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1  |   INTRODUCTION

Bladder cancer is the sixth most common cancer in the United 
States. Although cure rates are high when malignancy is in situ, 

survival rates drop significantly if disease is locally invasive or has 
metastasized.1 Therefore, an urgent need exists to develop addi-
tional therapeutic options for advanced-stage bladder cancer and 
optimize the process of connecting patients to these treatments.
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Abstract
Background: In recent years, the fibroblast growth factor receptor (FGFR) path-
way has been proven to be an important therapeutic target in bladder cancer. FGFR-
targeted therapies are effective for patients with FGFR mutation, which can be 
discovered through genetic sequencing. However, genetic sequencing is not com-
monly performed at diagnosis, whereas a histologic assessment of the tumor is. We 
aim to computationally extract imaging biomarkers from existing tumor diagnostic 
slides in order to predict FGFR alterations in bladder cancer.
Methods: This study analyzed genomic profiles and H&E-stained tumor diagnostic 
slides of bladder cancer cases from The Cancer Genome Atlas (n = 418 cases). A 
convolutional neural network (CNN) identified tumor-infiltrating lymphocytes (TIL). 
The percentage of the tissue containing TIL (“TIL percentage”) was then used to pre-
dict FGFR activation status with a logistic regression model.
Results: This predictive model could proficiently identify patients with any type of 
FGFR gene aberration using the CNN-based TIL percentage (sensitivity = 0.89, spec-
ificity = 0.42, AUROC = 0.76). A similar model which focused on predicting patients 
with only FGFR2/FGFR3 mutation was also found to be highly sensitive, but also 
specific (sensitivity = 0.82, specificity = 0.85, AUROC = 0.86).
Conclusion: TIL percentage is a computationally derived image biomarker from rou-
tine tumor histology that can predict whether a tumor has FGFR mutations. CNNs 
and other digital pathology methods may complement genome sequencing and pro-
vide earlier screening options for candidates of targeted therapies.
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Fibroblast growth factor receptor (FGFR) genes reg-
ulate cell proliferation, survival, migration, and dif-
ferentiation.2 Furthermore, these genes are commonly 
mutated in bladder cancer, as abnormal activation of the 
FGFR pathway is implicated in bladder cancer tumori-
genesis and related to metastasis.3–5 For example, certain 
mutations, such as that of FGFR3, are found in approx-
imately 75% of low-grade papillary bladder urothelial 
carcinoma, while overexpression of the FGFR3 protein 
is associated with high-grade, aggressive disease.6,7 As 
some studies have discovered various FGFR mutations 
in up to 60% of all urothelial carcinoma and FGFR3 mu-
tations in 15% of metastatic urothelial carcinoma, new 
bladder cancer therapies have begun targeting patients 
with FGFR-specific mutations.8 Erdafitinib, an FDA-
approved, second-line drug, inhibits the FGFR pathway 
and has proven to be particularly potent for patients with 
high-grade bladder cancer. In contrast to current second-
line drug therapies, where patients typically face 5-year 
survival rates of 15%, Erdafitinib achieves significantly 
higher survival rates than its predecessors by being a 
potent tyrosine kinase inhibitor of FGFR 1–4.9  Thus, 
Erdafitinib and other FGFR targeting drugs would be ap-
pealing alternative therapeutic options for patients with 
FGFR mutations who do not respond to first-line treat-
ments. However, systems to rapidly and accurately iden-
tify these metastatic bladder cancer patients with FGFR 
mutations are lacking.

Currently, targeted genome sequencing is the primary 
method of determining an individual's tumor genetic profile. 
While access to sequencing is improving, it is not a univer-
sal practice for all cancer treatments due to financial restric-
tions and resource limitations. This lack of sequencing also 
affects clinical trial enrollment for targeted agents. It is dif-
ficult, inefficient, and expensive to sequence a large cohort 
of patients in order to determine which ones have qualify-
ing FGFR2/3 mutations and could be candidates for FGFR-
inhibiting drug therapies. As a result, widespread access to 
potentially beneficial drugs may be often delayed and trial 
enrollment time may be prolonged.

This study sought to overcome the aforementioned issue 
by addressing two major needs related to personalized ther-
apy and clinical trials. First, we sought to identify an easily 
accessible surrogate biomarker correlated with a patient's 
FGFR2/3 mutational status. Second, we aimed to develop a 
high-throughput method, which utilizes the surrogate marker, 
to rapidly screen for patients that may be eligible for targeted 
medications.

Tumor-infiltrating lymphocytes (TIL) have been shown to 
be an important component within a tumor microenvironment 
and are commonly visible in tumor pathology slides.10 The 
presence of TIL is positively correlated to overall survival in 
bladder cancer and inversely correlated to FGFR2/3-mutated 

genetic status.11 Therefore, low TIL presence in a patient's 
tumor microenvironment may serve as a surrogate biomarker 
of FGFR2/3 genetic activation.

We hypothesized that by utilizing deep learning mod-
els, known as convolutional neural networks (CNN), we can 
computationally analyze pathology slides, determine the 
presence of TIL, map patient FGFR gene mutation status to 
the presence of TIL, and use CNN to rapidly and efficiently 
screen large populations of cancer patients for possible FGFR 
gene alteration, in order to find qualifying drug-recipient 
candidates.

2  |   METHODS

This study includes all bladder cancer cases of The 
Cancer Genome Atlas (TCGA), a publicly available data-
set, curated jointly by the National Cancer Institute and 
National Human Genome Research Institute. Since 2006, 
over 20,000 primary cancer and matched normal cases, 
composed of 33 cancer types, have been sequenced and 
recorded in the dataset. The dataset consists of genomic, 
epigenomic, transcriptomic, proteomic, and histological 
data.

2.1  |  Determining TIL percentage in bladder 
cancer cases with diagnostic whole slide images

Of 418 bladder cancer cases, 386 cases had accompanying 
digitized, H&E stained whole slide images (WSI) of diag-
nostic tumor biopsies. Of the cases with accompanying WSI, 
290 had gene mutation and RNA-seq data available to assess 
FGFR mutation status, gene fusion variants, and RNA ex-
pression status (Figure S1).

To quantify the amount of TIL in a WSI, we utilized a 
TIL percentage estimation CNN developed by Saltz et al.12 
In brief, the TIL percentage CNN was a semi-supervised 
CNN. The initial pre-training of the CNN was performed 
by an unsupervised convolutional autoencoder. The TIL 
percentage CNN was then built on top of the unsupervised 
convolutional autoencoder, and used pathologist TIL-
labeled images for training and optimization. Further infor-
mation on the CNN architecture and validation of the deep 
learning model can be found in Saltz et al.’s peer-reviewed 
manuscript.

Each WSI was divided into 50  ×  50  μm2  square tiles 
(“patches”), corresponding to 20× magnification and 104 
patches per image. Then, the CNN was trained to detect 
the presence of TIL in one image patch. For each slide, its 
“TIL percentage” was assigned by dividing the total num-
ber of patches with TIL present (determined by the CNN) 
by the total number of patches. TIL percentage values were 
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then computed for each bladder cancer patient. A Wilcoxon 
rank-sum statistic was utilized to statistically compare TIL 
percentage distributions between different subpopulations. A 
p-value of less than 0.05 was considered to be significant.

2.2  |  Comparison of TIL percentage 
estimation by CNN and direct 
pathological assessment

A direct pathological assessment of TIL is conducted. The 
same set of digital images were evaluated by a practicing 
pathologist for TIL, blinded to the CNN results and mo-
lecular correlation. TIL evaluation was scored on a 0 to 3+ 
semi-quantitative scale based on the quantity of infiltrated 
lymphocytes in the tumor area. While 0 indicates the ab-
sence of TIL, 1+ to 3+ were assigned when mild, moderate, 
or marked TIL were identified. Stability of the predictive 
capabilities of TIL percentage and pathologist scoring were 
analyzed via 5-fold cross-validation logistic regression 
model.

2.3  |  Determination of driver gene 
mutation and FGFR activation status

Three hundred twenty-four genes, which are routinely 
screened as part of tumor mutation gene panels, such as in 
the Foundation Medicine FoundationOne CDx genomic 
test, were included in the analysis.13 Gene mutation status 
of all 324 genes were acquired from TCGA Genome Data 
Commons Data Portal.14 Genes with lower than 10% muta-
tion prevalence in the analyzed bladder cancer subset were 
excluded from subsequent predictive model development to 
avoid scenarios of extreme class imbalance.

Furthermore, we included several types of FGFR ab-
errations in our analysis, such as FGFR fusion, overex-
pression, or amplification. To identify cases with FGFR 
fusions, we queried the Fusion Gene annotation DataBase 
for all bladder cancer cases with FGFR2 or FGFR3 fu-
sion. To identify cases with FGFR2/FGFR3 overex-
pression or amplification, we acquired normalized gene 
expression RNA-seq and copy number datasets of blad-
der cancer cases from the University of California, Santa 
Cruz (UCSC) Genome Browser.15 We refer to this collec-
tive of FGFR2/FGFR3  mutation, fusion, overexpression 
or amplification, as “FGFR activating mutation” in our 
manuscript. FGFR gene “overexpression” was defined as 
an FGFR RNA aberration, where significantly more RNA 
copies of the FGFR gene were found in a patient, in com-
parison to the control group. FGFR gene “amplification” 
refers to an increased number of copies of the gene found 
in a patient's genome.

2.4  |  Prediction of gene mutation status 
using TIL percentage

A univariate logistic regression model was developed 
to predict the presence of each gene mutation using TIL 
percentage as input. 80% (n = 232) of the cases were se-
lected randomly and utilized as a development set to train 
the machine learning predictor, while the remaining 20% 
(n = 58) were used as a test set to measure the model's per-
formance. The model was assessed using area under the 
ROC (AUROC).

3  |   RESULTS

3.1  |  Distribution of TIL percentage and 
prevalence of genetic alterations in bladder 
cancer subset

The demographic characteristics of this bladder cancer co-
hort are summarized in Table 1. Out of all the bladder cancer 
cases, 32% were found to have any kind of FGFR activating 
mutation, of which 24% was FGFR2 or FGFR3 gene over-
expression (>1 standard deviation across bladder cancer sub-
set), 19% was FGFR2 or FGFR3 driver mutation, 5% was 
FGFR2 or FGFR3 gene amplification, and 3% was FGFR2 
or FGFR3 fusion.

Utilizing CNN, we computed the overall median image-
based TIL percentage to be 5.34% (range: 0.02–44.68) in 
this bladder cancer population (Table 1). The distribution 
of image-based TIL percentage of FGFR activated and 
FGFR wild-type bladder cancer is shown in Figure  1; 
FGFR activated bladder cancer cases had more TIL com-
pared to their FGFR wild-type counterparts (p < 0.001). 
Representative H&E-stained images from an FGFR acti-
vated and FGFR wild-type bladder cancer case are pre-
sented in Figure 2.

3.2  |  Predictive performance of logistic 
regression models using TIL percentage

Within the cohort of 290 bladder cancer cases included in the 
analysis, 11 genes with mutation prevalence greater than 10% 
were included for predictive modeling (Table 2). A logistic 
regression model, using TIL percentage, predicted FGFR2/3 
driver mutation, fusion, gene overexpression, amplifica-
tion, as well as any type of FGFR activating mutation with 
AUC of 0.86, 0.97, 0.72, 0.74, and 0.76, respectively. The 
ROC curves for all these FGFR predictions are reported in 
Figure  3. As the goal of the study was to create a screen-
ing tool for genetic mutation, the high-sensitivity operating 
point for FGFR2/3 driver mutation was identified, with a 
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sensitivity of 0.82, specificity of 0.85, positive predictive 
value (PPV) of 0.56, and negative predictive value (NPV) of 
0.95. For any kind of FGFR activating mutation, the sensitiv-
ity, specificity, PPV, and NPV were determined to be 0.89, 
0.42, 0.43, and 0.9, respectively.

Predictive AUC values and ROC curves for all remaining 
genetic alterations are included in Table 2 and Figure S2, re-
spectively. Other than FGFR, TIL percentage was not predic-
tive of other genetic aberrations.

3.3  |  Pathologist assessment of TIL in 
comparison to TIL percentage as a predictor

TIL percentage and pathologist TIL scoring were reported 
for each image in Figure 4. On the overall test set, TIL per-
centage (AUC = 0.76) was a stronger predictor of FGFR 
activation than pathologist TIL scoring (AUC  =  0.71), 

which contrasted with the cross-validation models, where 
pathologist TIL scoring (AUC = 0.70 + 0.06) performed 
better than TIL percentage (AUC = 0.66 + 0.05) (Figures 5 
and 6).

T A B L E  1   Patient population characteristics

Population characteristics
Bladder cancer patients 
(n = 290)

Median TIL percentage (%) 5.34 (range: 0.02–44.68)

Age at pathological diagnosis (years) 68 (range: 34–90)

Gender

Male 220 (76%)

Female 70 (24%)

Race

Asian 41 (14%)

Black or African American 20 (7%)

Other 10 (3%)

White 219 (76%)

AJCC pathologic staging

Stage I 1 (1%)

Stage II 95 (33%)

Stage III 100 (34%)

Stage IV 94 (32%)

Histological grade

High grade 269 (93%)

Low grade 21 (7%)

Types of FGFR mutation

FGFR2/FGFR3 gene 
overexpression

70 (24%)

FGFR2/FGFR3 driver mutation 55 (19%)

FGFR2/FGFR3 gene amplification 15 (5%)

FGFR2/FGFR3 fusion 9 (3%)

Any kind of FGFR activating 
mutation

93 (32%)

Abbreviations: AJCC, American Joint Committee on Cancer; TCGA, The 
Cancer Genome Atlas; TIL, tumor-infiltrating lymphocytes.

F I G U R E  1   Distribution of TIL percentage stratified by FGFR 
activation status

F I G U R E  2   Representative histology images of bladder urothelial 
carcinomas: (A) A high-grade urothelial carcinoma with FGFR2 
overexpression by RNAseq shows tumor infiltrating the stroma with 
minimal TIL; (B) A similar high-grade urothelial carcinoma with no 
FGFR alteration shows stromal reaction, occasional TIL, and tumor-
associated lymphoid aggregates (arrow)

(A)

(B)
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4  |   DISCUSSION

In the era of precision medicine, targeted therapies for patients 
with specific molecular alterations have become the focus of 
drug development efforts and oncology clinical care. Across 
different tumor subtypes, as many as 26 genomic biomarkers 
have received FDA approval as companion diagnostics for 
targeted oncology therapy.16 Specifically in bladder cancer, 
these FDA-approved, companion diagnostic biomarkers are 
FGFR3  mutation and FGFR2/3 fusion. Despite the grow-
ing availability of beneficial, FGFR-inhibiting therapies, the 
widespread applicability of such treatments may be limited 
or delayed by current genomic screening practices. A 2018 
national survey revealed that only one in five oncologists re-
ported frequent usage of targeted panels at the time of initial 
cancer diagnosis, as, indeed, oncologists often resort to tar-
geted therapy only in later stages of disease.17

As such, the genomic profile of the majority of cancer 
patients at initial diagnosis remains unknown, barring them 
from inclusion in clinical trials and from receiving poten-
tially beneficial, targeted therapies in the early stages of 
disease. Given that genetic profiling is expensive and time-
intensive, it can be unrealistic to sequence large populations. 
Minimally invasive methods to screen cancer patients early 
have also been developed, such as those utilizing circulating 
tumor DNA (ctDNA). However, ctDNA methods are barred 
from extensive clinical use due to many of the same issues 
that preclude prevalent genetic profiling, namely cost and 
complexity.18 So, there is great utility in determining effi-
cient, widespread, and feasible early stratification methods 
to complement tumor genomic sequencing or other sources 
of minimally invasive screening. As a result, patients would 
not only be connected with potential life-saving therapies, but 
also a load of molecular and genetic assays ordered and uti-
lized could be lightened significantly. In this study, we seek 
to identify such bladder cancer patients through a low-cost 
and minimal-risk method using existing tumor diagnostic 
histology images.

We showed that a computationally derived imaging 
biomarker for TIL presence, TIL percentage, can predict 
FGFR2/3 mutation and, more broadly, FGFR activating mu-
tation in bladder cancer. Importantly, TIL percentage is cal-
culated directly from patient tumor slides taken at the time of 
initial diagnosis. In addition to the observed predictive value 
of TIL in our machine learning experiments, the inverse re-
lationship between TIL presence and FGFR activating mu-
tation is corroborated by multiple prior molecular studies, 
which found that the alteration of FGFR pathways is impli-
cated in suppression of lymphocyte infiltration in urothelial 
carcinoma.19,20 Furthermore, TIL percentage was not a good 
predictor of non-FGFR mutations, suggesting that either TIL 
or the histopathological-determined TIL percentage value 
are sub-optimal surrogate markers for genetic alterations in 
RAF1, E2F3, etc. (Figure S2). In cases of urothelial cancer, 
causal relationships between TIL and most of these genes 
remain sparse in the current literature, however, one study 
found that RAF1 fusions were associated with low TIL pres-
ence in melanoma cases.21

We found that a TIL percentage-based logistic regression 
prediction model had excellent performance for the detection 
of FGFR driver mutations, with an AUC of 0.86 and a well-
balanced operating point with a sensitivity of 0.82 and spec-
ificity of 0.85. The performance for FGFR driver mutation 
detection was also particularly encouraging: TIL percentage 
could be utilized to screen for rare, FGFR activated cases 
in large patient populations, where genetically sequencing 
all cases would not be efficient nor practical. We propose 
a workflow in Figure  7 that would incorporate our model 
along with confirmatory sequencing to rapidly connect such 
patients with targeted therapy. This methodology requires 

T A B L E  2   Prediction performance for mutated genes with a 
prevalence of more than 10%

Gene mutation
Logistic 
regression AUC

Positive cases 
(n = 290)

FGFR3 0.85 53 (18%)

TP53 0.72 139 (48%)

RB1 0.57 75 (26%)

PIK3CA 0.55 60 (21%)

CREBBP 0.48 38 (13%)

CDKN2A 0.46 112 (39%)

CCND1 0.44 36 (12%)

CDKN2B 0.37 95 (33%)

RAF1 0.36 32 (11%)

E2F3 0.30 49 (17%)

ERBB2 0.21 37 (13%)

FGFR2/FGFR3 mutation 0.74 55 (19%)

Abbreviation: AUC, area under the curve.

F I G U R E  3   Model performance for the prediction of various types 
of FGFR activating mutation using TIL percentage
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digitized, H&E stained WSI of diagnostic tumor biopsies fol-
lowed by neural network techniques, which are complex, and 
often not intuitive to individuals unfamiliar with this technol-
ogy. However, the digitization of pathology slides has been 
rapidly adopted as common practice in many medical centers 
and we believe that the implementation of such a workflow is 
feasible in the near future. Designed in a user-friendly man-
ner, platforms utilizing powerful CNN’s could be applied by 
physicians or clinical trial coordinators to parse through large 
populations of potential drug therapy candidates.

For example, our high negative predictive value for 
FGFR2/3  mutation, as well as any kind of FGFR muta-
tion, could be useful in the clinical setting. It may allow 
clinicians to efficiently and successfully parse out patients 
whose tumor likely does not bear FGFR aberrant muta-
tions, without the need to perform expensive tumor ge-
nomic testing for each patient. This is particularly valuable 
in resource-limited practices to avoid low-yield molecular 
testing. Though our method can help identify a concen-
trated patient population, enriched in FGFR alterations, 
this morphology-based alternative platform can never com-
pletely replace tumor genomic testing. Our method could 
be implemented to stratify patients for FGFR inhibitor el-
igibility, yet, the ultimate identification of which patients 
will receive FGFR inhibitor treatment necessitates the use 
of genetic testing. We additionally analyzed precision-
recall curves of our various mutations and observed similar 

results, suggesting that, indeed, our platform could be 
utilized in categorizing patients into FGFR-activated and 
FGFR non-activated groups.

The difference in the presence of TIL between patients 
with FGFR wild-type and FGFR-mutated bladder cancer can 
be subtle, as shown in Figure 1. It would be extremely chal-
lenging for pathologists to consistently identify minute differ-
ences in TIL percentage through mere observation. However, 
digital image analysis with CNN provides a consistent and 

F I G U R E  4   Direct pathologist scoring 
and TIL percentage for each TCGA bladder 
cancer image

F I G U R E  5   Model performance for the prediction of FGFR 
activating mutation using direct pathologist scoring on the overall test 
set
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rapid manner to quantitatively estimate the TIL percentage 
on any given pathology specimen, making CNN a reliable, 
useful, and complementary tool for pathologists to use when 
identifying bladder cancer patients with FGFR activating 
mutation. Additionally, CNN could provide insight on patient 

tumor genetic profiles, as TIL percentage was able to predict 
a wide variation of genetic variations found in FGFR-active 
patients, such as the presence of copy number variants, or 
unusual RNA overexpression.

In multiple studies, CNN has proved to be particularly ef-
ficient and accurate at classifying histology slides and extract-
ing key information for the diagnosis and treatment of certain 
diseases, such as melanoma, occasionally outperforming 
physician predictions.22–24 Similarly, previous studies have 
used pan-cancer approaches in correlating CNN-extracted 
variables with some genotype-phenotype correlations, gene 
expression profiles, and localization of immune cells.25–27 
However, current literature is lacking in the delicate pre-
diction of FGFR genetic alterations. As the FGFR gene is 
a well-known target for urothelial cancer-targeted therapies, 
our study uniquely provided a method, utilizing CNN, for the 
prediction of this specific, yet important gene. The literature 
suggests that CNN may be the key tool to optimize the pa-
tient screening process of clinical trials, through the ability 
to process vast amounts of information efficiently and in a 
high-throughput manner.28,29 Beyond TIL percentage, CNN 
holds the ability to derive many other histological metrics, 
such as tumor diameter, tumor area, and mucosal length. 
These variables could be rapidly analyzed through CNN to 
discover novel surrogate markers for other genes in different 
tumor types.

Our study is limited by certain factors, such as the gen-
eralization of the CNN used. Extraction of TIL percentage 
was performed by a CNN that was trained specifically on 
TCGA data. While TCGA is built on samples from multiple 
institutions, this CNN may not generalize as well to other in-
stitutional data. For example, the TCGA dataset consists of 
patients’ primary tumor samples, which would certainly have 
varying levels of lymphocyte infiltration when compared to 
specimens from metastatic lesions. In future experiments, 
we intend to utilize metastatic tumor samples to train the 

F I G U R E  6   Cross-validated model performance for the prediction 
of FGFR activating mutations utilizing (A) TIL percentage and (B) 
Direct pathologist scoring

F I G U R E  7   Schematic of FGFR activating mutation screening workflow using imaging-based prediction algorithm
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model on varying levels of lymphocyte infiltration, which 
would allow for additional insight on FGFR activation pre-
diction using computer-analyzed WSI. Since bladder urothe-
lial carcinoma is not recommended for routine profiling by 
molecular testing under the current National Comprehensive 
Cancer Network clinical practice guidelines, we were unable 
to identify a well digitalized and molecularly annotated data-
set to perform an external validation. We plan to acquire an 
external institutional dataset to re-train our CNN, observe its 
generalizability, and fine-tune our methodology to validate 
the relationship between FGFR activation and TIL presence. 
This validation would serve to develop a more robust ma-
chine learning algorithm to predict FGFR activation from 
TIL image metrics. We hope that this study illustrates the 
potential for utilizing tumor-morphology CNN analysis to 
better patient care and will encourage institutions to begin 
collecting such datasets.

In conclusion, our study demonstrated a powerful poten-
tial screening tool for bladder cancer patients with FGFR 
mutation. Utilizing a histologically derived metric, TIL per-
centage, we were able to generate a predictive tool that could 
confidently screen for FGFR2/3  gene mutation, as well as 
other FGFR aberrations, in a large population of bladder can-
cer patients. In the age of big data and precision medicine, 
CNN and other emerging digital pathology methods, may 
serve as the optimal tools to efficiently screen vast popula-
tions and match them to potentially life-saving, beneficial, 
targeted therapies.
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