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Long acquisition times lead to image artifacts in thoracic C-arm CT. Motion blur caused by respiratory motion leads to decreased
image quality in many clinical applications. We introduce an image-based method to estimate and compensate respiratory motion
in C-arm CT based on diaphragm motion. In order to estimate respiratory motion, we track the contour of the diaphragm in the
projection image sequence. Using a motion corrected triangulation approach on the diaphragm vertex, we are able to estimate a
motion signal. The estimated motion signal is used to compensate for respiratory motion in the target region, for example, heart
or lungs. First, we evaluated our approach in a simulation study using XCAT. As ground truth data was available, a quantitative
evaluation was performed. We observed an improvement of about 14% using the structural similarity index. In a real phantom study,
using the artiCHEST phantom, we investigated the visibility of bronchial tubes in a porcine lung. Compared to an uncompensated
scan, the visibility of bronchial structures is improved drastically. Preliminary results indicate that this kind of motion compensation
can deliver a first step in reconstruction image quality improvement. Compared to ground truth data, image quality is still

considerably reduced.

1. Introduction

C-arm CT has enabled reconstruction of 3D images dur-
ing medical procedures, for example, cardiac interventions.
However, the rather long acquisition time of several seconds
may lead to motion artifacts, such as motion blur and
streaks. These artifacts are very problematic in many clinical
applications. The commonly used technique to reduce the
influence of respiratory motion during cardiac procedures is
the so-called single breath-hold scan. This approach requires
the patient to hold his breath for the duration of the scan.
Unfortunately, this technique does not guarantee perfect
results. Jahnke et al. have measured residual respiratory
motion in almost half of their test group containing 210
people [1]. We have two main applications in the focus of
our work. One is the improvement of cardiac C-arm CT.
While compensation of the motion of the heart has been

investigated intensively in the literature [2-4], the problem
of respiratory motion during cardiac C-arm CT is much less
frequently addressed. Residual respiratory motion during the
cardiac scan causes a considerable reduction in image quality.

Motion artifacts are also very problematic in pulmonary
procedures. In order to analyze the malignancy of a pul-
monary tumor, a sample has to be extracted. A bronchoscope
is inserted through the patient’s nose and has to be navigated
through the bronchial tree towards the tumor. This procedure
requires an accurate plan of the bronchial tree. However, most
tumors are only accessible through bronchi with diameters
of less than 2 mm. Therefore, we require accurate imaging
without motion blur, otherwise the small bronchi are not
visible. Respiratory motion can be reduced with a jet ven-
tilator that inflates the lung with oxygen. There are two
downsides to this approach. The efficiency of this approach
depends on the amount of pressure that is used. While too
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small pressure results in residual motion, too high pres-
sure may cause rupture and pneumothorax in consequence.
Additionally, natural reflexes of the human body may also
cause residual motion. Therefore, it is necessary to develop
new methods to estimate and compensate respiratory motion
in C-arm CT. There are many different ways to acquire
respiratory signals. Most are based on additional equipment,
for example, Time-of-Flight or stereo vision cameras [5].
Other techniques try to extract the respiratory signal directly
from the projection images. Using an image-based approach
the extracted respiration signal is perfectly synchronized
with the projection images. Image-based respiratory motion
extraction often relies on tracking of fiducial markers in the
projection images [6, 7]. Wang et al. have shown that the
motion of the diaphragm is highly correlated to respiration-
induced motion of the heart [8]. Sonke et al. propose to
extract a 1D respiration signal by projecting diaphragm-
like features on the superior-inferior axis and selecting the
features with the highest temporal change [9]. However, the
downside of this approach is that the extracted signal is not
the real respiration signal. Due to perspective projection,
the projected amplitude depends on the C-arm rotation
angle. Kavanagh et al. recently proposed a similar approach
analyzing the intensity values between projections that works
without any external or internal oscillating structures [10].
Another recent approach by Chen and Siochi tracks the
diaphragm using a combination of Hough Transform and
Active Contours and an interpolated ray-tracing algorithm to
estimate a respiration signal [11]. Vergalasova et al. proposed
a Fourier Transform based approach that also works without
any markers [12].

In this paper, we propose to estimate respiratory motion
by tracking the diaphragm in the projection image sequence.
The tracked position of the diaphragm top is used to compute
a 1D respiration signal, which is then incorporated into
the reconstruction algorithm to compensate for respiratory
motion in the volume of interest.

2. Materials and Methods

The proposed method is composed of three major steps that
are each discussed in the following sections. In the first
step, the contour of the diaphragm is tracked throughout
the entire projection image sequence. Based on this tracking,
we are able to obtain the 2D projection of the diaphragm
top for each image. In the second step, a motion corrected
triangulation approach is used to compute the 3D position of
the diaphragm top for each projection. Assuming superior-
inferior respiratory motion, the 1D respiration signal is
extracted. In the final step, the respiration signal is used to
compensate for respiratory motion during reconstruction.

2.1. Diaphragm Tracking. We introduced a model-based
tracking method that is able to accurately track the contour
of a user-selected hemidiaphragm in a set of rotational
projection images [13]. Compared to other tracking-based
methods, for example, fiducial markers, the shape we want
to track is not unique. The diaphragm appears as two similar
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shaped hemidiaphragms. Therefore, it is necessary for the
user to select the one to be tracked. The user selects a
point roughly located at the top of the desired contour.
Subsequently, we define a rectangular Region of Interest
(ROI) symmetrically around the selection. We propose an
ROI of size 250x55 for projection images of size 640x480. The
image is then preprocessed using a gaussian low-pass filter
and the Canny edge detector.

In the next step, the Random Sample Consensus
(RANSAC) [14] is used to fit a parabolic curve to the obtained
set of edge points. RANSAC can deal with datasets with large
percentages of gross errors and is thus the ideal choice to
fit a model to our very noisy set of points. The aim of this
method is to model the diaphragm as a quadratic function
v = au® + bu + ¢, where u and v are the detector coordinates.
The parabolic model is a good fit for the top of the diaphragm,
in which we are interested in. The asymmetry in lower parts
of the diaphragm does not affect our model, as our ROI limits
the estimation to the top region. The parabolic model allows
for very fast model estimation, as well as a simple extraction
of the diaphragm vertex. RANSAC has to estimate the three
parameters a, b, and c. In the first step, three random points
are selected. The model estimation is then formulated as the
following optimization problem:

3
Z(u-uf+b-ui+c—vi)2—>min. )
i=1

A total of N models are estimated, each based on different
randomly selected points, and evaluated to determine the best
one. A model’s quality is defined by the number of inliers.
An inlier is a point that lies within a predefined distance
to the model. Since an accurate model is desired, we only
consider points with a one pixel distance to the model inliers.
Subsequently, out of the N estimated models we choose
the one with the highest number of inliers. Assuming small
motion between subsequent frames, the contour is tracked
by calculating the current contour’s vertex and using it as the
start point in the subsequent frame.

One additional important optimization is made. Instead
of continuing to use the rectangular ROI, we restrict it to
a parabolic ROI based on the model from the previous
frame. The parabolic region should be of sufficient height
to contain the current diaphragm. In our experiments we
used a parabolic region of 21 pixels height, centered around
the previous model. This approach decreases the number
of points we have to consider in the model estimation
drastically.

To guarantee accurate tracking in projections where
both hemidiaphragms are visible in the ROI, we propose
additional constraints based on the small motion assumption
and prior knowledge: (i) the horizontal motion of the contour
is limited by the average motion in previous frames, (ii)
deformation of the contour (defined by the change of model
parameter a) is limited to 5% compared to the previous
model, and (iii) the direction of horizontal motion can be
derived from patient position and C-arm rotation. Suppose
acquisition starts from the right lateral view. Rotating towards
the frontal view, the contour of the right hemidiaphragm
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(1) foreach projectionsi € [l,Np] do
(2)  foreach voxel (x, y,z) do

3) Project voxel (x, y, z) onto detector plane
(4) if point on detector plane then

(5) Get update value

(6) else

(7) Next voxel

(8) end if

O Zpp—2tF

(10) if (x, y,Z.y,) in volume then

(11) Update voxel (x, ¥, Z.y,)

(12) end if

(13) end for
(14) end for

ALGORITHM 1: Motion compensated reconstruction. Respiratory
motion is compensated in lines (9)-(11).

will move to the left, whereas the contour of the left hemidi-
aphragm moves to the right. From the frontal position to
the left lateral position this motion is reversed. We can now
enforce the model to move in one direction until the turning
point and then move in the opposite direction. However,
since the diaphragm is deforming during respiration, it is
better to loosen this constraint, by allowing free motion
around the turning point. Allowing free motion in the frontal
views is not problematic as the hemidiaphragms do not
overlap or interfere in these views.

2.2. Triangulation and Signal Extraction. The result of the
diaphragm tracking is a parabolic model of the hemidi-
aphragm for each image. Our approach relies on the assump-
tion that the projection of the 3D diaphragm top coincides
with the top of the 2D diaphragm contour. However, this
assumption is quite restrictive. Based on this assumption,
we are able to reconstruct the 3D position using multiview
triangulation. We use triangulation to acquire a motion signal
in millimeter that we can use for motion compensated recon-
struction. However, triangulation algorithms are designed
for static scenes and yield inaccurate results when used for
dynamic scenes. For triangulation of dynamic scenes we
propose the following four step process:

(1) select a pair of images,
(2) rectification of the image planes [15],
(3) motion correction,

(4) triangulation [16].

First, we select two images with the contour vertices § =
(G, G,,1)" and g = @g..3., 1)T. Ideally, the selected
images should be acquired from orthogonal views, as using
nonorthogonal images results in lower triangulation accu-
racy. The second step is essential for the subsequent motion
correction. The rectification algorithm by Fusiello et al.
projects the two projection images onto a common image
plane, so that their epipolar lines become parallel and hori-
zontal [15]. Subsequently, the transformed images have one
very important feature: assuming no motion, the projections

of a specific point have the same vertical coordinate in both
image planes. Thus, after transforming the detected point
correspondences, any residual difference in their vertical
coordinates must be caused by respiratory motion during
image acquisition. Therefore, we can eliminate the respiratory
motion of this image pair in the third step. We choose the first
point g as the reference and the corresponding point in the
second image is set to

g =(7,3.1) 2)
Finally, we use the transformed and motion corrected point
correspondences to triangulate the corresponding 3D point.
In this work a simple iterative Linear-Eigen approach, as
proposed by Hartley and Sturm [16], has yielded excellent
results.

After we triangulate a 3D point corresponding to each
image, we can now compute the respiration signal. Since
respiratory motion is generally considered as a mainly trans-
lational motion along the superior-inferior axis, we compute
the 1D respiration signal T as

?i = Zref ~ Zi> (3)
with z,.¢ as the z-coordinate of the reference point and z; as
the z-coordinate of the triangulated point corresponding to
a projection image i. Finally, the resulting signal is smoothed
using a gaussian low-pass filter.

2.3. Motion Compensated Reconstruction. The signal is now
included in the reconstruction process. Schifer et al. recently
introduced a motion compensated backprojection algorithm
for cone-beam CT [17]. As we only utilize a rigid 1D motion
vector field, we use a simplified version of their approach.
Algorithm 1 shows the motion compensated pixel-driven
reconstruction algorithm. For each projection, each voxel is
projected on the detector to get the update value. Instead
of regularly updating the volume, we first compensate for
respiratory motion by shifting the voxel back to its reference
position using the estimated signal. Then, we update the cor-
rected voxel. Therefore, we are able to obtain a reconstruction
at the reference time we selected for the respiration signal.
So far, the proposed method assumes a constant shift when
compensating the respiratory motion of the heart.

3. Results and Discussion

The proposed methods were evaluated on the simulated
XCAT software phantom [18, 19] and the artiCHEST phan-
tom (PROdesign GmbH, Germany), a porcine lung phantom
that allows simulation of respiratory motion. Note that a
fraction of the experimental results were already published
in two short conference abstracts [13, 20].

3.1. XCAT Software Phantom. The first evaluation of this
work was carried out on the XCAT software phantom [18,19].
The purpose of this evaluation is to compensate respiratory
motion of the heart. The XCAT phantom was created with
respiratory motion only. We simulated an acquisition time of
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(b) 70°

(c) 140°

(d) 200°

FIGURE 1: Diaphragm tracking on simulated XCAT data. Images (a)-(d) show projection images acquired from different angles.
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FIGURE 2: Comparison of the extracted diaphragm motion signal
and the actual respiration signal of the simulated XCAT phantom.
The amplitude of the signal cannot be estimated accurately, as the
projections of the diaphragm top do not coincide with the 2D
contour.

four seconds with one full respiration cycle. The simulated
motion model was rigid; both heart and diaphragm moved
about 2.3 cm along the superior-inferior axis; the rest of
the scene was static. A detector of size 640 x 480 px was
simulated with a resolution of 0.616 mm/px. 200 projections
were acquired with an average angular increment of 1.0°. As
ground truth, we used the reconstruction of an XCAT dataset
that was simulated without respiratory motion.

The diaphragm tracking method was evaluated on the left
and right hemidiaphragms in XCAT projection data [13]. We
were able to track the vertex of the diaphragm contour with
sub-pixel accuracy. We observed a Euclidean distance of the
right vertex to the correct vertex of 0.45 + 0.56 pixels and
0.75+ 0.84 pixels for the left vertex, respectively [13]. Figure 1
shows the estimated parabolic model of the diaphragm from
four different views of the XCAT phantom.

Figure 2 shows the extracted signal based on triangulation
of the diaphragm tracking results. As previously noted, our
approach depends on the assumption that the projection of
the diaphragm top lies on the 2D contour. However, this is

TaBLE 1: Triangulation errors (in mm) based on projections of the
real diaphragm top. Angular offset of the triangulated image pair in
brackets.

Mean 3D Std. Dev.3D Mean Z Std. Dev. Z

Rect. Iter. (90%) 0.20 0.06 0.10 0.06
Rect. Iter. (30%) 0.32 0.15 0.10 0.06
Rect. Iter. (10°) 0.89 0.60 0.11 0.08
Iterative (90°) 2.22 0.97 2.22 0.96

a strong assumption that is not always fulfilled. In fact, the
correct projection of the diaphragm top is often located below
the contour, due to perspective projection. This results in
inaccuracies in the estimated amplitude of the signal, caused
by triangulation with false point correspondences. As shown
earlier, we have a deterministic error in the reconstruction
of the height of the diaphragm top caused by the perspective
projection in the cone-beam data. However, this is only a
limitation of the current triangulation approach and not a
limitation of the method in general. Thus, we expect to get
results that are similar to the correct correspondence case
once we have solved this problem. In order to assess the
accuracy of the triangulation approaches without the effect
of false point correspondences, we tested the methods using
the projections of the diaphragm top of the same XCAT
simulation with respiratory motion as input for the rectified
triangulation algorithm. Therefore, we can test the perfor-
mance of our algorithm assuming a correct tracking. We
triangulated the 3D position of the diaphragm top for each
projection image using a second image with a certain angular
offset (10°-90°). The triangulated 3D point was compared
to the actual 3D position of the diaphragm top at the time
the projection was acquired. As results in Table 1 show, our
rectified iterative approach provides submillimeter accuracy
even for image pairs with low angular offset, whereas the
average error of the standard triangulation approach without
rectification and motion correction is about 10% of the total
respiratory motion. These results indicate that we are able to
reconstruct an accurate respiration signal, given the correct
positions of the diaphragm top in the 2D projection images.
Our methods were tested on an Intel Xeon X5450 CPU. Even
though it is not yet optimized and only implemented in Java,
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FIGURE 3: Structural similarity index of the heart volume for xy- and xz-slices. The uncompensated reconstruction shows better results in
the beginning and the end, as the heart is only of small size in these slices.
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FIGURE 4: Comparison of xy-slice 70 of compensated and uncompensated volumes (cf. Figure 3(a)). Simulated high-contrast heart lesions
further illustrate the improved image quality. Line profiles were taken at the position of the red lines.
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(b) Compensation with tracked signal. SSIM: 0.84

(d) Ground truth

FIGURE 5: Comparison of xz-slice 60 of compensated and uncompensated volumes (cf. Figure 3(b)). Line profiles were taken at the position

of the red lines.

our proposed method is very efficient, yielding a computation
time of the diaphragm tracking combined with triangulation
of approximately 10 seconds, using 20000 RANSAC iterations
per frame. This corresponds to a runtime of approximately
50 ms per frame.

For the evaluation of reconstruction quality we used the
structural similarity index (SSIM) by Wang et al. [21]. SSIM
was designed to improve on other methods such as mean
squared error or peak signal-to-noise ratio. SSIM is a more
accurate measure in terms of the perception of the human eye.
SSIM measures the similarity of two images based on change
in structural information, while traditional approaches are
based on perceived errors. Two images are compared and
a value between —1.0 and 1.0 is returned, where a value of
1.0 can only be reached when comparing identical images.
In order to reduce the influence of the static background on
the quality evaluation, the reconstructed volume was cropped
to the bounding box that contains the heart. In total, we
evaluated the quality of three different reconstructions: (i)
a compensated reconstruction using the proposed tracking
methods, (ii) a compensated reconstruction with the cor-
rect 2D projections of the diaphragm top (simulating an
optimal diaphragm tracking), and (iii) an uncompensated

reconstruction. For motion compensation we directly used
the computed respiration signal, as the simulated motion
in the XCAT phantom is constant for any given voxel.
Figure 3 shows the evaluation results for xy- and xz-slices.
Both compensated reconstructions show highly improved
image quality. As expected, the diaphragm tracking approach
produces images slightly below the quality of the optimal
reconstruction. However, it shows considerable improvement
when compared to the uncompensated reconstruction. The
uncompensated reconstruction seems to be superior in the
first and last slices. The heart is only of small size in these
slices. Therefore, the static background has a larger influence
on the evaluation. Compensation blurs the static background
which leads to a reduced SSIM, whereas it is perfectly
reconstructed without motion compensation. Figures 4 and 5
show the results for two example slices. The red lines indicate
the positions of the line profiles that are presented in Figures
6and7.

3.2. artiCHEST Lung Phantom. The second part of our
evaluation will be focused on a pulmonary application. For
this purpose we used the artiCHEST phantom (PROdesign
GmbH, Germany). This phantom consists of a box with
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FIGURE 6: Line profiles of xy-slice 70 of compensated and uncompensated volumes (cf. Figure 3(a)). Line profiles were taken at the position

of the red lines in Figure 4.

an artificial diaphragm. Inside the box a porcine lung is
mounted that can be inflated and deflated by a computer
controlled pump. In this manner, we can simulate previously
configured respiration pattern. In our experiments, we set
the respiration pattern to be sinusoidal with a maximum
amplitude of about 1 cm. The borders of the box are filled
with water. Figure 8 shows the test setup. Since the phantom
consists only of one centric diaphragm, we had to simplify
the diaphragm tracking approach. We only used the standard
approach, without any additional motion constraints since
the diaphragm remains relatively static in the center of the
projections. While previously in the XCAT phantom only
a constant motion was simulated, the motion simulated
in this lung phantom is closer to reality. The motion is
approximately linear; less motion is observed at the top of
the lungs compared to the region close to the diaphragm. As
no ground truth data was available to evaluate the tracking
performance, tracking quality could only be inspected visu-
ally. Tracking performance appeared as robust as in the case
of the simulated XCAT phantom. Figure 9 shows a cutout of
an exemplary frame with the tracked parabola.

In the previous XCAT phantom test, the correlation
of diaphragm and heart motion was already known. As
previously noted, the relation of diaphragm and lung motion
is typically linear. In order to approximate the linear scaling
factor of our test lung, we acquired 11 static C-arm CT scans
uniformly distributed along the simulated respiratory curve.
Subsequently, we manually measured the position of the
diaphragm top in each of these volumes to determine an
optimal scaling for the z-coordinate correction; that is, we
assume correct results in the triangulation in the following.

In order to approximate respiratory motion of the lung,
we tested a simple linear motion model. While this model
is obviously very simple, it already provides visible improve-
ment to image quality. For clinical cases a simple model
like this might only work in case of abdominal breathing.
Compensation of thoracic breathing motion without prior
knowledge is still an unsolved field of research. In this model,
we estimated the slope of the linear function as

T

m= ————
(Zmax - Zdia) ,

(4)

where r; is the scaled diaphragm motion, zy, is the z-
coordinate of the diaphragm top in the current projection we
are backprojecting, and z, is the z-coordinate of a manually
chosen point at which we assume the motion to be zero. In
our case we used the topmost point of the lung.

Figure 10 shows a slice of a static reconstruction of the
lung phantom without any motion present. In the lower part
of the image the porcine heart is located. The heart has to
be included in the phantom, as it provides stability. Unfor-
tunately, this also means that the heart and its surrounding
vessels and airways remain very static, due to the heart’s mass
and its location at the phantom border. The bright circular
object in the center is a plastic tube that was included to
simulate the spine and the metal artifacts to the left of the
tube are caused by a pair of scissors that was included to
mimic interventional constraints. Therefore, a meaningful
evaluation can only be done in the center of the slice, which
is depicted by the red bounding box in the image.
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FIGURE 7: Line profiles of xz-slice 60 of compensated and uncompensated volumes (cf. Figure 3(b)). Line profiles were taken at the position

of the red lines in Figure 5.

FIGURE 8: Illustration of the artiCHEST lung phantom. The box
contains a porcine lung mounted on an artificial diaphragm and is
filled with water.

v

FIGURE 9: Zoomed in view of the diaphragm and the tracked
function in a projection image.

The motion model was tested on two 20s C-arm CT
scans. During the first scan approximately two full respi-
ration cycles were simulated with a reduced amplitude of
the simulated respiratory motion of 50%. For the second
scan, the amplitude of the simulated respiratory motion was
increased to 100%. Figure 11 depicts the red region of interest

that was introduced in Figure 10 for this first case. For
comparison, an uncompensated reconstruction and a static
reconstruction of the phantom are shown. The compensated
reconstruction shows improved image quality compared to
the uncompensated reconstruction. The airways are severely
distorted in the uncompensated volume, while after motion
compensation the contours of the airways are clearly visible
and at the correct positions. Figure 12 shows the same slice for
the second case with the full respiratory amplitude. While in
the uncompensated image the airways are not visible at all, the
compensation is able to restore the image partly. Compared to
the static reconstruction, image quality is slightly degraded;
however, this is still a notable improvement compared to the
uncompensated reconstruction.

4. Conclusions

We have shown for two exemplary applications that our res-
piratory motion compensated reconstruction already shows
promising image quality improvement with the current
simple motion model assumptions. As shown in the simu-
lated phantom data, the diaphragm tracking is already able
to improve image quality considerably from an SSIM of
about 0.7 to an SSIM of 0.85. Compensation with an ideal
triangulation result could improve image quality further to
0.9. Thus, future work must focus on the improvement of
the diaphragm triangulation. At present, we only use the
topmost point of the tracked contour to reconstruct the
diaphragm top. However, as the topmost vertex point is
not necessarily projected onto the diaphragm contour in
the projection, the triangulation with the topmost point of
the tracked contour may be erroneous. We expect improved
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FIGURE 10: A slice of a static reconstruction of the artiCHEST
phantom. At the bottom there is a porcine heart; the white circle
is a plastic tube representing the spine. The red bounding box shows
the region of interest for further evaluation.

(a) No compensation

(b) Compensation

(c) Ground truth

FIGURE 11: Detailed view of compensated and not compensated
slices of a 20s scan with 2 respiration cycles of only 50% respiratory
amplitude.

reconstruction results if not only the topmost point but the
complete diaphragm surface is reconstructed. In this manner,
perspective projection problems are modelled correctly and
more accurate results will be obtained.

Another major issue of our current approach is the linear
motion model. It yielded already an improved reconstruction.
However, compared to ground truth data, image quality was
still reduced. With this respect, we regard our approach as
an initial guess that can be computed in a straight forward
manner, as we only require the diaphragm to be tracked in
the projection data. Application of the motion correction is
straightforward and yields an improved reconstruction. In
this respect, our method is comparable to ECG-gating in
motion compensation of the heart. The method works rather
well, if the model assumptions are met (in ECG gating, this

(a) No compensation

(b) Compensation

(¢) Ground truth

FIGURE 12: Detailed view of compensated and not compensated
slices of a 20s scan with 2 full respiration cycles.

is a regular heart beat). As soon as the observed data violates
these assumptions, image quality is degraded. As shown by
various authors, this does not mean that ECG gating is not of
any clinical applicability, although most cardiac patients do
not have a regular heart beat. Instead, the method is applied
in many advanced cardiac motion compensation scenarios
as an initial guess that is then used in an additional method
to improve image quality further. Thus, we believe that our
method will be applicable as well as an initial estimate for such
advanced methods in respiratory motion compensation.

In addition, our method is not limited to only cardiac or
pulmonary C-arm CT. The approach can also be applied in
other applications where respiratory motion is present, for
example, liver C-arm CT, as long as the diaphragm is visible
and a sufficient motion model can be given.
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