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Abstract

Background: Segmentation of areas containing tumor cells in standard H&E 
histopathology images of breast (and several other tissues) is a key task for computer-
assisted assessment and grading of histopathology slides. Good segmentation of 
tumor regions is also vital for automated scoring of immunohistochemical stained 
slides to restrict the scoring or analysis to areas containing tumor cells only and 
avoid potentially misleading results from analysis of stromal regions. Furthermore, 
detection of mitotic cells is critical for calculating key measures such as mitotic 
index; a key criteria for grading several types of cancers including breast cancer. We 
show that tumor segmentation can allow detection and quantification of mitotic 
cells from the standard H&E slides with a high degree of accuracy without need for 
special stains, in turn making the whole process more cost-effective. Method: Based 
on the tissue morphology, breast histology image contents can be divided into four 
regions: Tumor, Hypocellular Stroma (HypoCS), Hypercellular Stroma (HyperCS), 
and tissue fat (Background). Background is removed during the preprocessing 
stage on the basis of color thresholding, while HypoCS and HyperCS regions 
are segmented by calculating features using magnitude and phase spectra in the 
frequency domain, respectively, and performing unsupervised segmentation on these 
features. Results: All images in the database were hand segmented by two expert 
pathologists. The algorithms considered here are evaluated on three pixel-wise 
accuracy measures: precision, recall, and F1-Score. The segmentation results obtained 
by combining HypoCS and HyperCS yield high F1-Score of 0.86 and 0.89 with re-
spect to the ground truth. Conclusions: In this paper, we show that segmentation 
of breast histopathology image into hypocellular stroma and hypercellular stroma 
can be achieved using magnitude and phase spectra in the frequency domain. The 
segmentation leads to demarcation of tumor margins leading to improved accuracy 
of mitotic cell detection.
Key words: Breast cancer grading, histopathology image analysis, magnitude and phase 
spectra of Gabor filters, mitotic cell detection, texture feature, tumor segmentation
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INTRODUCTION

Grading of breast cancer relies largely on the microscopic 
examination of tissue slides stained with Hematoxylin 
and Eosin (H & E). This is a subjective process by its 
very nature, consequently leading to inter‑ and even 
intraobserver variability, potentially affecting the predicted 
patient prognosis and also the treatment modalities 
offered. The variability in breast cancer grading may, at 
least, in part, be responsible for the variability in rates of 
chemotherapy use between institutions.

Segmentation of areas containing tumor cells in standard 
H & E histopathology images of the breast (and several 
other tissues) is a key task for computer‑assisted assessment 
and grading of histopathology slides. Good segmentation 
of the tumor regions can not only highlight the slide 
areas consisting of tumor cells, but it is also vital for the 
automated scoring of immunohistochemical (IHC)‑stained 
slides, to restrict the scoring or analysis to areas containing 
only tumor cells and avoid potentially misleading results 
from the analysis of stromal regions. Furthermore, detection 
of mitotic cells is critical for calculating key measures 
such as the mitotic index; a key criteria for grading several 
types of cancers, including breast cancer. We are aware of 
the existing technologies that are capable of detecting 
mitotic cells on slides stained with IHC stains (e.g., Ki67, 
PHH3, etc.).[1] However, as we show in this article, tumor 
segmentation can allow detection and quantification of 
mitotic cells from the standard H & E slides with a high 
degree of accuracy, without the need for special stains, in 
turn making the whole process more cost‑effective.

Although some algorithms for segmentation of tumor 
nuclei, quantitative evaluation of nuclear pleomorphism, 
detection and grading of lymphocytic infiltration in 
histology images, and automated malignancy detection 
have been reported in literature, tumor segmentation 
in breast histology images has not received much 
attention.[2‑5] Wang, et al., has proposed a supervised 
tumor segmentation approach for tissue microarray 
spots that exploits tissue architectural and textural 
features in the Markov Random Field (MRF) based 
Bayesian estimation framework.[6] However, supervised 
segmentation of breast cancer histology images containing 
a highly complex texture often raises questions with 
regard to an algorithm’s ability to avoid overfitting, let 
alone the issue of training overhead.

Feature‑based segmentation approaches often use a filter 
bank to represent a pixel as a point in a high‑dimensional 
feature space, posing the so‑called curse of the 
dimensionality problem. A dimensionality reduction (DR) 
technique, giving a low‑dimensional representation and 
preserving relative distances between features from the 
original feature space, is desirable to solve this problem. 
Along these lines, Viswanath et al., proposed an ensemble 

embedding framework and applied it to image segmentation 
and classification.[7] The idea is to generate an ensemble 
of low dimensional embeddings (using a variety of DR 
methods, such as graph embedding), evaluate embedding 
strength to select the most suitable embeddings, and 
finally generate consensus embedding by exploiting the 
variance among the ensemble. However, a major limitation 
of this framework, in the context of histopathology image 
analysis, is its high storage and computational complexity, 
mainly due to the very high‑dimensional affinity matrix 
required for graph embeddings.

Random Projections (RPs) have recently emerged as a 
computationally simple and efficient low‑dimensional 
subspace representation, with a minor drawback: 
Multiple RPs may produce substantially different 
projections because of the very nature of the random 
matrices.[8] Although this may not be a big issue in 
certain applications (like multimedia compression etc.), 
it cannot be ignored in applications like segmentation in 
low‑dimensional feature space. Khan et al., proposed an 
ensemble of multiple RPs (which they termed RanPEC, 
short for Random Projections with Ensemble Clustering) 
followed by majority voting, to address the issue of 
variability among multiple RPs.[9] They further showed 
that ensemble clustering of random projections onto 
merely five dimensions achieves higher segmentation 
accuracy than a well‑known supervised DR method on 
breast histology images.[10]

In this article, we propose a fast and totally unsupervised 
tumor segmentation framework based on dividing 
the stromal tissue into two types: Hypocellular 
Stroma (HypoCS) and Hypercellular Stroma (HyperCS). 
The proposed algorithm employs the magnitude spectrum 
in the Gabor frequency domain to segment the HypoCS 
regions and the phase spectrum in the Gabor frequency 
domain to segment the HyperCS regions. The algorithm has 
been evaluated on 35 H & E stained breast histology images 
belonging to five different tissue slides. Instead of evaluating 
the system using object‑based criteria, we have incorporated 
a much stricter pixel‑based quantitative evaluation criterion.

The experimental results show that the proposed system 
achieves an F1‑Score of 0.89 (with respect to the GT 
markings) for pixel‑based segmentation, in H & E images. 
The main contributions of this article are as follows: (a) We 
show that the magnitude and phase spectra of the frequency 
domain are effective in representing the complementary 
features of the HypoCS regions and HyperCS regions, 
respectively; (b) we present a fast, unsupervised, and 
data‑independent algorithm for pixel level classification of 
tumor versus stromal regions (by integrating the HypoCS 
and HyperCS segmentations) in breast histology images, 
and (c) we show that segmentation of the stromal regions 
in breast histology images plays a critical role in mitosis 
detection, leading to a more accurate calculation of the 
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mitotic index: One of the three criteria used in the so‑called 
Nottingham breast cancer grading system.[11]

The remainder of this article is organized as follows. 
Section 2 outlines details of the segmentation algorithm, 
in particular how the segmentation of HypoCS and 
HyperCS is performed in a low dimensional feature 
space. Comparative results and discussion are presented 
in Section 3. The article concludes with a summary of 
our results and some directions for future studies.

The Proposed Algorithm
Description of the Dataset
We evaluated our segmentation framework on the MITOS 
dataset. The dataset consists of 35 HPF (High Power 
Field) images taken from five different breast cancer 
biopsy slides, stained with H & E, and scanned at ×40 
magnification, using an Aperio ScanScope slide scanner. 
Each HPF has a digital resolution of 2084 × 2084 pixels.

The Segmentation Algorithm
On the basis of the tissue morphology, the breast 
histology image contents can be divided into 
four regions [Figure 1]: Tumor, Hypocellular 
Stroma (HypoCS), Hypercellular Stroma (HyperCS), and 
tissue fat and/or retractions/artifacts (Background). The 
background is removed during the pre‑processing stage, 
on the basis of color thresholding, while the HypoCS and 
HyperCS regions are segmented by calculating features 
using the magnitude and phase spectra, respectively, 
in the frequency domain and performing a RanPEC 
segmentation on these features.[9] The algorithm pipeline 
can be subdivided into three stages: (1) Pre‑processing, to 
normalize the staining artifacts and remove the tissue fat, 
artifacts, and background; (2) Segmentation of HypoCS 
and HyperCS regions; (3) Post‑processing to combine the 
result of background removal in (1) and segmentation 
in (2). A block diagram of the proposed tumor 
segmentation framework is shown in Figure 2. Algorithm 
1 outlines the algorithmic details of the pipeline.

Pre‑processing
Stain color constancy is one of biggest challenges of the 
digitized images of H & E–stained tissue slides. Several 
factors such as thickness of the tissue section, dye 
concentration, stain timings, and stain reactivity, result 
in variable stain color intensity and contrast. We have 
evaluated various stain normalization methods, but have 
found the Magee et al., method to be the most effective 
in terms of dealing with tissues containing large amount 
of retractions/staining artifacts.[12] The second stage of the 
pre‑processing pipeline is to estimate the background. First 
the stain‑normalized (color) tissue image is transformed 
from the RGB space into the YCbCr space. The 
luminance channel is then thresholded using an empirically 
determined, fixed, global threshold. The rough binary 
mask resulting from this thresholding is finally refined 
via morphological operations, in order to fill up the small 

gaps. Finally, the stain‑normalized and background‑free 
image is converted into the CIE’s La*b* color space and 
anisotropic diffusion is applied to its b* channel, to remove 
the inherent camera noise while preserving the edges.[13]

Hypocellular Stromal Features
A traditional approach to texture segmentation is inspired 
by the multi‑channel filtering theory. The idea is to 
characterize an image by a bank of filters, to generate a set of 
features that are capable of discriminating texture patterns 
belonging to different categories. A two‑dimensional Gabor 
function consists of a sinusoidal plane wave of a certain 
frequency and orientation, modulated by a two‑dimensional 
Gaussian. A Gabor filter in the spatial domain is given by 
the following equation:[14]

Algorithm 1: Hybrid magnitude‑phase (HyMaP) ‑ 
based tumor segmentation
1: Input: I ← RGB breast histology image
2:  Output: T, a binary image where pixels belonging 

to the tumor regions have a value of 1 and all other 
pixels have a value of 0

3: Pre‑processing
Inorm=StainNormalize(I)
B=EstimateBackground(Inorm)
I AnisotropicDiffusion Inorm norm= ( ) β β

where Inorm
β  is the b*channel from the La*b*color 

space[12] of Inorm.
4: HypoCS Segmentation

G ={GaborFilter(I , ,f)�|� {0, , } and f F}gabor norm


β θ θ π∈ … ∈

where F is the set of frequencies as defined at the 
end of Section 2.2.

G TextureEnergy |G |, ,  ener gabor= ( )µ σ

where m and σ are parameters of a Gaussian window 
used to compute the texture energy.
H0=RanPECSegmentation(Gener), as described in 
Section 2.2.

5: HyperCS Segmentation

G ={GaborFilter (I , , f)| {0, , } and f F}gabor norm


β θ θ π∈ … ∈

where F is as defined in Section 2.2.
Gpg=GradientFeature(Ggabor, N), according to 
equation (7), where an N×N (N=15) window is used 
to compute the local phase gradients.
Hr=RanPECSegmentation(Gpg), as described in 
Section 2.2.

6: Post‑processing

T = H H Bo r& &

where H Ho r, , and B  are morphologically 
post‑processed versions of H0, Hr and B.

7: Return T.
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G x y g x y j f xcos ysinfθ σ π θ θ, ( , ) ( , )exp( ( ))= +2  (1)

where gσ(x,y) is a Gaussian kernel with a bandwidth of 
σ. The parameters f and θ represent frequency and 
orientation of the 2D Gabor filter, where θ varies between 
0 and π in regular intervals, f ∈ F, and F denotes a set of 
possible frequencies, and is defined as follows.

F i N F iL
i

C L( ) . / | ( ) ..= − < <−0 25 2 0 0 250 5  (2)

F i N F iH
i

C H( ) . / | . ( ) ..= + < <−0 25 2 0 25 0 50 5  (3)

Where i Ncol= … ( )0 1 82, , , log / , Ncol is the width of the 
image in terms of the nearest power of 2. We then define 
the set F of possible frequencies as follows,

F F FL H= ∪  (4)

For an image with 512 columns, for example, a total 
of 84 Gabor filters can be used (six orientations and 
14 frequencies). The hypocellular stromal features are 
then computed by convolving the Gabor filters Gθ,f(·) 
with Inorm

β (obtained from step 3 of Algorithm 1), and 
computing local energy on the results of the convolution.

Hypercellular Stromal Features
Phase information could be used as an important cue 
in modeling the textural properties of a region. Murtaza 
et al., used local frequency estimates in the Gabor 
domain over a range of scales and orientations to yield 
a signature, which was shown to efficiently characterize 
the texture of a village in satellite images.[16] We chose 

the phase spectrum to represent the attributes of the 
HyperCS regions in a breast histology image, due to 
the recently established efficacy of the phase in textures 
exhibiting randomness.

Let vi(x,y) denote the ith Gabor channel for the stain 
normalized and smoothened version of an input image 
I(x,y), where i = ,1,2,...,Ng, N N Fg = ×θ | | and Nθ denotes 
the number of orientations. We can represent it as follows,

v x y v x y j x yi i i( , ) ( , ) exp( ( , ))= φ  (5)

where |·| denotes the magnitude operator and φi x y( , )  
denotes the local phase. The gradient of the local phase 
and its magnitude can then be computed as below,

φi
i

i

i

i

x y
v x y
v x y

v x y
v x y

′
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= −












( , )
( , )
( , )

( , )
( , )

 (6)

and

φ
φ φ

i
i ix y

d
dx

d
dy

′ = +( , )
2 2

 (7)

The phase gradient features are computed using (7) for 
each of the Gabor filter responses, over a window of 
size N × N(where N=15).

RanPEC Segmentation
RanPEC is a fast, unsupervised, and data‑independent 
framework for dimensionality reduction and clustering 
of high‑dimensional data points.[9] The main idea of 
RanPEC is to project high‑dimensional feature vectors 
onto a relatively small number of orthogonal random 
vectors belonging to a unit ball and perform ensemble 
clustering in the reduced‑dimensional feature space. By 
getting an ensemble of projections for each feature vector 
and then picking a cluster for a pixel by the majority 
voting selection criterion, ensures stability of the results 
among different runs. Experimental results in[9] suggest 
that promising classification accuracy can be achieved by 
random projections when using fast matrix operations in 
an unsupervised manner.

RESULTS

All 35 images in the database were hand segmented by 
two expert pathologists. We generate all experimental 
results on three criteria: (1) Considering the first 
pathologist’s markings (P‑1) as the ground truth (GT); 
(2) considering the second pathologist’s markings (P‑2) 
as GT; (3) fusing P‑1 and P‑2 using the logical OR 
rule (i.e., a pixel is considered to be tumorous if any one 
of the two pathologists marked the pixel as tumorous), 
and considering the fused image as GT. Some of the HPF 
images contain large tumor regions with small islands 
of stroma here and there; however, a majority of HPF 
images contain a fair share of hypo‑ and hypercellular 
stroma (approximately 33%, on an average). The average 

Figure 2: Overview of the proposed algorithm: HyMaP

Figure 1: A sample H & E–stained breast cancer histology image: (a) 
Original image, and (b) Overlaid image, with four types of contents 
shown in different colors. The tumor areas are shown in Red, HypoCS 
in Purple, and HyperCS in Green. Areas containing background or fat 
tissue are shown in white with black outline. Note the difference in 
morphology of the Hypo‑ and Hypercellular stromal regions

ba
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degree of disagreement between the two pathologists on 
GT images is 11.55 ± 5.37%.

All 35 images in the dataset are pre‑processed in a similar 
manner, with stain normalization carried out as described 
in Section 2.2, and the background removal performed 
to remove fat and other artifacts caused by staining and 
fixation. This provides robustness in the subsequent steps 
of the pipeline. In order to segment HypoCS, a total of 
84 Gabor textural features (14 scales and six orientations) 
are calculated for each pixel of the input image I. In order 
to generate HyperCS, the PG features are calculated on 
10 orientations and three scales. The gradient features 
are computed in a window of size 15 × 15. The RanPEC 
segmentation framework is applied on both Gabor 
and PG features, independently, yielding HypoCS and 
HyperCS segmentations, respectively. The RanPEC[9] 
framework requires two parameters: r the dimensionality 
of lower dimensional space, and nc the number of runs 
of the ensemble. As recommended in,[9] we used r  =  5 
and nc  =  20 in our experiments. We have compared our 
proposed algorithm (HyMaP) with RanPEC using the 
same experimental setup as suggested in.[9]

The algorithms considered here are evaluated on three 
pixel‑wise accuracy measures: Precision, recall, and 
F1‑Score. The F1‑Score is a measure that combines 
precision and recall in a statistically more meaningful 
way. Let TP denote the number of true positives, FP 
the number of false positives, TN the number of true 
negatives, and FN the number of false negatives; the 
precision is defined as TP/(TP + FP), recall is defined as 
TP/(TP + FN), and the F1‑Score is defined as 2 (precision 
recall)/(precision + recall).

Figure 3 Provides an illustration of the efficiency 
of HypoCS segmentation [Figure 3b] and HyperCS 

Table 1: Quantitative results of tumor 
segmentation accuracy indicators (precision, 
recall, and F1‑Score) for 35 BC histopathology 
images using three feature spaces (1) Unreduced 
(n = 114), (2) RanPEC (n = 10, as in [9]), and 
(3) HyMaP (n = 10), where n denotes the 
dimensionality of the feature space

Ground 
truth

Algorithm Precision Recall F1‑score

Pathologist-1 Unreduced 0.89±0.05 0.86±0.07 0.87
RanPEC 0.85±0.06 0.86±0.05 0.85
HyMaP 0.88±0.03 0.88±0.05 0.88

Pathologist-2 Unreduced 0.90±0.08 0.86±0.09 0.88
RanPEC 0.86±0.07 0.85±0.07 0.85
HyMaP 0.9±0.06 0.88±0.07 0.89

Fused Unreduced 0.93±0.06 0.84±0.08 0.88
RanPEC 0.88±0.07 0.83±0.06 0.85
HyMaP 0.93±0.04 0.86±0.06 0.89

Figure 4: Visual results of tumor segmentation in two sample 
images: First row: Original images with fused ground truth (GT), 
marked non‑tumor areas shown in a slightly darker contrast with 
blue boundaries; Second row: Results of combining HypoCS and 
HyperCS using the proposed framework (F1‑Score = 0.86 and 0.89, 
respectively); Third row: Visual illustration of segmentation accuracy, 
green = TP, red = TN, yellow = FN, and blue = FP

Figure 3: Illustration of complementary segmentations obtained 
by hypo‑ and hypercellular stroma segmentation: (a) Original 
images; (b) Results of HypoCS shown in slightly darker contrast, 
outlined in green color; (c) Results of HyperCS shown in slightly 
darker contrast, outlined in green color

cba

segmentation [Figure 3c] in capturing the 
complementary stromal subtypes. Figure 4 provides 
an illustration of the proposed tumor segmentation 
algorithm on two different HPF images. The 
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segmentation results obtained by combining HypoCS 
and HyperCS yield high F1‑Scores of 0.86 and 
0.89, with respect to the fused GT. Considering 
the degree of disagreement between the two 
pathologists (i.e., 11.5  ±  5.37%), the results can 
be termed as highly accurate. Table 1 shows the 
segmentation accuracies (in terms of precision, recall, 
and F1‑ Score) of the unreduced and reduced feature 
spaces resulting from automated tumor segmentation. 
Note that the F1‑Scores obtained from HyMaP (0.88, 
0.89, and 0.89) are higher when compared with those 
from the unreduced feature space (0.87, 0.88, and 
0.88) and RanPEC (0.85, 0.85, and 0.85). Table 1 also 
reveals that the reduced textural feature space achieves 
F1‑Scores of 0.88, 0.89, and 0.89, suggesting, in turn, 
that DR removes the redundant features and preserves 
the distances between high dimensional feature spaces, 
thereby improving segmentation accuracy.

Further to the accuracy of segmentation, we present 
an application of tumor segmentation to Mitotic 
Cells (MCs) detection in tumor areas. MC detection is 
critical for calculating key measures such as the mitotic 
index: One of the three criteria used in the Nottingham 
grading system to grade breast cancer histology slides.[15] 
Khan et al., proposed a statistical approach that models 
the pixel intensities in mitotic and non‑mitotic regions 
by a mixture of the Gamma‑Gaussian mixture model.[17] 

Figure 5 visually illustrates how tumor segmentation 
can improve mitotic cell detection accuracy in breast 
histology images. Using the algorithm reported 
in,[17] Figure 5a shows the results of MC detection 
without tumor segmentation and Figure 5b shows the 
results of MC detection with tumor segmentation. 
Figure 5c and Figure 5d show the zoomed‑in version 
of Figure 5a and Figure 5b. Note that the number of 
false positives increase significantly (from 4 to 82) when 
tumor segmentation is not performed for mitotic cells 
detection.

CONCLUSION

In this article, we presented an algorithm for 
segmentation of tumor areas in breast histology images 
based on segmentation of the image into hypocellular 
stroma and hypercellular stroma regions, using the 
magnitude and phase spectra in the Gabor domain. 
The complementary nature of the segmentation of 
two stromal subtypes was shown, resulting in high 
segmentation accuracy for the tumor areas. It was 
further demonstrated that the specificity of mitotic cell 
detection can be significantly enhanced when detection 
is restricted to the tumor areas. We anticipate further 
applications of our method to accurate, tumor‑localized 
quantification/scoring of IHC stained slides and its 
validation on large‑scale datasets.
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