years, by Strategy

Strategy
Years Living with
Disease (YLDs)

Years of Life Lost to
Premature Mortality (YLLs)

Disability-Adjusted
Life Years (DALYs)

Standard of care 4.472 2.683 7.155
Strategy A: quality-of-life improvement 3.786 2.683 6.469
Strategy B: reduce disease progression 3.707 2.028 5.734
Composite: strategy A + strategy B 2.866 2.028 4.894

492 Medical Decision Making 45(5)



various approaches will be similar and differ. In general,
DALY shortcut methods will be more accurate when
YLDs dominate the DALY value. The reason is that our
methods, as well as standard (‘‘QALY-like’’) methods,
apply identical payoff weights to occupancy in diseased
states. The methods differ substantially, however, in how
they handle deaths from disease—either by ‘‘rewarding’’
deaths endogenously over the model’s time horizon or by
simplifying the penalty for premature death. Our meth-
ods mirror the GBD approach of penalizing a disease-
related death by using an exogenous, age-specific remain-
ing life expectancy value. Shortcut-based methods, by
comparison, may accumulate time in the disease-related
death state—thus, the payoffs are determined endogen-
ously within the model. Moreover, because a payoff
value is applied to an absorbing state, results under this
shortcut approach will be highly sensitive to the time
horizon in a model. That is, ‘‘YLLs’’ could continue to
accumulate for the remaining time horizon even after all
cohort members have died. This will not greatly affect
ICER calculations that make comparisons across strate-
gies but will yield inaccurate DALY levels in a modeled
population.

Another important consideration is the role of dis-
counting. Our approaches apply a continuous-time dis-
counting approach to maintain consistency with the
GBD assumption that remaining life expectancy accrues
as a continuous ‘‘flow’’ of health. This manifests in our
approaches through the use of a cycle-specific discount
factor ( 1

rDt

1� e�rDtð Þ) and a continuous-time formula e�rt

to discount values to baseline. If practitioners do not
wish to discount, the discount rate value can simply be
set to zero.xiii Alternatively, practitioners may also elect
to use the standard discrete time discounting formula
( 1

1+ r�ð Þt) but can first convert the discount rate as
r�= er � 1.

Finally, it is important to note that the methods out-
lined here are not purely restricted to DALY outcomes.
Indeed, each approach facilitates the estimation of other
common outcomes such as QALYs, life-years, and so
forth.
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Notes

i. The adoption of DALYs over other common health out-
comes in health economics (e.g., quality-adjusted life
years [QALYs]) stems from several practical and theore-
tical considerations. See Feng et al. (2020) and Wilkinson
et al. (2016) for further discussion.2,3

ii. In contrast, QALYs are calculated based on utility
weights derived from general and patient surveys. See
Feng et al. (2020) and Wilkinson et al. (2016) for further
discussion.2,3

iii. In this example, disease-specific death rates are governed
by a hazard ratio applied to the background mortality
rate. Because we are operating on the rate scale, we can
separate out disease-related deaths from other-cause
mortality by simply taking a difference in the rates. Other
applications for prevalent conditions with high death
rates, however, may require us to construct a cause-
deleted life table to obtain background mortality rates
that net out deaths from the modeled disease.

iv. In Markov theory, P is called the ‘‘discrete skeleton’’ of
the continuous model.14 The conversion formula used to
calculate P is the matrix analogue to the standard rate-
to-probability formula commonly taught in health eco-
nomics textbooks, that is, p= 1� erDt, where r is the rate
and Dt is the time step (i.e., ‘‘cycle length’’).
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v. For example, in the continuous-time rate matrix Qt

above, there is a zero-valued rate defined for progressions
from healthy (H) to disease-related death (DS), since
individuals must first become ill before they can die from
disease-related causes. However, after embedding, the
matrix P has a nonzero cycle transition probability from
healthy (H) to disease-related death (DS) (i.e., p HDS).
This value captures the probability of a compound or
‘‘jumpover’’ transition from healthy and through the sick
and/or sicker state to death from disease-related causes
within the same discrete time cycle; see Graves15 for fur-
ther discussion and Iosifescu14 for additional theory.

vi. Tracking states also allow for accurate bookkeeping for
other outcomes such as costs. For example, if developing
the disease incurs a one-time diagnosis or treatment cost,
the compound transitions implied by the embedded tran-
sition probability matrix indicate that some individuals

will transiently enter (and then exit) the sick state in a sin-
gle cycle. When calculating costs, practitioners may want
to include a tracking state for the sick state to be sure to
capture these one-time costs, which would be masked if
cost payoffs are simply multiplied by state occupancy at
the end of each cycle (e.g., costs for individuals with a
sojourn through the sick state in a single cycle would not
be accounted for).

vii. More generally, accumulator and transition states can be
defined for any number of transition types, as they are
useful for capturing one-time costs in the model or for
calculating other decision-relevant outcomes such as the
total number of people who developed the disease or died
from the disease as secondary outcomes.

viii. For an example of how to do this using GBD cause of
death and life table data, see the example here:
https://graveja0.github.io/vchem-website/blog/posts/mod
eling-dalys/modeling-dalys.html.

ix. To build on the example of compound ‘‘jump-over’’ tran-
sitions above, suppose an individual starts off healthy in
a cycle, then rapidly transitions through the sick and
sicker state and dies due to disease-related causes within
the same cycle. If there is some treatment cost associated
with being in the sicker state, a traditional approach that
applies cost payoffs to state occupancy at the (beginning)
end of the cycle would miss treatment costs for this indi-
vidual because they transition through the sicker state
but never occupy it at the beginning or end of a cycle.
Adding a non-Markovian transition state to the model
facilitates more accurate bookkeeping because the transi-
tion state would pick up on this transition through the
sicker state.

x. For a time-homogeneous model, equation 7 simplifies to

s>t = s>0 P
t.

xi. Common discounting formulas, such as the discrete time
discount factor 1

1+ rð Þt, as well as the continuous-time dis-
count factor e�rt, are designed for a series of discrete
‘‘payoffs’’ at specific time points. By comparison, the

continuous-time discounting used in the GBD DALY
equations (equation 4 and equation 5) is based on an
assumption that payoffs accrue in a continuous stream.
The discount adjustment factor shown here
(1

r
1� e�rtð Þ)—and introduced in Larson16)—essentially

‘‘smooths out’’ the discrete YLD weight applied in each
cycle to reflect this continuous flow. We have verified
that application of this factor in our approach exactly
replicates the example results using the GBD equations
in Fox-Rushby and Hanson17; see the Supplementary
Appendix for these examples and code.

xii. The TreeAge example model can be found in Example
Models/Healthcare/Markov Cancer Decision - DALY
.trex.

xiii. Our R code cannot accommodate a discount rate of pre-
cisely zero; instead, a value such as 1e-6 can be used.
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