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ABSTRACT

Artificial neural networks (ANNs) are powerful compu-
tational tools that are designed to replicate the human
brain and adopted to solve a variety of problems in
many different fields. Fault tolerance (FT), an important
property of ANNs, ensures their reliability when signifi-
cant portions of a network are lost. In this paper, a fault/
noise injection-based (FIB) genetic algorithm (GA) is
proposed to construct fault-tolerant ANNs. The FT per-
formance of an FIB-GA was compared with that of a
common genetic algorithm, the back-propagation algo-
rithm, and the modification of weights algorithm. The
FIB-GA showed a slower fitting speed when solving the
exclusive OR (XOR) problem and the overlapping clas-
sification problem, but it significantly reduced the errors
in cases of single or multiple faults in ANN weights or
nodes. Further analysis revealed that the fit weights
showed no correlation with the fitting errors in the ANNs
constructed with the FIB-GA, suggesting a relatively
even distribution of the various fitting parameters. In
contrast, the output weights in the training of ANNs
implemented with the use the other three algorithms
demonstrated a positive correlation with the errors. Our
findings therefore indicate that a combination of the
fault/noise injection-based method and a GA is capable

of introducing FT to ANNs and imply that the distributed
ANNs demonstrate superior FT performance.
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genetic algorithm

INTRODUCTION

The brain is composed of biological neural networks (BNNs)
that contain billions of interconnecting neurons with the
ability to perform computations. Artificial neural networks
(ANNs), mathematical models that mimic BNNs, are typically
built as structured node groups with activation functions and
connection weights that are adjusted based on the applied
learning rules (Hampson, 1991, 1994; Basheer and Hajm-
eer, 2000; Krogh, 2008). Because of their powerful compu-
tational and learning abilities, ANNs are being used
increasingly in various fields, including computation, engi-
neering, machine learning, clinical medicine, and cognitive
science (Presnell and Cohen, 1993; Baxt, 1995; Dybowski
and Gant, 1995; Forsstrom and Dalton, 1995; Kamimura
et al., 1996; Almeida, 2002; Lisboa, 2002; Rajan and Tolley,
2005; Lisboa and Taktak, 2006; Patel and Goyal, 2007; Hu
et al., 2013; Street et al., 2013; Azimi et al., 2015).

Fault tolerance (FT), an important feature of BNNs,
ensures the fidelity and reality of a system’s input-output
relationship. The FT of BNNs is thought to rely on extensive
parallel interconnections, distributed information storage and
processing, and self-learning and self-organizing character-
istics. For instance, Alzheimer’s patients lose a significant
number of neurons (sometimes equaling half the normal
brain mass) but still maintain certain brain functions (Fayed
et al., 2012; Li et al., 2012; Weiner et al., 2015; Pini et al.,
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2016). Moreover, structural measurements of various areas
of the brain have revealed that brain volume has no direct
correlation with cognitive decline in patients (Braskie and
Thompson, 2014). Fault tolerance is also an important con-
sideration in the construction of ANNs, especially in highly
variable or “fail-safe” systems (Protzel et al., 1993; Phatak
and Koren, 1995b). A fault-tolerant ANN is a special ANN
system designed to work normally, or at least to a certain
degree of normalcy, even if some of its components are
unexpectedly damaged. Recently, FT performance has
become more important, partly due to the fact that the soft
errors caused by transient faults are an unavoidable concern
in very large-scale integration (VLSI) technology, whose
dimension is approaching the nanoscale (Mahdiani et al.,
2012).

To construct a fault-tolerant ANN, neurons (nodes) are
replicated in the hidden layer (Emmerson and Damper,
1993; Medler and Dawson, 1994; Phatak and Koren, 1995a;
Tchernev et al., 2005). In this way, FT is introduced to the
ANNs at the expense of increased complexity. For instance,
ANNs with thousands of artificial neurons and up to a million
interconnections in the hidden layer are required to solve
complex problems, such as mapping landslide susceptibility
(Arnone et al., 2014), modeling pectus excavatum corrective
prostheses (Rodrigues et al., 2014), and reconstructing
traffic networks (Jiang et al., 2014). However, this increase in
network complexity makes the hardware implementation of
ANNs relatively difficult and inefficient. Other methods that
have been proposed to build fault-tolerant ANNs include an
adjustment of the distributing weight values (Cavalieri and
Mirabella, 1999a) using an empirical equation to deduce the
mean prediction error (Sum and Leung, 2008) and adopting
two objective functions (i.e., one that deals with open-weight
fault and another that deals with open node fault (Mak et al.,
2011)) during the training process to improve network FT.
However, to our knowledge, no studies have investigated in
detail whether a genetic algorithm might enhance the FT of
ANNs.

A genetic algorithm (GA) is a heuristic algorithm used to
search for a non-random optimal solution to a problem by
mimicking the evolutionary process of natural selection
(Holland, 1975; Goldberg, 1989). The GA process is iterative
and includes initialization, selection, and genetic operation.
The genetic operation usually consists of inheritance,
mutation, and crossover. In each iteration, which is also
called a generation, a fitness function is used to evaluate the
fitness of individuals to find the best solution. Thus, a GA
requires only a solvable function, which makes it suitable for
complex and non-linear problems. Genetic algorithms have
been applied to solve a variety of problems, especially when
the basic functions are not discontinuous or non-differen-
tiable (Forrest, 1993; Maddox, 1995; Willett, 1995; Pedersen
and Moult, 1996; Meurice et al., 1998; Weber, 1998; Liu and
Wang, 2001; Rothlauf et al., 2002; Jamshidi, 2003; Leardi,
2007; Wu, 2007; Gerlee et al., 2011; Manning et al., 2013;
Pena-Malavera et al., 2014).

Thus, this study proposes an approach that combines an
FIB learning algorithm with a GA to build fault-tolerant ANNs
and to demonstrate this method’s superior FT performance
in comparison with that of a general GA (GE-GA) and two
classic existing algorithms, the back-propagation (BP) algo-
rithm and the modification of weight (MW) methods, in
solving an exclusive OR (XOR) problem or an overlapping
classification problem.

RESULTS

Training ANNs to solve an XOR problem with a GA

An XOR problem was used to train the ANN with either a
GE-GA or an FIB-GA. Figure 1A illustrates the architecture
of the ANN, and Fig. S1 illustrates the artificial neuron model.
Two classic algorithms were included in the comparisons:
the back-propagation (BP) and the modification of weights
(MW). The BP algorithm is a traditional learning method
based on a gradient descent, and the MW algorithm modifies
the weight during the learning phase if the absolute value of
the weight exceeds a certain threshold. For each experi-
ment, the training proceeded until the terminating condition
(i.e., error less than 0.001 or number of iterations reaching
1,000) was satisfied. Figure 1B illustrates changes in the
error (or minimum error in training with a GE-GA or FIB-GA)
in one iteration versus the number of iterations. Errors with
all four fitting methods declined with increasing iterations.
The BP and MW methods reached the terminating condition
much faster (BP: 3.0 ± 0.0, MW: 3.8 ± 0.8; GA:
610.6 ± 274.8; FT: 905.6 ± 148.4 iterations) compared with
the other two methods. Furthermore, the ErrorBP, ErrorMW

and ErrorGE --GA decayed approximately in an exponential
manner (τ = 5.6196 ± 0.8967, fitting function: f(x) = a � e-- τx,
4.1171 ± 0.6494, and 0.0186 ± 0.0050 iteration−1, respec-
tively); however, the ErrorFIB --GA decayed much more slowly
and in an irregular manner (Fig. 1B), suggesting low effi-
ciency in the parameter optimization process. As there are
four elements in the output vector (c = c1 c2 c3 c4½ �) and the
calculated error in one iteration comprises the average from
all four individual elements, we also examined, in each
training period, the error of each element that is given by

Error -- ci = c
calculated
i -- cactuali (i = 1 , 2 , 3 , 4) .

Figure 1C illustrates the fluctuations in the error of each
element during 20 independent trainings. The average fluc-
tuations during the training of ANNs with BP, MW, GE-GA,
and FIB-GA were BP: 0.0001 ± 0.0000, MW:
0.0001 ± 0.0000, GE-GA: 0.0007 ± 0.0009, and FIB-GA:
0.0024 ± 0.0025, respectively. Statistical analysis revealed
that the FIB-GA method showed the biggest fluctuation when
compared with the other three methods (Table S1). Taken
together, all four methods demonstrated the capability of
training the ANN successfully, although at different speeds.

Typically, in an FT ANN, the impact of each node is dis-
tributed as evenly as possible so as to avoid dominant
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nodes. Thus, we evaluated the correlation index between
different ANN parameters and the fitting errors. All 25
parameters were grouped into four categories: 12 weights
(weightij) and six biases (biasj) for neurons in the hidden

layer and six weights (weightjm) and one bias (biasm) for the

output neuron. Table 1 summarizes the correlation efficiency
and significance between each category of the parameters
and errors. The weights for the neurons in the hidden-layer
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Figure 1. The use of BP, MW, GE-GA, and FIB-GA in training ANNs to solve an XOR problem. (A) The topology of the artificial

neural networks. (B) The plot of the fitting errors versus the number of iterations. The inset shows the changes of the error within the

initial six iterations. (C) The summary graph comparing the error of each element in the output vectors between BP ANN, MW ANN,

GE-GA ANN, and FIB-GA ANN. (D) The plot of the weights for the output neuron versus the fitting errors in ANN training with the BP,

MW, GE-GA, and FIB-GA.

Table 1. Correlation between each category of parameters and average errors

ANN BP ANN MW ANN

Parameter wH
MA bHMA wO

MA bO wH
MA bHMA wO

MA bO

r −0.659 0.158 0.936 −0.152 0.051 0.018 0.857 0.064

p 0.002 0.507 0 0.521 0.831 0.940 0 0.788

ANN GE-GA ANN FIB-GA ANN

Parameter wH
MA bHMA wO

MA bO wH
MA bHMA wO

MA bO

r −0.789 −0.070 0.901 0.291 −0.260 0.524 0.339 −0.258

p 0 0.768 0 0.214 0.268 0.018 0.144 0.272
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ANN training using the BP and the GE-GA strongly corre-
lated negatively with the fitting error; however, those in the
other two ANNs did not. The bias for the output neuron has
no significant correlation with the fitting errors in all four
algorithms. All the output neuron weights in the ANN training
with the GE-GA, BP, and MW strongly correlated with the
errors (Fig. 1D); however, those in the FIB-GA ANN training
did not. These results showed that in the ANN training with
the FIB-GA, no parameter set correlated with the fitting error,
a finding that implies there is no dominant parameter in
ANNs trained via the use of an FIB-GA.

The FT performance of ANNs in solving an XOR
problem with a single fault

Fault tolerance is the property that allows an ANN or BNN to
operate properly in the event one or more components are
lost. We began by comparing the errors among the ANNs
generated by the BP, MW, GE-GA, and FIB-GA methods in
which one randomly selected network parameter was chan-
ged to 0 (void). The plot of the errors versus the faulty
parameters in 20 independent experiments clearly shows that
the ANNs constructed using the FIB-GA contains the least
number of errors (Fig. 2A). The averaged errors from
20 independent experiments are as follows: BP:
0.2623 ± 0.0614, MW: 0.2507 ± 0.0355, GE-GA:
0.2746 ± 0.0698, and FIB-GA: 0.1527 ± 0.0150 (statistical test
in Table S2). Assuming the error equals or exceeds 0.4 as a
fault output, the error rates show a similar trend (Fig. 2B): BP:
24.80 ± 9.68%, MW: 21.60 ± 7.94%, GE-GA: 23.80 ± 10.66%,
and FIB-GA: 8.60 ± 5.24% (statistical test in Table S2). Next,
the FT performances of the four ANNs were compared when
one neuron (rather than one parameter) in the hidden layer
completely lost its responsiveness. The performances of all
four ANNs were reduced when compared with the fully func-
tional ANNs, while the FIB-GA ANNs showed the fewest
errors (Fig. 2C): BP: 0.3900 ± 0.1041, MW: 0.3645 ± 0.0567,
GE-GA: 0.5167 ± 0.1413, and FIB-GA: 0.2936 ± 0.0410;
(statistical test in Table S3) and the lowest error rates, with a
0.4 threshold (Fig. 2D): BP: 45.00 ± 19.57%, MW:
40.83 ± 13.76%, GE-GA: 54.17 ± 20.86%, and FIB-GA:
27.50 ± 13.55% (statistical test in Table S3).

As the output matrix is composed of four elements in the
XOR problem, the errors of the individual elements were
compared. The distributions of Error -- ci among the four ANNs
were plotted while voiding one parameter or one neuron in the
hidden layer (Fig. S2). Among the four algorithms, ANN
training with the FIB-GA consistently showed the least num-
ber of errors (Fig. S2A): BP: 0.2623 ± 0.0614, MW:
0.2507 ± 0.0355, GE-GA: 0.2746 ± 0.0698, and FIB-GA:
0.1527 ± 0.0150 (statistical test in Table S4) and the lowest
error rate (Fig. S2B): BP: 25.40 ± 7.94%, MW: 25.90 ± 5.39%,
GE-GA: 25.75 ± 7.35%, and FIB-GA: 14.85 ± 3.30% (statis-
tical test in Table S4). When one neuron in the hidden layer
was voided randomly, the average error and the error rate with

the 0.4 threshold showed a similar trend (Fig. S2C): average
error: BP: 0.3900 ± 0.1041, MW: 0.3645 ± 0.0567, GE-GA:
0.5167 ± 0.1413, and FIB-GA: 0.2936 ± 0.0410 (statistical test
in Table S5). Figure S2D shows the error rate with a 0.4
threshold: BP: 43.75 ± 17.34%,MW: 42.50 ± 12.72%,GE-GA:
48.13 ± 16.36%, and FIB-GA: 31.25 ± 6.55% (statistical test in
Table S5). Together, these results clearly show that the FIB-
GA ANN has superior FTwhen one parameter or one neuron
in the network is lost.

The FT performance of ANNs in solving an XOR
problem with multiple faults

In both ANN and BNN, errors typically happen at multiple
sites but are not restricted to one element. Thus, the per-
formances of ANNs were compared to solve an XOR prob-
lem in which two to four parameters are disabled
simultaneously. As each ANN has 25 parameters, there are

300 (C2
25), 2,300 (C3

25), and 12,650 (C4
25) combinations when

two, three, and four parameters are all set to 0, respectively.
Figure 3A illustrates the distribution of error; the summarized
data clearly show that the FIB-GA-trained ANN still per-
formed best under multiple-fault conditions (Table 2; statis-
tical test in Tables S6–7). Next, we examined the errors
occurring when two to six neurons in the hidden layer are
voided. Under these circumstances, the ANN trained using
the GE-GA showed the largest number of errors, while the
ANN trained using the FIB-GA demonstrated the best per-
formance (Fig. 3B). The error rates with a 0.4 threshold
displayed the same order in the fitting performance (Fig. 3C).
Not surprisingly, the performance of the ANNs trained using
the FIB-GA was significantly better than the other three
ANNs; however, the performance of the FIB-GA-trained
ANNs weakened as the number of voided neurons
increased (Table 3 and Fig. S3; statistical test in Tables S8–
9). Since the performance of ANNs highly relies on the
number of nodes in the hidden layer(Xu and Xu, 2013;
Sasakawa et al., 2014). we next investigated whether the
number of hidden neurons could affect the FT performance
of the four ANNs in solving the XOR problem. In the ANNs
with three or nine neurons in the hidden layer, the FIB-GA-
trained ANN continued to demonstrate an FT performance
that was superior to that of the BP, MW, and GE-GA ANNs
(three neurons: Table 4; statistical test in Tables S10–11;
nine neurons: Table 5; statistical test in Tables S12–13).

Together, these results demonstrate that the FIB-GA ANN
has superior FT in solving XOR problems when multiple
parameters or neurons in the network are lost.

The FT performance of ANNs in solving an overlapping
classification problem

Next, we examined the FT performance of the four ANNs in
solving an overlapping classification problem (Fig. 4A) that is
more complicated than an XOR problem. Solving
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overlapping classification problems using ANNs has been
investigated extensively in the pattern recognition and
machine-learning areas (Lovell and Bradley, 1996; Tang
et al., 2010; Xiong et al., 2010). We adopted an ANN with the
same structures used in these previous studies (see
Fig. 1A). The terminating condition was set at 1,000 itera-
tions, since none of the four ANNs could satisfy the condition
that the fitting error must be equal to or less than 0.001 within
1,000 iterations, partly due to the complexity of the problem.
Figure 4B illustrates the changes in the correct rates versus
the number of iterations. The correct rates of BP and MW

ANNs increased significantly faster compared with those of
GE-GA and FIB-GA (fitting function: f(x) = a � e-- τx, square

class RCR: BP: 0.4662 ± 0.0006, τ = 0.2717, R2 = 0.9880,

MW: 0.4672 ± 0.0010, τ = 0.2529, R2 = 0.8855, GE-GA:

0.4605 ± 0.0166, τ = 0.0040, R2 = 0.9068, FIB-GA:

0.4578 ± 0.0083, τ = 0.0030, R2 = 0.8502, and circle class

RCR: BP: 0.4542 ± 0.0006, τ = 0.2210, R2 = 0.9230, MW:

0.4541 ± 0.0115, τ = 0.2581, R2 = 0.8996, GE-GA:

0.4547 ± 0.0115, τ = 0.0084, R2 = 0.9014, FIB-GA:

0.4605 ± 0.0074, τ = 0.0111, R2 = 0.7846 (statistical test in
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Table S14). The number of iterations that occurred when
RCR reached 0.45 are shown for each method as follows:
BP 23.2 ± 14.3, MW 15.8 ± 8.3, GE-GA 613.7 ± 341.8, and
FIB-GA 583.1 ± 287.7. We then examined the FT perfor-
mance of these four ANNs in solving an overlapping clas-
sification problem and found that the FIB-GA ANN showed
significantly fewer errors when one parameter or one neuron
was voided. When any of the parameters were voided one at
a time in 20 independent experiments, the square class
RCRs for FIB-GA ANN was the highest compared with the
other three ANNs, while the other three ANNs were not
significantly different (square class RCRs: BP:
0.3407 ± 0.0397, MW: 0.3536 ± 0.0317, GE-GA:
0.2863 ± 0.0501, and FIB-GA: 0.4116 ± 0.0247; circle class
RCRs: BP: 0.2978 ± 0.0600, MW: 0.3075 ± 0.0301, GE-GA:
0.2151 ± 0.0601, and FIB-GA: 0.4045 ± 0.0258 (statistical
test in Table S15) (Fig. 4C). When one neuron in the hidden
layer was voided randomly, FIB-GA ANN still significantly
outperformed the other three ANNs (square class RCRs: BP:
0.2392 ± 0.1049, MW: 0.2646 ± 0.0743, GE-GA:
0.1334 ± 0.1160, and FIB-GA: 0.4224 ± 0.0586; circle class
RCRs: BP: 0.2396 ± 0.1523, MW: 0.2574 ± 0.0911, GE-GA:
0.0073 ± 0.1242, and FIB-GA: 0.4164 ± 0.0640 (statistical
test in Table S16) (Fig. 4D). We next randomly voided two to
three parameters or neurons in these ANNs and compared
their FT performance. As illustrated in Figure 5, voiding two
to three parameters or neurons reduced the performance of
all four ANNs. The FIB-GA showed the fewest errors and
lowest error rates under almost all the fault conditions tested
(Tables S17–18). Thus, our data clearly demonstrate that,
compared to the ANNs trained using the BP, MW, and GE-
GA methods, the FTability of the ANN trained using the FIB-
GA, at a relatively low training speed, is superior.

DISCUSSION

This study compared the FT performances of ANNs con-
structed with four different algorithms: BP, MW, GE-GA, and
FIB-GA. The FIB-GA was constructed via the use of FIB
learning algorithms, which has been proven to be a common
and efficient method of training fault-tolerant neural networks
that includes the addition of noise to the input, weights, or
nodes (Leung and Sum, 2008; Ho et al., 2010). Our results
clearly show that the FIB learning algorithm is an efficient

Figure 3. The FT performance of ANNs in solving an XOR

problem with multiple faulty parameters or neurons in the

hidden layer. (A) The histogram of error occurrence in 20

independent experiments using ANNs trained via BP, MW, GE-

GA, and FIB-GA methods. (B and C) The plot of errors versus

faulty neurons (B) and a histogram of error occurrence (C) in 20

independent experiments using ANNs trained via BP, MW, GE-

GA, and FIB-GA methods.
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method for improving the FT performance of ANNs. The data
of this study show that FIB-GA results in a significant
improvement in errors between the actual and desired inputs
when one or multiple neurons are voided. It is worth noting
that, when solving an XOR problem or an overlapping
classification problem with the continuous and differentiable
basis function, the GE-GA does not offer an advantage over
the BP and MW algorithms. This might suggest that FT is not
an intrinsic property of GA ANNs. In contrast, compared to
the two GAs, the BP and MW algorithms showed much
faster training speeds, which implies that efficiency com-
petes with fault tolerance in ANNs. An option for increasing
the FT performances of ANNs is to avoid weights or neurons
with significant effects on errors. Our analysis showed that
the weights between the hidden layer and the output layer in
the ANNs trained with the GE-GA, BP, or MW, but not those
trained with the FIB-GA, are correlated with the output errors,
a finding which clearly supports the notion that robustness is
greater in a distributed ANN. This is also consistent with
previous attempts to improve the partial FT of ANNs by
distributing the absolute value of weights uniformly (Cavalieri
and Mirabella, 1999a, b). In addition, Macia and Sole
reported that degeneracy, rather than redundancy, is nec-
essary for reliable designs of NAND (NOT AND, a binary
operation) gate-forming systems(Macia and Sole, 2009).
Considering the fact that the BNNs are also distributed
systems yielding a high FT performance, distributed storage
and processing seem to be key properties in both ANNs and
BNNs. Together, our results propose that a fault/noise
injection-based genetic algorithm would serve as an efficient
approach for improving the FT in ANNs.

METHODS

The architecture of the ANN

In this study, a three-layerANNwasconstructed: an input layer
of two neurons, a hidden layer comprised of different numbers
of neurons, and an output layer of one neuron. Figure 1A
shows the architecture. Each neuron receives multiple
weighted inputs and sends one weighted output to the con-
nected neurons. Simply stated, neurons are interconnected
through a unidirectional manner (input → hidden → output
direction), and there is no connection within a layer (Fig. 1A).
The input of the neuron j in the hidden layer is given by

xj = ∑
n

i=1
(Inputij ×weightij) + bj

where Inputij, weightij, and bj denote the input, weight, and
input bias of the postsynaptic neuron j, which is connected to
the presynaptic neuron i, and n denotes the number of the
presynaptic neurons connecting to the neuron j.

The output of the neuron j is given by the following tansig
function:

yj = f(xj) =
1 -- e-- 2xj

1+ e-- 2xjTa
b
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Calculation of the ANN to solve the XOR problem

A classic XOR problem was selected for use in training and
examining the performance of the ANN. According to the
architecture of the ANN used in this study (Fig. 1A), the
training data, a1 and a2, are defined as follows:

a1 = 1 0 1 0½ �
a2 = 1 1 0 0½ �

Thus, the actual output of the XOR problem with these
two inputs is given by

y = y1 y2 y3 y4½ �=a1 � a2 = (:a1 ^ a2)
_ (a1 ^ :a2) = 0 1 1 0½ � .
For one solution set, the output of the ANN is given by

c = c1 c2 c3 c4½ �
where cp =∑

6
j=1(f(xj) ×weightjm) + bm and xj denote the input

to the neuron j in the hidden layer from the two presynaptic

neurons (a1 and a2), which is given by xj =∑2
i=1(ai(p) ×

weightij) + bj.and Weightjm and bm denote the weight and

bias of the neuron m in the output layer, respectively.
Thus, the error for one solution set is given by

Error =
1
4

∑
4

p=1
| cp -- yp |

Training of the ANN using a GE-GA

A GE-GA was adopted for training the ANN. The basic idea
of a GA is to mimic the process of natural selection and to
find the best solution to a problem after several generations.
In this study, the upper limit of iteration was set at 1,000, and
20 individuals (i.e., sets of solutions) were used in each
generation (i.e., training cycle). The best individual is defined
as the one set of solutions having minimum errors. In the first
generation, each individual was assigned randomly. In the
subsequent generations, the 20 individuals consisted of
three parts: two elite individuals (Nelite), which are the two
individuals carried forward from the previous generation and

BA
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having the fewest errors, 14 crossover individuals (Ncrossover),
which are generated by combining two selected parents, and
four mutation individuals (Nmutation). The selection criteria for
parents is based on the scaled position (Scaledi) of each
individual within its generation. Ranki is redefined as the
position of Individuali when sorting all the individuals in one
generation by Error in ascending order. Thus, for individual i,
the probability to be selected as a parent is calculated as
follows:

Pi =Scaledi

,
. ∑

20

j=1

1 ffiffi
j

p =Scaledi=7 . 5953

where Scaledi =1
�
.

ffiffiffiffiffiffiffiffiffiffiffiffi
Ranki

p
, (Ranki 6¼ Rankj ifsemicoloni 6¼ j).

A line segment was then drawn that consisted of lines
whose lengths were proportional to the Pi of each individual.
A step size was given by 1=Nparent, where Nparent =2 �
Ncrossover +Nmutation =2× 14+4=32 and an initial position is
denoted as Initialposition, where 0\Initialposition\1=Nparent. A
cursor is then placed at Initialposition and is moved along in
steps of 1=Nparent. For each step, the position on which the
cursor lands is selected as a parent. Thus, this algorithm
generates 32 parents in one generation (Fig. S4). The
crossover process generates a child by crossing two

parents (Parent1 = parP11 , � � � � � � , parP125½ � and Parent2 =
parP21 , � � � � � � , parP225½ �) with a randomly generated binary
vector Coef = Coe1 , � � � � � � , Coe25½ �, where Coei is assigned
to 0 or 1 based on rounding a value that is randomly selected
in the open interval (0,1). The parameter vector of the
Child = parC1 , � � � � � � , parC25½ � generated by the crossover is
given by

parCi =parP1i ×Coei +parP2i × |Coei -- 1 | .

The mutation process generates a child from one parent
(Parent1 = parP11 , � � � � � � , parP125½ �) with a vector
Coef = Coe1 , � � � � � � , Coe25½ �, where Coei follows a
Gaussian distribution centered at 0 (Fig. S4C). The
standard deviation of the Gaussian distribution in the first
generation is 1, and it shrinks to 0 linearly when reaching the
last generation. The parameter vector of the
Child = parC1 , � � � � � � , parC25½ � generated by the mutation is
given by

parCi =parP1i +Coei .

The goal of training the ANN with a GE-GA is to search for
the individual with the minimal ErrorGE --GAwhich is given by

ErrorGE --GA =
1
4

∑
4

p=1
| cp -- yp | ð1Þ

A B

Number of fauty parameters
1 2 3

C
irc

le
 R

C
R

S
qu

ar
e 

R
C

R

BP MW GE-GA FIB-GA

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

Number of fauty neurons
1 2 3

C
irc

le
 R

C
R

S
qu

ar
e 

R
C

R

Figure 5. Relative correct rates of different ANNs with six hidden-layer neurons in solving an overlapping classification

problem. (A) The plot of circle RCR (top) and square RCR (bottom) versus the number of faulty parameters. (B) The plot of circle

RCR (top) and square RCR (bottom) versus the number of faulty neurons.

The fault tolerance of FIB-based ANN RESEARCH ARTICLE

© The Author(s) 2016. This article is published with open access at Springerlink.com and journal.hep.com.cn 745

P
ro
te
in

&
C
e
ll



Training of ANN using with a FIB-GA

In addition to the GE-GA, a FIB-GA was another approach
used to train the ANN. In the FIB-GA, faults on the ANN
parameters were considered during the training process.
Thus, the error for one set of solutions is given by

ErrorFIB --GA =
1
25

× ∑
25

p=1
Errori ð2Þ

where Errori is the error when the ith of the 25 parameters is
forced to 0, assuming the corresponding parameter
becomes faulty.

Overlapping classification problem

Two classes of Gaussian noise sources were considered
(shown in Fig. 4A). The first class is shown as a blue
square, with a mean at (a1 , semicolona2) coordinates of
(0.25, 0.25). The second class is shown as a red circle,
with a mean at (a1 , semicolona2) coordinates of (0.75,
0.75). Both classes have a standard deviation of 0.2. The
coordinates (a1 , semicolona2) were used as input in the
ANN training, and the output is 0.5 and −0.5 for the circle
class and the square class, respectively. Each class had
500 scatters in total, and all the data were shuffled before
the training was initiated. An actual output value larger than
0 for a point in the circle class and an actual output value
less than 0 for a point in the square class were regarded
correct.

For each class with N (0�N� 500) points classified
correctly, the relative correct rate (RCR) is defined as
follows:

RCR=
N
500

-- 0 . 5 .
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