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Background:Ductal carcinoma in situ (DCIS) is the earliest stage of breast cancer. During DCIS, tumor cells remain
inside the mammary duct, growing under a microenvironment characterized by hypoxia, nutrient starvation,
and waste product accumulation; this harsh microenvironment promotes genomic instability and eventually
cell invasion. However, there is a lack of biomarkers to predict what patients will transition to a more invasive
tumor or how DCIS cells manage to survive in this harsh microenvironment.
Methods: In this work, we have developed amicrofluidicmodel that recapitulates the DCISmicroenvironment. In
the microdevice, a DCIS model cell line was grown inside a luminal mammary duct model, embedded in a 3D
hydrogel with mammary fibroblasts. Cell behavior was monitored by confocal microscopy and optical metabolic
imaging.Additionally,metaboliteprofilewas studied byNMRwhereas gene expressionwasanalyzedbyRT-qPCR.
Findings: DCIS cell metabolism led to hypoxia and nutrient starvation; revealing an altered metabolism focused
on glycolysis and other hypoxia-associated pathways. In response to this starvation and hypoxia, DCIS cells mod-
ified the expression of multiple genes, and a gradient of different metabolic phenotypes was observed across the
mammary ductmodel. These genetic changes observed in themodel were in good agreementwith patient geno-
mic profiles; identifying multiple compounds targeting the affected pathways. In this context, the hypoxia-
activated prodrug tirapazamine selectively destroyed hypoxic DCIS cells.
Interpretation: The results showed the capacity of themicrofluidicmodel to mimic the DCIS structure, identifying
multiple cellular adaptations to endure the hypoxia and nutrient starvation generatedwithin themammary duct.
These findings may suggest new potential therapeutic directions to treat DCIS. In summary, given the lack of
in vitromodels to study DCIS, this microfluidic device holds great potential to find new DCIS predictors and ther-
apies and translate them to the clinic.
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1. Introduction

Breast cancer is themost common non-cutaneous cancer in women,
and it is estimated that one in eight women will develop breast cancer
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during their lifetime [1].With increasedmammography screening, duc-
tal carcinoma in situ (DCIS), the earliest stage of breast cancer, emerged
as a common diagnosis and approximately 53,000 cases of DCIS are
diagnosed each year in the US [2]. During DCIS, the tumor cells are
non-invasive and remain trapped inside the mammary duct [3]. Thus,
patients diagnosed with DCIS have an excellent prognosis, with 5-year
breast cancer survival approaching 100% with treatment. Treatment
can include breast surgery, radiation therapy and hormonal therapy
[4]. However, concerns about the over-treatment of DCIS are increasing.
When DCIS is not treated, 25–50% of patients will eventually develop
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Research in context

Evidence before this study

During DCIS, the earliest stage of breast cancer, tumor cells grow
within the mammary duct under a harsh microenvironment. If left
untreated, up to half of DCIS patientswill develop an invasive duc-
tal carcinoma, a more aggressive tumorwhere cancer cells spread
to the surrounding tissue and can metastasize to other organs.
Some studies have suggested that the DCIS microenvironment
plays a critical role during DCIS evolution and progression to an in-
vasive tumor. However, despite the previous research clinicians
still lack good predictors to determine what patients will develop
an invasive tumor from those that remain as an indolent DCIS.

Added value of this study

In order to understand DCIS evolution, different in vitro models
have been developed. However, most of them do not mimic the
mammary duct structure with the DCIS trapped inside. Therefore,
there is a need formore complexDCISmodels that allow the study
of cell behavior under a more physiologic microenvironment. In a
previous work we developed a DCIS microfluidic model that
mimics the mammary duct structure with the DCIS cells trapped
inside. In this work, we have used themodel to study DCIS evolu-
tion andmetabolism. Themodel allowed the co-culture ofmultiple
cell typesmimicking the in vivo DCIS andmammary duct architec-
ture. Themodel revealed that under nutrient starvation, DCIS cells
activated multiple survival metabolic and genetic adaptations.
These adaptations observed in the model were in good agreement
with patient genomic profiles obtained in clinical trials, supporting
the relevance of the model to identify new DCIS evolution predic-
tors. Finally, using themodel, we also observed howDCIS cells in-
vaded the surrounding tissue, mimicking in vitro the DCIS
transition to an invasive ductal carcinoma.

Implications of all the available evidence

To the best of our knowledge, this is the first in vitro model that
mimics the DCIS structure and allows the study of DCIS metabo-
lism and survival mechanisms. The good correlation between the
in vitro genomic profile with in vivo data shows the potential of
this platform to find new DCIS evolution predictors. Finally, the
model could also be applied to evaluate new therapies against
DCIS.
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invasive ductal carcinoma (IDC), a more aggressive tumor where tumor
cells escape from the duct and may metastasize to other organs
(e.g., bone, lung and brain) [5]. Ideally, only the patients with DCIS
that are at risk for developing IDCwould be treated, and those destined
to evade IDC would be monitored. Currently, thousands of women
undergo unnecessary treatments as clinicians have limited tools to
understand DCIS to guide in these decisions [4]. The mechanisms by
which these tumor cells survive within themammary duct and eventu-
ally invade the surrounding tissue remain unclear. Recently, it has been
suggested that the DCIS tumormicroenvironment (TME) plays a critical
role during DCIS development. The DCIS TME is characterized by hyp-
oxia, nutrient starvation, and waste product accumulation inside the
mammary duct [6].

Consequently, tumor cells may activate multiple survival responses
such as hypoxia-inducible factor (HIF) expression, altered metabolism
(i.e., changes in the redox ratio, glucose/amino acid/fatty acid metabo-
lism) and autophagy activation [6,7]. Furthermore, nutrient deprivation
and hypoxia have been linked to an increased capacity to migrate and
invade the surrounding tissue [8]. Therefore, new approaches to deci-
pher the role of the TME during DCIS evolution could provide clinicians
with more comprehensive prognostic information.

As mounting evidence shows the relevance of the TME, new thera-
peutic opportunities arise to target these tumor-specific metabolic
pathways [9,10]. However, there is a lack of relevant in vitro models
to understand the complex interactions that influence patient response
[11]. Mimicking the DCIS microenvironment requires the presence of
multiple normal and tumor cell populations (i.e., cancer, stromal cells)
with different metabolic phenotypes, embedded in a 3D environment
that recapitulates the mammary duct structure. Although several
in vitro models have been developed to study DCIS, most of them lack
the of a mammary duct model with the tumor cells trapped inside
[11]. On the other hand, animal models like the MIND model can pro-
vide a more complex environment compared with the classic in vitro
models [12,13]. In the MIND model, patient-derived cells or human
breast cancer cell lines are injected into the mouse mammary duct,
mimicking in a muchmore precise way the human DCIS microenviron-
ment. However, animalmodels rise ethical considerations andmonitor-
ing and controlling the microenvironment is more challenging.
Microfluidic models offer the potential to more accurately mimic the
complex in vivo components [14,15]. Several groups have developed
several microfluidic models to generate luminal structures (e.g., blood
vessels) embedded in a 3D extracellular matrix with/without stromal
cells [16–20]. In one of our models, we mimicked the DCIS architecture
using normalmammary cells to generate themammary duct, whereas a
DCIS model cell line (MCF10A-DCIS.com) was injected into the mam-
mary duct [21]. In the present work, themodel wasmodified to include
two flanking lumens to perfuse media, metabolites or drugs; as well as
to allow the retrieve of culture medium for downstream analysis. Using
the model, DCIS cell behavior was scrutinized by nuclear magnetic res-
onance (NMR) spectroscopy, RT-qPCR, confocal microscopy, and multi-
photon optical metabolic imaging (OMI). The results revealed that DCIS
cells generated a microenvironment within the microdevice character-
ized by hypoxia and nutrient starvation. During DCIS invasion, the in-
vading cells exhibited altered metabolism compared with the cells
within the mammary duct. To demonstrate the utility of the model in
evaluating cancer therapeutics, the system was exposed to a hypoxia-
activated prodrug which selectively targeted the hypoxic DCIS cells,
whereas normoxic cells remain viable.

2. Materials and methods

2.1. Reagents

Calcein AM (CAM) (C34851), propidium iodide (PI) (P1304MP),
hypoxia reagent (H10498), 2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)
Amino)-2-Deoxyglucose (NBDG), cell tracker red CMTPX (C34552),
green CMFDA (C7025), and blue (C2110),were purchased fromThermo
Fisher and stock solutions were prepared following supplier instruc-
tions. Rhodamine B (Rho) (Sigma R6626), Doxorubicin (DOX)
(Selleckchem, S1208) and Tirapazamine (TPZ) (Sigma, SML0552)
were dissolved at 1 mg/ml, 100 mM, and 50 mM respectively in DMSO.

2.2. Cell culture

The human mammary epithelial cell line (MCF10A) was obtained
fromATCC (ATCC® CRL-10317™) andmaintainedwith DMEM/F12me-
dium (Thermo Fisher, 11,320,033) supplemented with 5% horse serum
(Invitrogen, Carlsbad, CA, USA), 20 ng/ml epidermal growth factor
(Peprotech, AF-100-15), 0.5 mg/ml hydrocortisone (Sigma-Aldrich,
H0888), 100 ng/ml Cholera toxin (Sigma-Aldrich, C9903), 10 μg/ ml in-
sulin (Sigma-Aldrich, I6634) and 1% Pen/Strep (Thermo Fisher,
15,070,063) on regular tissue culture flasks. MCF10A-DCIS.com cells
(will be referred as DCIS cells for simplicity) were developed by Miller
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et al. and distributed by Asterand (Detroit, MI, USA) [22,23]. They were
generated from a MCF10AT clone initiated from a xenograft that
evolved to DCIS lesions. DCIS cells were maintained in MCF10A me-
dium. Human mammary fibroblasts (HMFs) were obtained from Dr.
Charlotte Kuperwasser (Tufts University) and maintained in DMEM
supplemented with 10% fetal bovine serum (FBS) (Invitrogen) and 1%
Pen/Strep.

2.3. Microdevice fabrication

The microdevices were fabricated by soft lithography following the
protocol described in [16]. Briefly, a SU-8 template containing the
geometry was fabricated using SU-8100 (Y131273, MICROCHEM) and
polydimethylsiloxane (PMDS) (Dow Corning) was poured on top and
polymerized for 4 h at 80 °C. PDMS microdevices were detached from
the SU-8 wafer and assembled. The PDMS rods were fabricated by
injecting liquid PDMS through 23-gauge needles (337 mm diameter)
(BD Precision Glide); after PDMS polymerization, rods were placed
into the microdevices. Finally, the assembled microdevices and 60 mm
glass-bottom Petri dishes (P50G-1.5-30-F, MatTek) were treated with
oxygen plasma and bonded together.

2.4. Cell culture within the microdevice

Themicrodeviceswere sterilized byUV light exposure for 20min. To
improve the collagen hydrogel attachment to the microdevice,
microdevices were pretreated with 2% poly(ethyleneimine) (Sigma-Al-
drich, 03880) diluted in water for 10 min and 0.4% glutaraldehyde
(Sigma-Aldrich, G6257) diluted in water for 30 min. Microdevices
were washed three times with sterile distilled water.

The collagen hydrogel was prepared as followed: 10.6 μl of 10× PBS
(79,382, Sigma), 2.34 μl of 1 N NaOH (221,465, Sigma), 93.65 μl of
9.61 mg/ml collagen type I (354,249, Corning) and finally 93.4 μl of
MCF10A growth medium (with or without 2 × 106 HMF cells/ml). 10 μl
of this hydrogel mixture was injected though the gel loading port in
each microdevice. Microdevices were placed into the incubator at 37 °C
and 5% CO2 for 20 min to allow collagen polymerization. Once collagen
was polymerized, the PDMS rods were removed using sterile tweezers,
generating a tunnel through the collagen hydrogel. To recreate themam-
mary duct structure, 1.5 μl of 15 × 106 MCF10A cells/ml was injected
through the central lumen. Microdevices were placed upside-down in
the incubator for 15 min to allow the cells to attach to the top side of
the lumen. Then the microdevices were flipped upside-up and left in
the incubator for another 2h. Finally, 5 μl ofMCF10Amediumwasflushed
through the lumen to wash out the non-attached cells and microdevices
were left in the incubator overnight. The next day, DCIS cells were
trypsinized and suspended at 100 × 106 cells/ml. 2 μl of DCIS cell suspen-
sion was injected through the MCF10A lumen to generate the DCIS
model. MCF10Amediumwas refreshed through the lateral lumens daily.

2.5. Cell staining

In some experiments cell were fluorescently labeled with Red/
Green/Blue cell tracker (Thermo Fisher, C34552, C7025, C2110 respec-
tively). The stock solution was diluted 1 to 1000 in growth medium
and cells were trypsinized and incubated in this medium for 30 min.
Next, cells were washed twice with phosphate-buffered saline (PBS)
(Lonza BE17-516F) to remove the excess cell tracker.

2.6. Cell viability staining

Stock solutions of 5 mg/ml CAM and 2 mg/ml PI were dissolved in
DMSO and distilled water respectively. To test cell viability within
microfluidic devices and in Petri dishes, stock solutions of CAM and PI
were diluted to 5 and 4 μg/ml, respectively, in PBS. The CAM/PI solution
was perfused through the lateral microchannels. Cell viability was eval-
uated using a Leica SP8 3× STED Super-resolution microscope.

2.7. Hypoxia profile

Hypoxia profile was analyzed within the microdevices using the
hypoxia reagent. Stock hypoxia reagent solution was diluted in growth
medium as well as the collagen hydrogel at 10 μM to ensure a homoge-
neous concentration. Hypoxia signal was visualized at different time
points using a Leica SP8 3× STED Super-resolution microscope.
A 488 nm white laser was used to excite the hypoxia-sensing dye and
emission was detected using a 650 ± 50 nm photomultiplier tube.

2.8. Glucose penetration

To study whether glucose penetration in the lumen model was hin-
dered by the epithelial cells, NBDG was dissolved at 200 mM in the ap-
propriate epithelial growth medium for MCF10A and DCIS cells. The
NBDG-supplemented medium was perfused through one of the lateral
channels andNBDGdiffusionwasmonitored under the Leica SP8micro-
scope (488 nm laser and 590 ± 30 detector).

2.9. NMR sample preparation and spectra acquisition

Metabolites from cell media were harvested using a protein precip-
itationwithmethanol extraction procedure as described in [24]. Briefly,
100 μL of media wasmixed at a 1:2 (v/v) ratio withmethanol, vortexed,
and incubated for 20 min at −20 °C. media samples were then centri-
fuged at 11,093g for 30 min. The supernatant was collected and dried
using a Vacufuge Plus (Eppendorf). The concentrated metabolite sam-
ples were reconstituted in 600 μL of phosphate buffered deuterium
oxide (D2O) solution. Phosphate buffered D2O solution was comprised
of 0.1 M D2O (Acros Organics), 0.5 mM 3-trimethylsilyl-propionate-2,
2, 3, 3,-d4 (TMSP, δ=0.0 ppm, internal standard) and 0.2% w/v sodium
azide. Samples were centrifuged at 17968g for 10min and 550 μL of su-
pernatant was collected into 5 mm NMR tubes (Norell Inc.).

1H NMR metabolomic analysis of media samples was performed as
described in [25]. Media samples were analyzed using a 500 MHz
Bruker Avance III spectrometer with a 5 mm cryogenic probe at a tem-
perature of 298 K at the National Magnetic Resonance Facility at Madi-
son (NMRFAM). One dimensional (1D) 1H NMR spectra were acquired
using 1D Nuclear Overhauser Effect Spectroscopy with presaturation
and spoil gradients (NOESYGPPR1D) pulse sequence with a relaxation
delay of 2 s, a mixing time of 10 ms, and a pre-scan delay of 30 μs.
Each spectrum consisted of 128 free induction decays (FIDs) and a spec-
tral width of 12 ppm. Line broadening (LB) of the FIDswas set to 0.5 Hz.
Using Bruker Top-Spin™ software (version 3.2.5), the chemical shifts
were referenced to the TMSP peak (δ = 0.0 ppm).

2.10. Metabolomics data analysis

1H NMR spectra were imported into ACD/1D NMR Processor soft-
ware (Advanced Chemistry Development) where phase and baseline
corrections were adjusted and solvent region removal (water:
4.7–5 ppm) was performed. Metabolite concentrations were deter-
mined using ChenomX NMR Suite Profiler (version 7.7, ChenomX
Inc.). TMSP was added to all samples as a reference compound to aid
in determining metabolite concentrations. After metabolite identifica-
tion and quantification, metabolite concentrations were exported to
an Excel file. The coefficient of variation (CV) was calculated for all fea-
tures andmetabolites with high coefficient of variation (CV) values (CV
N 0.30) were excluded from analysis. This was done to ensure that fea-
tures with high variation between replicates would not influencemeta-
bolomics analysis. Some metabolites with consistent concentrations
between replicates but high CV valueswere not excluded from the anal-
ysis given that due to their low concentration values, any small change
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in concentrationwould generate a high CV value. Metabolites unique to
a particular group were included in the data interpretation and discus-
sion but were excluded from principal component analysis (PCA) as
this analysis is very sensitive to outliers. Glucose was excluded from
multivariate statistical analysis due to high variability affecting
normalization.

Prior to analysis, the Statistics, Enrichment, and Biomarker Analysis
modules in Metaboanalyst was used to normalize metabolite concen-
tration data by the total concentration for each sample and scale using
auto scaling [26–28]. Briefly, PCA was performed to identify inherent
patterns in the data and visually capture sample variance. Hierarchical
clustering using Pearson correlation and Ward clustering algorithm
was performed on the metabolite concentration data in order to gener-
ate a heatmap of metabolic profiles for all conditions. DCIS and mam-
mary duct metabolic concentration data were used to generate a
Pearson correlation plot. Metabolite concentrations identified as signif-
icant by one-way ANOVA with Tukey's HSD post-hoc analysis (p-value
b0.05) were plotted in Excel for all four conditions analyzed. Differen-
tially enrichedmetabolic pathways obtained frommetabolite set quan-
titative enrichment analysis [29] were visually represented in network
format using the Metscape 3 plugin in Cytoscape [30]. Classical univar-
iate receiver operator characteristic (ROC) curve analyses were carried
out to identify potential biomarkers [31].

2.11. mRNA extraction, RT-qPCR and clinical comparison

To study how cells responded to the changing microenvironment
within the microfluidic model, the expression of a panel of genes was
analyzed by RT-qPCR. Briefly, MCF10A cells were pipetted in the central
lumen to mimic themammary duct and DCIS cells were injected inside.
mRNAwas extracted after 3 and 24h in cell culture using aDynabeads™
mRNADIRECT™ Purification Kit (61,011, ThermoFisher).mRNAwas re-
verse transcribed to cDNA using the RT2 First strand kit (330,401,
Qiagen). cDNA was analyzed by RT-qPCR using a Qiagen RT2 profiler
custom panel (CLAH25337, Qiagen) and data was analyzed using the
Qiagen online software (http://pcrdataanalysis.sabiosciences.com/pcr/
arrayanalysis.php). The RT-qPCR data was compared with the clinical
data obtained in theMETABRIC study, the largest breast cancer genomic
profile study in the cBioPortal database (http://www.cbioportal.org/)
[32,33]. The database was screened for the genes that were found to
be significantly different in the model. The percentage of the different
alterations identified in the study was calculated (i.e. amplification,
mRNA upregulation, deep deletion, mRNA downregulation and multi-
ple alterations). A genetic network including these geneswas generated
using the online software. The network included the affected genes and
their intermediates.

2.12. NAD(P)H/FAD imaging

Fluorescence lifetime images and intensity were taken on a custom-
built inverted multiphoton microscope (Bruker Fluorescence Micros-
copy, Middleton, WI), as described previously [34–36]. Briefly, the sys-
tem consists of a titanium:sapphire laser (Spectra Physics, Insight DS-
Dual), an inverted microscope (Nikon, Eclipse Ti), and a 40× water im-
mersion (1.15NA, Nikon) objective. NAD(P)H and FAD images were ac-
quired sequentially for the same field of view. NAD(P)H fluorescence
was isolated using an excitationwavelength of 750 nm and an emission
bandpass filter of 440/80 nm. FAD fluorescence was isolated using an
excitation wavelength of 890 nm and an emission bandpass filter of
550/100 nm. Fluorescence lifetime images were collected using time
correlated single photon counting electronics (SPC-150, Becker and
Hickl) and a GaAsP photomultiplier tube (H7422P-40, Hamamatsu). A
pixel dwell time of 4.8 μs was used to acquire a 512 × 512 pixel images
over 60s total integration time. For intensity imaging a pixel dwell time
of 4.8 μswas used to collect 1024×1024 images. The photon count rates
were maintained at 1–2 × 105 photons/s to ensure adequate photon
observations for lifetime decay fits, and no photobleaching. The instru-
ment response function was measured from second harmonic genera-
tion of urea crystals excited at 900 nm, and the full width at half
maximum (FWHM) was calculated to be 244 ps. A Fluoresbrite YG mi-
crosphere (Polysciences Inc.)was imaged as a daily standard forfluores-
cence lifetime. The lifetime decay curveswere fit to a single exponential
decay and the fluorescence lifetimewas measured to be 2.1 ns (n= 7),
which is consistent with published values.
2.13. Quantification of fluorescence lifetime components

NAD and NADPH (indicated as NAD(P)H) and FAD fluorescence life-
time images of cells were analyzed using SPCImage software (Becker &
Hickl) as described previously [35]. Briefly, at each pixel, the fluores-
cence lifetime decay curve was deconvolved with the instrument re-
sponse function and fit to a two-component exponential decay model,
I(t) = α1*exp.(−t/τ1) + α2*exp.(−t/τ2) + C, where I(t) is the fluores-
cence intensity at time t after the laser excitation pulse,α represents the
fractional contribution from each component, C accounts for back-
ground light, and τ represents the fluorescence lifetime of each compo-
nent. A two-component model was used because both NAD(P)H and
FAD can exist in two conformational states, bound or unbound to en-
zymes [37]. For NAD(P)H the short and long lifetime components corre-
spond with the unbound and bound conformations respectively [37].
While the opposite is true for FAD, the short and long lifetime compo-
nents reflect the bound and unbound conformations respectively [37].
The mean lifetimes were calculated using, τm = α1τ1+ α2τ2 for both
NAD(P)H and FAD. The optical redox ratio was calculated from the
NAD(P)H and FAD lifetime data by summing the photons detected at
each pixel in the image to compute the total intensity. The intensity of
NAD(P)H was then divided by the intensity of FAD for each pixel.

An automated cell segmentation pipelinewas created in Cell Profiler.
Briefly, a customized threshold code identified pixels belonging to nu-
clear regions. Cells were identified by propagating out from the nuclei
within the image. An Otsu Global threshold was used to improve the
propagation and prevent it from continuing into background pixels.
The cell cytoplasm was defined as the cell borders minus the nucleus.
Values for the τm, τ1, τ2, α1, and intensities of NAD(P)H and FAD as
well as the redox ratio were averaged for all pixels within each cell
cytoplasm.
2.14. Image and statistical analysis

Microscopy images were analyzed using FIJI® (www.FIJI.com). To
analyze molecule diffusion and cell viability, a rectangle-shape region
was drawn, and the intensity profile was calculated using the FIJI soft-
ware. At least 100 cells per sample were analyzed to calculate the OMI
variables of that sample. Every experiment was repeated at least three
times. The normal distribution was tested by the Kolmogorov-
Smirnov test. Statistical significance was set at p b 0.05. For nonpara-
metric comparisons, a Kruskal-Wallis test was performed followed by
the Mann-Whitney U test.
3. Results

3.1. Establishment of the DCIS model

To generate a mammary duct model, PDMS-based microdevices
with three lumens were fabricated (Fig. 1a–c). HMFs were embedded
in the collagen hydrogel. Next, mammary epithelial cells (MCF10A)
were seeded through the central lumen to generate the mammary
duct model. After 24 h in culture, MCF10A cells generated a continuous
epithelium andMCF10A or DCIS cells were injected through the central
lumen (Fig. 1d and e).

http://pcrdataanalysis.sabiosciences.com/pcr/arrayanalysis.php
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Fig. 1. a) Schemeof theDCIS structure. b) Scheme of themicrofluidicmodel. c)Microdevice picture. Blue-coloredwaterwas introducedwithin themicrodevices for visualization purposes.
d) MCF10A empty lumen after 24 h in cell culture. DCIS cells were injected within the MCF10 lumen. e) Confocal image showing the HMF (1 × 106 cells/ml), MCF10A (15 × 106 cells/ml)
and DCIS (100 × 106 cells/ml) labeled with cell tracker green, blue and red respectively.
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3.2. Hypoxia and glucose diffusion

In order to study hypoxia, microdevices were divided into three
groups: 1) mammary duct model, with MCF10A cells forming a hollow
lumen; 2) DCIS model, with the MCF10A lumen full of DCIS cells; and
3) pseudo-DCIS, composed of a MCF10A lumen with MCF10A cells in-
side (Fig. 2a). Although this last condition seems biologically unlikely,
since normal cells do not grow within the mammary duct; it allowed
us to evaluate if the observed DCIS oxygen metabolism was a product
of a higher cell density or due to specific metabolic alterations presence
in the DCIS cells. To detect the levels of oxygen within the model, a
hypoxia-sensing dye was added to the collagen hydrogel before hydro-
gel polymerization. This dye increases its fluorescence as oxygen ten-
sion decreases, particularly below 5%. The hypoxia sensor fluorescence
progressively increased during the first 4 h in the DCIS model (Supple-
mentaryMovie 1), reachingmaximum intensity after 24 h (Supplemen-
tary Fig. 1–2 and Fig. 2a). Conversely, in the mammary duct model
(i.e., the MCF10A lumen with no other cells inside), no hypoxia signal
was observed. When the mammary duct model was filled with
MCF10A cells, the hypoxia signal observed after 24 h was lower com-
pared with the DCIS model. Additionally, in the DCIS model, this hyp-
oxia signal rapidly increased with penetration into the DCIS duct,
reaching a maximum at the lumen center. However, in the lumen filled
with MCF10A cells, the profile reached a plateau across the lumen.
These results suggest that the DCIS model has a faster oxygen metabo-
lism that leads to greater hypoxia in the center of the lumen.

Next, the penetration of nutrients through the lumenwas evaluated.
The fluorescent glucose analogue NBDG was perfused through one of
the lateral lumens (Fig. 2b and supplementary Fig. 3). NBDG is a small
molecule (molecular weight b 1 kDa) that rapidly diffused through
the hydrogel, and reached the central lumen after 1 min. Interestingly,
when NBDG reached the lumen wall, its diffusion was significantly de-
creased. After 60 min, the NBDG fluorescence intensity at the lumen
core was lower than 30%, compared with the intensity outside the
lumen. Therefore, this experiment demonstrated that glucose penetra-
tion inside the lumen was not completely governed by passive diffu-
sion; but was also regulated by active transport through the cells
forming the lumen wall.

Previous reports have shown that other nutrients (i.e., small hydro-
phobic molecules) can passively diffuse through the cell membrane
[38], nourishing the cells into the lumen. To explore this idea, we
injected rhodamine B, a small hydrophobic (b1 kDa) compound that
naturally fluoresces in red, in the right lateral lumen (Fig. 2c). After
3 min, rhodamine B concentrated inside the cells, but also diffused
through the MCF10A cells to penetrate inside the central lumen. Alto-
gether, these observations demonstrate that nutrient transport inside
the mammary duct model depends on the considered molecule, and
transport can be modulated by the epithelial cells.

3.3. Metabolite characterization

Next, we set out to characterize the metabolite profile within the
model. In this experiment, microdevices were divided into four groups:
1) control group, with no cells in the microdevices; 2) mammary duct
model, with MCF10A cells forming an empty lumen; 3) DCIS model,
with the MCF10A lumen full of DCIS cells; and 4) pseudo-DCIS, com-
posed of a MCF10A lumen with MCF10A cells inside (Fig. 3a). After
24 h in culture, themedia from the lateral lumenswas retrieved and an-
alyzed by 1H NMR spectroscopy and metabolomic analysis.

Principal Component Analysis (PCA) and hierarchical clustering re-
vealed four clusters corresponding to the four sample groups (Supple-
mentary Fig. 4 and Fig. 3b). To further identify which metabolites and
metabolic pathways were affected, the top features that correlated
with the DCIS model according to Pearson correlation coefficient values
were identified (Fig. 3c). fourteen metabolites were significantly differ-
ent between the mammary duct and the DCIS models (Fig. 3d). In the

Image of Fig. 1


Fig. 2. a)Microdevices were divided in three groups: 1-Mammary duct, containing only fibroblasts andMCF10A cells; 2- Pseudo-DCIS, similar to group 1 butwith the addition ofMCF10A
within the lumen; 3-DICS, similar to group 1 butwithDCIS cellswithin the lumen. Thehypoxia signal (in red) is observedwhenDCIS cells are present inside themammary ductmodel. In a

149J.M. Ayuso et al. / EBioMedicine 37 (2018) 144–157

Image of Fig. 2


150 J.M. Ayuso et al. / EBioMedicine 37 (2018) 144–157
DCIS model, glucose and pyruvate concentrations in the media de-
creased while lactate levels increased relative to the other three condi-
tions. These metabolite changes in the media are consistent with
increased glycolysis in the DCISmodel. Moreover, glutamine concentra-
tions were lower in the DCIS model, which could result from increased
glutaminolysis. Choline was reduced only in DCIS and pseudo-DCIS
groups compared to control and mammary duct models, suggesting
the higher cell density within the duct was modifying cell metabolism.
In this context, Glycerol and 2-hydroxyisovalerate (2-HIVa) were only
present in DCIS and pseudo-DCIS, but not in the mammary duct
model or control conditions. This observation suggested again that
there was a metabolic change that depended only on the cell density,
rather than on genetic differences.

We further performed classical univariate ROC curve analysis on the
metabolite concentration data to identify differences between the
mammary duct and DCIS microdevice models (Supplementary Fig. 5).
This analysis aimed to test the potential of the model to identify DCIS
metabolomic biomarkers or targets. We identified 17 metabolites with
an area under the curve (AUC) value of 1 and fold change values higher
than±0.5. Thesemetabolites were significantly different between DCIS
and mammary duct models and likewise strongly correlated with the
DCISmodel. Upon further validation, thesemetabolites, either individu-
ally or in combination, could be potential biomarkers used to diagnose
aggressive DCIS leading to an IDC from the benign indolent DCIS.

Metabolite set enrichment analysis (Fig. 3e) revealed 19 metabolic
pathways that were altered between the DCIS and mammary duct
models, including pathways associated with: rapid proliferation; carbo-
hydratemetabolism (e.g., glycolysis, gluconeogenesis and pyruvateme-
tabolism), nucleotidemetabolism (pyrimidine and purinemetabolism),
aminoacidmetabolism(glycine, serine, and threoninemetabolism; glu-
tamine metabolism, and malate-aspartate shuttle), lipid metabolism
(ketone body metabolism) and nitrogen metabolism (urea cycle, am-
monia recycling). Together, 1H NMR metabolomics analysis revealed
significant differences and identified specific changes inmetabolite con-
centrations and metabolic pathways between the DCIS and the other
models.
3.4. Gene expression analysis

Next, we performed genetic analyses by RT-qPCR to further explore
how DCIS cells respond to these microenvironmental conditions. The
expression of 40 genes related to different metabolic pathways and cel-
lular functions was analyzed after a 3 and 24 h within the microdevice
(Supplementary Fig. 6). Among the genes analyzed, seventeen of them
showed significant differences (only genes with ct values lower than
35 were considered). The non-supervised clustering algorithm showed
these genes were divided into two clusters, where one cluster was up-
regulated after 24 h, whereas the other was downregulated (Fig. 4a).
We grouped these genes in different pathways (i.e., hypoxia-related
genes, glycolysis, fatty acid metabolism, nucleotide synthesis, and au-
tophagy) (Fig. 4b). TGF-β and vimentin were not included in any of
these groups. The hypoxia-related genes (HIF1A, ARNT, and CA9)
were upregulated after 24 h, which suggests that cells adapted to the
hypoxia generated within the DCIS model. Genes involved in fatty acid
transportation into the mitochondria and fatty acid metabolism
(ACAD9, CPT1A, and CPT1C) showed a downregulation; which could
suggest decreased fatty acid consumption rate under hypoxic condi-
tions [39].

Similarly, the downregulation of HK1 suggested a decrease in the
glycolysis rate; whereas the overexpression of PDK3 and PDK4
lumenwithoutDCIS cells, there is nohypoxia signal. The graph shows thehypoxia profile along t
model. NBDG diffusion is clearly hindered by the luminal cells. The graph shows the diffusion p
the mammary duct lumen. Rhodamine is a hydrophobic compound that can diffuse through c
indicated a shift towards an anaerobic glucose metabolism.
Autophagy-related genes showed a complex pattern, two of them
were upregulated whereas the other two were downregulated. Finally,
we observed a downregulation of TGF-β and an upregulation of
vimentin, suggesting activation of tumor survival response and migra-
tion, respectively. Altogether, these results demonstrate how DCIS
cells adapt to themicroenvironment generated by theirmetabolic activ-
ity. The results obtained in themicrofluidic model were compared with
genetic profiles obtained from DCIS patients in the clinic (METABRIC
study, 2509 cases) [40]. The results showed that 56% of the patients
showed alterations in at least one of the genes affected in the model.
The most common alterations for CA9, ARNT, HIF1α (i.e., hypoxia-
related genes), PDK4 and VIM genes were mRNA upregulation and am-
plification; which is good agreement with the overexpression obtained
in themodel for these genes (Fig. 5a). On the other hand, mRNA down-
regulation and deep deletion were the most common alterations for
HK1 and LAMP1 genes; resembling the results observed in the model.
Using the online software cBioPortal (http://www.cbioportal.org/) and
the METABRIC database, a gene network including the 16 genes found
to be significant was generated (Fig. 5b). The network describes the re-
lationships between the different genes affected. Additionally, the soft-
ware identified multiple drugs evaluated in the clinic against the
affected pathways.
3.5. Optical metabolic imaging during the invasion process

Next, we used multi-photon optical metabolic imaging to evaluate
whether the hypoxia and nutrient gradients across the lumen could
lead to the generation of different metabolic phenotypes within the
lumen. OMI is based on the autofluorescence of NADH, NADPH and
FAD cofactors and provides real-time monitoring of cell metabolism at
a single cell level [36]. BothNADH andNADPHhave similarfluorescence
spectra, thus their combined fluorescence is expressed as NAD(P)H.
Therefore, we analyzed the evolution of the redox ratio (i.e. NAD(P)H/
FAD ratio) and NAD(P)H fluorescence lifetime (FLIM) (NAD(P)H τm)
in themodel. The redox ratio and NAD(P)H τm are affected by the intra-
cellular metabolism and the intracellular microenvironment, allowing
differences at a single cell level to be detected. MCF10A, MCF10-DCIS
cells, and HMFs were seeded on flat glass bottom Petri dishes to evalu-
ate their redox ratio and NAD(P)H τm after two days in 2D (Fig. 6). The
results showed DCIS cells had a higher redox ratio compared with
MCF10A and at least 7-fold higher than HMFs. This observation agrees
with previous observations suggesting DCIS cells had a faster glycolytic
metabolism; which leads to the accumulation of NAD(P)H in the cyto-
plasm. Additionally, the NAD(P)H τm was also statistically different be-
tweenDCIS, MCF10A cells and HMFs, again suggesting the presence of a
different intracellular metabolism (Fig. 6).

Consistent with these 2D results, after 3 h in within the device, DCIS,
MCF10A, and HMF cells maintained distinct redox ratio and NADP(P)H
τm (Fig. 7a–b, e and Supplementary Fig. 7). However, after 3 days, the
redox ratio andNAD(P)H τm across the lumen developed into a gradient
ranging from the lumen perimeter to the center (Fig. 7c–d). Further-
more, after 3 h in culture, the redox ratio of all the cells in the lumen
(i.e. cells in suspension and cells forming the lumenwall) was analyzed
and two different populations were identified (Fig. 7f, left graph, green
and blue curves), likely corresponding to MCF10A and DCIS respec-
tively. Interestingly, after 3 days only a single population could be iden-
tified within the lumen (Fig. 7f, right graph). This change suggests that
the tumor and normal cells adapt their metabolism according to the dif-
ferent microenvironments present in the lumen core compared with
he yellow rectangle in thepictures. b)NBDGdiffusion along the time in themammary duct
rofile along the yellow rectangles shown in the pictures. c) Rhodamine diffusion profile in
ell membrane, showing a much faster penetration through the lumen.

http://www.cbioportal.org


Fig. 3. a) Schematic illustrating the four conditions from which media compositions were analyzed using 1H NMR metabolomics. b) Heatmap showing the metabolic profiles of all four
conditions analyzed. Heatmap was generated by hierarchical clustering using Pearson correlation as a distance measurement and Ward clustering algorithm. Legend shows auto scaled
values from 1 to −1 assigned to the relative metabolite concentrations. Individual metabolites are shown in the rows and group averages are shown in the columns of the heatmap.
c) Pearson correlation coefficient plot portraying the top 25 metabolites correlated to DCIS compared to mammary duct control. d) Bar graph depicting the normalized metabolite
concentrations of the top 14 significantly altered metabolites between the DCIS and mammary duct models. Pyruvate was not significantly different between these two conditions but
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Fig. 4.Gene expression. a) Heat-map showing statistically significant gene expression changeswithin themicrofluidicmodel after 3 and 24 h in cell culture.mRNAwas extracted from the
lumen and analyzed by RT-PCR using a Qiagen custom gene panel. Data was analyzed using Qiagen RT2 profiler software. The magnitude of gene expression change is showed in the
horizontal bar. UV Radiation Associated Gene (UVRAG); Autophagy-Related Gene 4 (ATG4); Carbonic Anhydrase 9 (CA9); vimentin (VIM); Hypoxia-inducible Factor 1-alpha (HIF1A);
Pyruvate Dehydrogenase Kinase 3 (PDK3); Aryl Hydrocarbon Receptor Nuclear Translocator (ARNT, also known as HIF1B); Pyruvate Dehydrogenase Kinase 4 (PDK4); Carnitine
Palmitoyl Transferase 1C (CPT1C); Acyl-Coenzyme A Dehydrogenase Family Member 9 (ACAD9); Transforming Growth Factor-beta 1 (TGFB1); Carbamoyl-Phosphate Synthetase 2,
Aspartate Transcarbamylase, and Dihydroorotase (CAD); Lysosomal-associated membrane protein 1 (LAMP1); Hexokinase 1 (HK1); Autophagy-Related Gene 7 (ATG7). Each column
represents one individual experiment. b) Bar chart showing the magnitude of gene change expression. Genes were grouped by metabolic pathways; excepting TGF-β1 and vimentin,
which were not include into any group. Data are displayed in logarithmic scale as mean ± 95%confindent interval [Student's t-test]. c) Scheme illustrating the main role of the proteins
whose mRNA expression was statistically significant.
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the surrounding region. Additionally, 3 days after seeding the DCIS cells,
cells started to invade the surroundingmatrix by a collectivemovement
(i.e. forming groups of cells where one or few cells lead the path and de-
grade the collagen matrix, whereas the other cells follow the path at-
tached to the leader cells) (Fig. 7c–d). Interestingly, cells located
within the lumen, the invading branch or at the tip of the invading
branch showed several differences in NAD(P)H and NAD(P)H τm (Sup-
plementary Fig. 8), suggesting invading cells relied on a differentmetab-
olism compared with those trapped within the duct.

3.6. Targeting the DCIS microenvironment

Recently, researchers have speculated that the altered microenvi-
ronment within a tumor can lead to metabolic vulnerabilities in tumor
cells that can be used as targets for cancer therapeutics. To evaluate
this hypothesis, we tested a drug that specifically targets hypoxic cells
(i.e. Tirapazamine, TPZ); inducing DNA damage only under hypoxic
conditions. First, we determined whether small hydrophobic drugs
could penetrate through the lumen wall (Fig. 8a). Doxorubicin, a classic
chemotherapeutic agent that is fluorescent in red, was perfused
through the right lateral lumen. Doxorubicin, like Rhodamine B, rapidly
penetrated through theMCF10A cells and reached the core of the empty
lumen. 100 μM TPZ was added through the lateral lumens and cell
was added since it is involved in glycolysis. Error bars represent the standard deviation. FDR b

metabolite set enrichment analysis results comparing mammary duct vs. DCIS groups. Graph
indicating statistically significant change in pathways. Grey colour indicates there was no sign
mammary duct model, with MCF10A cells forming an empty lumen (cyan);Pseudo-DCIS, co
MCF10A lumen full of DCIS cells (green). Graphs in panels b and c were generated using Meta
viability was evaluated after 3 days. In the absence of TPZ, cells showed
high viability (Fig. 8b). However, when cultured in the presence of TPZ,
a region of dead cells appeared in the center of the lumen (Fig. 7b). This
necrotic region was confined to the innermost part of the lumen, where
hypoxia was more intense; whereas the edges of the lumen and the
HMFs remained viable. These results demonstrate the relevance of the
DCIS microenvironment for drug sensitivity and show how the pre-
sented DCIS model could be used to test new drugs. Furthermore, TPZ
diffusion and cytotoxicity was simulated, showing a good agreement
with the experimental data (Supplementary Fig. 9). The model was
able to mimic the differential toxicity in the normoxic and hypoxic
areas based on the TPZ diffusion coefficient and toxicity values obtained
from the literature. This shows how computational simulations can be
applied to study the complex tumor dynamics and drug interactions.
4. Discussion

The mechanisms that allow for tumor cell survival within the harsh
conditions of the mammary duct remain elusive. Recapitulating the
TME in vitro is challenging because most current in vitro models rely
on classic 2D Petri dishes where the TME is mostly absent. Here, we
have developed a breast cancer model that mimics the DCIS structure
0.05 [one-way ANOVA with Tukey's HSD post-hoc analysis]. e) Network representation of
was generated using Metscape. Colour gradient from red to yellow represent FDR values
ificant change for that particular pathway. Sample groups: Control, with no cells (green);
mposed of MCF10A lumen with MCF10A cells inside (blue) and DCIS model, with the
boanalyst. N = 3 biological replicates per sample group.

Image of Fig. 4


Fig. 5. Patient genetic profile obtained in the METABRIC study. a) The graph shows the
different genetic alterations identified in patients in the 16 genes that were significantly
different in the model. b) Genetic network showing the main interactions between the
affected genes and their intermediates. Drugs used in clinical trials targeting these
pathways are also included.

Fig. 6. Optical metabolic imaging of multiple cell types seeded on 2D. NAD(P)H signal is shown
and FAD signal is shown for comparison between the different cell types. Graphs show the me
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and allows the co-culture of multiple cell types; recreating critical ele-
ments of the DCIS TME.

The model showed how DCIS cells use distinct metabolic pathways
compared with normal mammary epithelial cells. The rapid consump-
tion of glucose and glutamine supports the hypothesis that DCIS cells
rely on glycolysis to enable their accelerated growth [41]. In vivo, the
mammary gland selectively controls the diffusion of metabolites inside
the duct. Glucose is actively transported within the cells via membrane
transporters (GLUT) and then metabolized into lactose, which is finally
excreted into the mammary duct during lactation. This glucose barrier
effect was observed in the microfluidic model since NBDG diffusion
was severely hindered by the MCF10A cells. Despite this barrier effect,
the NMR data showed a significant glucose reduction in the media in
the DCIS model, suggesting that this slow glucose penetration could
be enough to support the DCIS cells. Additionally, hypoxia increases
the secretion of lactose and other nutrients into the mammary duct
in vivo [42]. Therefore, the hypoxia observed in the model could en-
hance glucose transport into the duct. Additionally, when glucose levels
are low, cells can survive by undergoing gluconeogenesis and
replenishing their glucose levels at the expense of using glucogenic
amino acids [43]. In this context, metabolite set enrichment analysis
(Fig. 3e) showed enrichment in gluconeogenesis and a decrease in
glucogenic amino acids (e.g., asparagine, glutamine, glycine, valine,
and isoleucine) in the DCIS model, thus supporting this hypothesis.
This model could be used in the future to study glucose transport to
themammary duct and evaluate newDCIS therapies that target glucose
transport. Additionally, somemetabolic alterations seemed to be caused
by environmental pressure (e.g., hypoxia and nutrient starvation due to
high cell density) rather than genetic mutations. In this context, previ-
ous reports have also shown that mammary cells undergo profound
metabolic changes when they grow under matrix detachment condi-
tions [44]. Arguably, DCIS cells growing within the lumen may be af-
fected similarly. Therefore, this model could also be used to study how
malignant and non-malignant cells differ in their response to environ-
mental factors like hypoxia, nutrient starvation, accumulation of waste
products or matrix detachment. In response to the harshmicroenviron-
mentwithin the lumen, gene expression analysis showed that DCIS cells
switched towards an anaerobic metabolism after 24 h. Under hypoxic
in red, whereas FAD signal appears in green. In the graph, the ratio between the NAD(P)H
an ± Standard Error. ** denotes p-value b0.001 [one-way ANOVA].

Image of Fig. 5
Image of Fig. 6


Fig. 7.Optical metabolic imaging of cells culturedwithin themicrofluidic devices. a-d) 3 h after seeding the cells, HMF and epithelial cells (MCF10A and DCIS) exhibit different redox ratio
as well as NAD(P) τm and FAD τm. After 3 days in cell culture, the cells within the lumen show a more heterogenous pattern and cells from the lumen started to invade the surrounding
matrix. e) Graphs showing the Redox Ratio, NAD(P)H τm and FAD τm3 h after injecting theDCIS in the central lumen. f) A population analysiswas performed to quantify the redox ratio on
the cells located in the lumen (including those at the lumenwall, black line). After 3 h in culture, the analysis revealed that the population can be deconvoluted in two populations (green
and blue lines respectively) with a different redox ratio (p-value b0.05). After 3 days in culture, only one population was identified within the lumen and the redox was closer to the less
reduced population identified after 3 h. Data shows the mean ± standard deviation. * denotes p-value b0.05 [one-way ANOVA].
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conditions, HIF1A dimerizes in the cell nucleus with ARNT (also known
as HIF1B) to induce the expression of numerous hypoxia-related genes
(e.g., CA9) [45,46]. In this context, CA9 is known to be overexpressed in
hypoxic tumor cells to regulate their acidic intracellular pH, allowing
tumor cell survival under toxic pH conditions [47]. Increase in PDK3
and PDK4 levels, which phosphorylate and block pyruvate dehydroge-
nase complex, suggest a shift towards lactic acid fermentation; which
causes intracellular and extracellular acidification through CA9 activity
[48]. Additionally, reduction in CAD expression (the first rate-limiting
step in pyrimidine and nucleotide synthesis) suggests a decreased
proliferation rate, may be caused by the hypoxic and starving environ-
ment [49]. Moreover, vimentin is known to be involved in epithelial-
mesenchymal transition and cell migration and was upregulated in
the DCIS model. The increased vimentin expression could partially ex-
plain the migration that was observed in the DCIS model after 3 days
in culture [50,51].

TGF-β plays a complex role in breast cancer since it can promote
tumor growth or induce tumor suppression, while maintaining other
functions such as immune escape. In the early stages of breast cancer
(i.e. DCIS), TGF-β seems to play a tumor suppressive role, whereas in

Image of Fig. 7


Fig. 8. Drug testing. a) DOX, which is fluorescent in red, was perfused through the right lateral lumen. The DOX diffusion profile through an MCF10A central lumen was observed at
different times. DOX rapidly diffused through the collagen and was uptaken by the MCF10A cells. After 90 m min DOX is clearly present inside the empty lumen. The graph shows the
DOX diffusion profile across the yellow rectangle. b) TPZ was perfused through both lateral lumens and after 3 days in culture cell viability was evaluated using CAM/PI. The addition
of TPZ caused an intense cell mortality. The analysis of the viable/dead cell profile showed that TPZ exerted a higher toxicity in the center of the lumen.
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the later stages it may promotemetastasis [52,53]. In our model, the re-
duction of TGF-β could be associated with the generation of a tumor-
promoting environment. Finally, two of the genes related to autophagy
were downregulated, whereas the other two were upregulated. Au-
tophagy is a complex process that engages numerous factors. These re-
sults indicate that a subset of autophagy-related genes could be critical
to support tumor cell survival under this hypoxic and starvingmicroen-
vironment [54,55].

OMI showed that DCIS cells responded differently depending on
their position inside the lumen or the invading branch (Fig. 7). In this
context, cells located at the invading branch and the leader cell exhib-
ited a lower NAD(P)H FLIM compared with cells located in the lumen.
Previous reports have shown that NAD(P)H FLIM reduction indicates
an increase in the amount of free NAD(P)H in the cell cytosol in these
cells as a consequence of amore intense glycolysis [56,57]. This observa-
tion could indicate that as invading cells escape from the starving
lumen, they have access to more glucose, accelerating their glycolytic
metabolism. Additionally, other studies have shown that epithelial
cells, including breast cancer, rely on collective movement to invade
the surrounding tissue [58,59]. Interestingly, collective invasion re-
quires a different molecular machinery compared with single cell inva-
sion, which may offer some new alternatives to target cancer migration
and invasion [60].

Finally, the DCIS model was used to evaluate the possibility of target
tumor cells based on the surroundingmicroenvironment. TPZ showed a
gradient of toxicity with a similar pattern to the oxygen gradient (Figs. 2
and 8). Interestingly, the cells at the lumen periphery, as well as the fi-
broblasts, remained unaffected by the TPZ. Therefore, hypoxia-activated
prodrugs could be combined with other drugs to target both normoxic
and hypoxic DCIS cells.

In conclusion, the presentedmodel better generates amore complex
microenvironment compared with traditional 2D cell culture or regular
3D spheroids. The model allowed the observation of spatial-temporal
metabolic and phenotypic gradients across the lumen. In this context,
DCIS cells showed a heterogeneous metabolic response across the
lumen, aswell as heterogeneous response to TMZ. This observation sug-
gested that the phenotype heterogeneity generated by nutrients gradi-
ents will probably require a complex treatment to destroy all the

Image of Fig. 8


156 J.M. Ayuso et al. / EBioMedicine 37 (2018) 144–157
differentDCIS cell populationswithin the lumen (e.g., normoxic vs. hyp-
oxic cells). Therefore, this model could help to identify more accurate
prognostic biomarkers for DCIS and uncover novel therapeutic strate-
gies for DCIS in a much faster way than more simplistic in vitro models.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.ebiom.2018.10.046.
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