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The ventral visual pathway achieves object and face recognition by building
transformation-invariant representations from elementary visual features. In previous
computer simulation studies with rate-coded neural networks, the development of
transformation-invariant representations has been demonstrated using either of two
biologically plausible learning mechanisms, Trace learning and Continuous Transformation
(CT) learning. However, it has not previously been investigated how transformation-
invariant representations may be learned in a more biologically accurate spiking neural
network. A key issue is how the synaptic connection strengths in such a spiking
network might self-organize through Spike-Time Dependent Plasticity (STDP) where the
change in synaptic strength is dependent on the relative times of the spikes emitted by
the presynaptic and postsynaptic neurons rather than simply correlated activity driving
changes in synaptic efficacy. Here we present simulations with conductance-based
integrate-and-fire (IF) neurons using a STDP learning rule to address these gaps in our
understanding. It is demonstrated that with the appropriate selection of model parameters
and training regime, the spiking network model can utilize either Trace-like or CT-like
learning mechanisms to achieve transform-invariant representations.
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1. INTRODUCTION
The increasingly complex cell response properties of the primate
ventral visual stream strongly suggest the functional organiza-
tion of this pathway is that of a feature hierarchy. Cells in the
early stages (V1) are found to be sensitive to oriented bars and
edges appearing in particular locations on the retina (Hubel
and Wiesel, 1968). Information analysis of natural scenes reveals
these features to be the most statistically independent compo-
nents of such images (Bell and Sejnowski, 1997; van Hateren
and van der Schaaf, 1998) and hence the most natural “building-
blocks” for such a system. Through successive layers, there follows
a convergence of receptive fields allowing neurons at the end
of the pathway in anterior Inferotemporal cortex (aIT) to view
the entire retina and respond to increasingly complex stimuli
(Tanaka, 1996). Here, and more recently in the medial tempo-
ral lobe (Quiroga et al., 2005), neurons have been found which
respond with translation (Op de Beeck and Vogels, 2000), size
(Ito et al., 1995) and view invariance (Booth and Rolls, 1998) to
objects (Tanaka et al., 1991) and faces (Desimone, 1991).

Several groups have attempted to understand how elemen-
tary features may be combined into more complex view-invariant
representations of whole objects with hierarchical feed-forward
neural network models such as the Neocognitron (Fukushima,
1988), the SEEMORE system (Mel, 1997), the HMAX model
(Riesenhuber and Poggio, 1999) and VisNet (Wallis and Rolls,
1997). These models are all composed of “rate-coded” neurons
(McCulloch and Pitts, 1943) which consist of applying a non-
linear function (e.g., threshold or sigmoid) to a weighted sum

of inputs (Boolean, or real values) which they receive at each
computational step1.

Within this paradigm, two main biologically plausible learning
mechanisms have been discovered which explain how different
views of the same object may be bound together and recognized
as the same entity. The first of these—Trace learning (Földiák,
1991)—relies upon temporal continuity, while the second—
Continuous Transformation (CT) learning (Stringer et al., 2006)—
relies upon spatial continuity to associate together successive
transforms and build view-invariant representations in later lay-
ers. While the properties of these mechanisms have been explored
extensively in rate-coded models, it remains an open question
as to how they might map onto a more biologically realistic
spiking-neuron paradigm.

Spiking Neural Networks (SNN) can solve problems at least
as complex as those that rate-coded models can solve (Šíma
and Orponen, 2003), which in turn have greater computational
power than Turing machines, and as such have been applied to
a wide variety of problems, including modeling object recog-
nition (Michler et al., 2009). By more faithfully modeling the
electrical properties of neurons, spiking neural network model
parameters may be more meaningfully mapped onto the biophys-
ical properties of their real counterparts. This motivates the use

1These early neuron models were designed to show that the elementary com-
ponents of the brain could compute elementary logic functions. The belief
commonly held at the time being that intelligence is based upon symbolic
reasoning, which in turn rests upon the foundations of logic.
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of the conductance-based “leaky” integrate-and-fire (LIF) model
(described in section 2) over models which are computation-
ally cheaper or have a less apparent correspondence to measur-
able biological parameters such as the Spike Response Model
(Gerstner and Kistler, 2006) or Izhikevich’s null-cline derived
model (2003).

Since time is explicitly and accurately modeled in SNNs, they
allow quantitative investigation of the time-course of processing
on such tasks (Thorpe et al., 2000) providing further arguments
against rate-coding on the basis that Poisson rate-codes are too
inefficient to account for the rapidity of information process-
ing in the human visual system2 (Thorpe et al., 1996; Rullen
and Thorpe, 2001). Furthermore, SNNs allow the investigation
of qualitative effects such as the selective representation of one
stimulus over another by the synchronization of its population of
feature-neurons as found in neurophysiological studies (Kreiter
and Singer, 1996; Fries et al., 2002). Similarly, the phenomenon
of Spike-Time Dependent Plasticity (STDP) and its effect upon
learning transformation-invariant representations may only be
investigated by modeling individual spikes which is of great
importance to the present research.

Hebb originally conjectured that synapses effective at evoking
a response should grow stronger (Hebb, 1949), capturing a causal
relationship between the two neurons. This was eventually sim-
plified (partly for the purposes of rate-coded models) to become
interpreted as any long-lasting synapse-specific form of modi-
fication dependent upon correlations between presynaptic and
postsynaptic firing. This is usually expressed in the form δwij =
kyixj, where δwij is the change in synaptic strength, k is a learning
rate constant, and xj and yi are the firing rates of the presynaptic
and postsynaptic neurons (see e.g., Rolls and Treves, 1998).

Progress in neurophysiology has shown, however, that the
all-or-nothing nature of an action potential means that the infor-
mation may be conveyed by the number and the timing of action
potentials (Ferster and Spruston, 1995; Maass and Bishop, 1999),
typically neglecting their size and shape in modeling. In other
words neurons communicate by a pulse code (a time series of dis-
crete binary events) rather than simply a rate code (a moving aver-
age level of activity) which has been convincingly demonstrated
in the sensory systems of several organisms, such as echolocating
bats (Kuwabara and Suga, 1993) and the visual systems of flies
(Bialek et al., 1991).

It is also now well-established that synaptic plasticity is sensitive
to the relative timing of the presynaptic and postsynaptic spikes
(Markram et al., 1997; Dan and Poo, 2006), typically becoming
approximately exponentially less sensitive as the time difference
increases (Bi and Poo, 1998). This has been found to take several
forms in different brain regions (Abbott and Nelson, 2000) but
here we focus on the form observed in retinotectal connections
and neocortical and hippocampal pyramidal cells where pre →
post spike pairs lead to synaptic potentiation (with greater effect
over shorter intervals) and the opposite ordering of spikes leads
to synaptic depression.

The challenge now is to investigate how the timing of
spikes affects the self-organization of the system applied to the

2Typically, only 100–150 ms is required to respond to complex stimuli.

problem of developing transformation-invariant representations
and understanding how the CT and Trace learning mechanisms,
which have been developed in the context of rate-coded models,
might fit into a model of STDP.

2. METHODS
2.1. NETWORK ARCHITECTURE
While the ventral visual stream is typically modeled as four or
more layers of neurons with excitatory modifiable feed-forward
synapses and a mechanism of lateral inhibition, here we seek
to understand the mechanisms operating at each layer which
ultimately may lead to transformation-invariant representations,
hence a simpler architecture is used.

The model consists of two layers of excitatory pyramidal neu-
rons with one layer of modifiable feed-forward synapses between
them (as shown in Figure 1). Within each layer there are also
inhibitory interneurons with non-plastic lateral synaptic connec-
tions to and from the excitatory neurons to produce a degree of
competition between the excitatory neurons.

For all presented simulations we have used 400 excitatory neu-
rons and 100 inhibitory neurons in each layer, with full connectiv-
ity. Each neuron is based upon the standard conductance-based
leaky integrate and fire (LIF) model (see for example Rolls and
Treves, 1998) while the equations for STDP at the Excitatory-
Excitatory (E → E) synapses are adapted from Perrinet et al.
(2001).

2.2. DIFFERENTIAL EQUATIONS
2.2.1. Cell equations
Depolarization of the neuron’s membrane potential is described
by Equation 1 and the cell (and synapse) constants were chosen
to be as biologically accurate as possible based upon the available
neurophysiological literature (see Table 1 for a full list).

The cell membrane potential for a given neuron (indexed by i)
is driven up by presynaptic excitatory conductances (or direct
current injection) and towards the inhibitory reversal potential
(typically down) by presynaptic inhibitory conductances, decay-
ing back to its resting state over a time course determined by the
properties of its membrane.

τ
γ
m

dVi(t)

dt
= Vγ

0 − Vi(t) + RγIi(t) + RγIext
i (t) + σ · ξ(t) ·

√
τ
γ
m

(1)

Here τm represents the membrane time constant, defined as
τm = Cm/g0, where Cm is the membrane capacitance, g0 is the
membrane leakage conductance and R is the membrane resis-
tance, (R = 1/g0). V0 denotes the resting potential of the cell
(indexed by γ along with these other class-specific parameters),
Ii(t) represents the total synaptic current (described in Equation
2) and Iext

i (t) models the injected current.
In addition, Gaussian white noise was added to the cell mem-

brane potential with zero mean and standard deviation σ =
0.015 · (� − VH) as used by Masquelier et al. (2009). Here, ξ(t)
is a Wiener (Gaussian) variable (where ξ(t) represents dW

dt ) satis-
fying the definition of the Wiener process such that 〈ξ〉 = 0 and
〈ξ(t)ξ(s)〉 = δ(t − s), where δ(·) is the Dirac delta function and
σ tunes the amplitude of the noise (the standard deviation of the
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FIGURE 1 | Schematic of the two layer network architecture used.

Excitatory neurons within each layer are fully reciprocally connected to the
pool of inhibitory interneurons within the same layer by fixed synaptic
efficacies. Inhibitory neurons are also fully connected to other inhibitory

neurons within the same layer by unmodifiable synapses. The excitatory
neurons in the input layer are fully connected to the excitatory neurons in the
output layer via plastic feed-forward synapses which are modified through
training by an STDP learning rule.

noise in units of Volts) since ξ has unit variance. The noise term,
ξ, is importantly scaled by (the square root) of the time constant,
τm, which means that the amplitude of the noise is scaled up
or down as the system speeds up (short τm) or slows down
(long τm), respectively. The dimension of the ξ term is time−1

and so ξ is scaled by
√

τm to make the equation dimensionally
consistent.

The total synaptic conductance is the sum of conductances of
all presynaptic neurons of each type (excitatory and inhibitory)
with inhibitory conductances being negative.

Ii(t) =
∑
γ

∑
j

gij(t)
(

V̂γ − Vi(t)
)

(2)

Here V̂ represents the reversal potential of a particular class
of synapse (denoted again by γ) which consists of Excitatory and
Inhibitory neurons {E, I} and j indexes the presynaptic neurons
of each class.

2.2.2. Synaptic conductance equations
The synaptic conductance of a particular synapse, g(t), (indexed
by ij) is governed by a decay term τg and a Dirac delta function for
when spikes occur, which correspond to the first and second terms
of Equation 3. The Dirac delta function is defined as follows:

δ(x) =
{∞ if x = 0

0 otherwise
where,

∫ +∞

−∞
δ(x)dx = 1.

The conduction delay for a particular synapse is denoted by
�tij and each spike is indexed by l as a separate train for each
presynaptic neuron. A biological scaling constant, λ (set in all
simulations to be 5 ns) has been introduced to scale the synaptic
efficacy �gij which lies between unity and zero.

dgij(t)

dt
= − gij(t)

τg
+ λ�gij(t)

∑
l

δ
(

t − �tij − tl
j

)
(3)
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Table 1 | Parameters used in the simulations.

Parameter Symbol Value Reference

Cue current Iext 1.0 nA ∗

Cue period {training, testing} tcue {100, 250} ms

Time step �t 0.02 ms

NETWORK PARAMETERS

No. of layers NL 2

No. of excitatory cells per layer NE 400

No. of inhibitory cells per layer NI 100

No. of afferent excit. connections per excit. neuron SEE 400

No. of afferent excit. connections per inhib. neuron SEI 400

No. of afferent inhib. connections per excit. neuron SIE 100

No. of afferent inhib. connections per inhib. neuron SII 100

CELLULAR PARAMETERS

Excitatory cell somatic capacitance CE
m 500 pF §

Inhibitory cell somatic capacitance CI
m 214 pF §

Excitatory cell somatic leakage conductance gE
0 25 nS §

Inhibitory cell somatic leakage conductance gI
0 18 nS §

Excitatory cell membrane time constant τE
m 20 ms §

Inhibitory cell membrane time constant τI
m 12 ms §

Excitatory cell resting potential V E
0 −74 mV §

Inhibitory cell resting potential V I
0 −82 mV §

Excitatory firing threshold potential �E −53 mV §

Inhibitory firing threshold potential �I −53 mV §

Excitatory after-spike hyperpolarization potential V E
H −57 mV §

Inhibitory after-spike hyperpolarization potential V I
H −58 mV §

Excitatory reversal potential V̂ E 0 mV §

Inhibitory reversal potential V̂ I −70 mV §

Absolute refractory period τR 2 ms §

SYNAPTIC PARAMETERS

Synaptic neurotransmitter concentration αC 0.5 †

Proportion of unblocked NMDA receptors αD 0.5 †

Presynaptic STDP time constant τC [3, 75] ms †

Postsynaptic STDP time constant τD [5, 125] ms †

Synaptic learning rate ρ 0.1 †

Plastic (E → E) synaptic conductance range, CT λ · �gEE [0, 4] nS ∗

Plastic (E → E) synaptic conductance range, Trace λ · �gEE [0, 1.25] nS ∗

Change in synaptic conductance (I → E) λ · �gIE [0.5, 2.5] nS ∗

Change in synaptic conductance (E → I) λ · �gEI 5.0 nS ∗

Change in synaptic conductance (I → I) λ · �gII 5.0 nS ∗

Excitatory-Excitatory synaptic time constant τEE {2, 150}ms ∗

Inhibitory-Excitatory synaptic time constant τIE 5 ms §

Excitatory-Inhibitory synaptic time constant τEI 2 ms §

Inhibitory-Inhibitory synaptic time constant τII 5 ms §

Most integrate and fire parameters were taken from Troyer et al. (1998) (derived originally from McCormick et al. 1985) as indicated by §. Plasticity parameters

(denoted by †) are taken from Perrinet et al. (2001). Parameters marked with ∗ were tuned for the reported simulations.

2.2.3. Synaptic learning equations
The following differential equations describe the STDP occuring
at each modifiable Excitatory − Excitatory (E → E) synapse. Here
i labels the postsynaptic neuron. The recent presynaptic activ-
ity, Cij(t), is modeled by Equation 4 which may be interpreted
as the concentration of neurotransmitter (glutamate) released
into the synaptic cleft (Perrinet et al., 2001) and is bounded

by [0, 1] for 0 ≤ αC < 1.

dCij(t)

dt
= −Cij(t)

τC
+ αC

(
1 − Cij(t)

)∑
l

δ
(

t − �tij − tl
j

)
(4)

The presynaptic spikes drive Cij(t) up at a synapse accord-
ing to the model parameter αC , which then the current value of
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Cij(t), which then decays back to 0 over a time course governed
by τC.

The recent postsynaptic activity, Di(t), is modeled by Equation
5 which may be interpreted as the proportion of unblocked
NMDA receptors as a result of recent depolarization through
back-propagated action potentials (Perrinet et al., 2001).

dDi(t)

dt
= −Di(t)

τD
+ αD (1 − Di(t))

∑
k

δ
(

t − tk
i

)
(5)

Unlike with the conduction of action potentials to postsynap-
tic neurons, there is no conduction delay associated with Di since
the cell body is assumed to be arbitrarily close to the receiving
synapses, and it is the same for a given (postsynaptic) neuron
rather than each of its synapses since the effects of a postsynap-
tic spike are assumed to have an equal impact on all receiving
synapses.

The strength of the synaptic weight, �gij(t), is then modified
according to Equation 6, which is governed by the time course
variable τ�g .

τ�g
d�gij(t)

dt
= (

1 − �gij(t)
)

Cij(t)
∑

k

δ
(

t − tk
i

)

−�gij(t)Di(t)
∑

l

δ
(

t − �tij − tl
j

)
(6)

Note that the postsynaptic spike train (indexed by k) is now
associated with the presynaptic state variable (C) and vice versa.
If C is high (due to recent presynaptic spikes) at the time
of a postsynaptic spike, then the synaptic weight is increased
(LTP) whereas if D is high (from recent postsynaptic spikes)
at the time of a presynaptic spike then the weight is decreased
(LTD).

The weight updates are also multiplicative, meaning that the
amount of potentiation decreases as the synapse strengthens, as
has been found experimentally (Bi and Poo, 1998). Theoretically,

this weight-dependent potentiation yields a normal distribution
of synaptic efficacies rather than pushing each weight to one
extreme or the other (van Rossum et al., 2000) as would be the
case with an additive form of STDP.

2.3. NUMERICAL SCHEME
The differential equations described above are converted to finite
difference equations and simulated using the Forward-Euler
numerical scheme with a time step �t = 0.02 ms. In the finite dif-
ference equations, the Dirac delta function has been replaced by
the discrete approximation, S(x) as defined in Amit and Brunel
(1997). Finally, in the original description, the change in synaptic
weight (Equation 6) was instantaneous and so �t/τ�g is defined
to be a learning rate constant, ρ, in the corresponding finite
difference equation.

2.4. TRAINING AND STIMULI
Stimuli are represented by injecting a small amount of current
directly into the cell bodies of a particular set of excitatory input
neurons continuously throughout the cue period. This pattern
of stimulated neurons is gradually shifted across the input layer
representing successive transforms of the stimulus (see Figure 2).

The size of a stimulus and the amount of neurons each of its
transforms is shifted by allows us to precisely control the degree
of overlap between transforms of each stimulus. Spatial continu-
ity is crucial to the functioning of the CT mechanism, whereas
the trace mechanism requires temporal continuity to associate
successive transforms together, (which can be controlled inde-
pendently through model time constants). In this way, we may
eliminate the operation of one mechanism to study the other
in isolation and hence disentangle their contributions to the
network’s capacity for invariance learning.

During training, the set of stimuli are presented in a random
order with all transforms for a given stimulus being presented
in succession before presenting the next stimulus’s transforms.
Presentation of all stimuli in this manner constitutes one train-
ing epoch, and the total training period comprised of five such
epochs.

FIGURE 2 | The transforms of two stimuli. The input layer is divided into as many equal portions as there are stimuli and all transforms of a particular
stimulus are confined to that stimulus’s portion of the input neurons. In this illustration, there are five transforms per object shifting by one neuron.
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After completion of training, learning is switched off (pro-
hibiting further synaptic modification) and the network is pre-
sented with all transforms of all stimuli in order (resetting the
neurons to their resting state between transforms) and the resul-
tant firing in both input and output layers is saved for analysis.

2.5. PERFORMANCE MEASURES
Two information-theoretic3 measures are used to assess the
network’s performance which reflect the extent to which cells
respond invariantly to a particular stimulus over several trans-
forms but differently to other stimuli [for more details see Rolls
and Milward (2000); Elliffe et al. (2002)]. The work presented
has used spiking neural networks because we believe that their
richer dynamics they model are critical for learning to solve
the problem of object recognition (transformation-invariant cell
responses). However, analysis of macaque visual cortical neuron
responses has found that after learning, the majority of the infor-
mation about stimulus identity is contained within the firing rates
rather than the detailed timing of spikes (Tovee et al., 1994).
As such, we adopt a dual approach whereby the network self-
organizes through spiking dynamics but the information content
with respect to stimulus identity is assessed through the output
cell’s firing rates.

During testing each transform of each stimulus was presented
to the input layer of the network. Each neuron was reset (allowed
to settle) after presentation of each transform such that the activ-
ity due to one transform did not affect the responses to later
transforms. After testing, the spikes of each output neuron were
placed into a different bin for each transform of each stimulus and
the corresponding firing rate for each cell was calculated. Based
upon these firing rates, the stimulus-specific single-cell informa-
tion I(s, R) was calculated according to Equation 7, which gives
the amount of information in a set of responses R of a single cell
about a specific stimulus s. The set of responses, R consisted of the
firing rate of a cell to every stimulus presented in every location.

I(s, R) =
∑
r∈R

P(r|s) log2
P(r|s)
P(r)

(7)

Good performance for a cell would entail stimulus specificity
(with generality across most or all transforms of that stimulus),
meaning a large response to one or a few stimuli regardless of
their position (transform) and small responses to other stimuli.
We therefore compute the maximum amount of information a
neuron conveys about any of the stimuli rather than the average
amount it conveys about the whole set S of stimuli (which would
be the mutual information).

If all the output cells learnt to respond to the same stimu-
lus then there would be no discriminability and the information
about the set of stimuli S would be poor. To test this, the multiple
cell information measure is used which calculates the informa-
tion about the set of stimuli from a population of up to 10 output
neurons. This population consisted of the subset of up to five
cells which had, according to the single cell measure, the most
information about each of the two stimuli. Ideally, we would

3For a general introduction to Information Theory see MacKay, 2003.

calculate the mutual information (the average amount of infor-
mation about which stimulus was shown from the responses
of all cells after a single presentation of a stimulus, averaged
across all stimuli), however, the high dimensionality of the neural
response space and the limited sampling of these distributions is
prohibitive.

Instead, a decoding procedure is used to estimate the stimulus
s′ that gave rise to the particular firing rate response vector on
each trial. From this a probability table is then constructed of the
real stimuli s and the decoded stimuli s′, from which the mutual
information is calculated (Equation 8).

I(s, s′) =
∑
s,s′

P(s, s′) log2
P(s, s′)

P(s)P(s′)
(8)

A Bayesian decoding procedure is used for this purpose,
whereby the firing rates of each cell in the ensemble vector to each
transform of each stimulus in turn is fitted to a Gaussian distri-
bution parameterized by these means and standard deviations of
each cell’s responses to all other transforms of each stimulus sep-
arately to yield an estimate of P(rc|s′). Taking the product of these
probabilities over all cells in the response vector with P(s′) and
then normalizing the resultant joint probability distribution gives
an estimate of P(s′|r), (Földiák, 1993). These probability distribu-
tions are factored into a confusion matrix of P(s, s′) over many
iterations to smooth the effects of randomly sampling the out-
put cells. From this decoding and cross-validation procedure, the
probability tables are constructed for calculating the multiple cell
information measure, further details of which may be found in
Rolls et al. (1997). This measure should increase up to the theoret-
ical maximum log2NS bits, (where NS is the number of stimuli), as
a larger population of cells is used, only if those cells have become
tuned to different stimuli.

3. SIMULATIONS
In the simulations described below we investigated invariance
learning in a spiking neural network with STDP utilizing two
different learning mechanisms. For details of the methods and
parameters used for the following simulations, please refer to
section 2 and Table 1, respectively.

3.1. CONTINUOUS TRANSFORMATION LEARNING
Continuous Transformation (CT) learning relies upon the spa-
tial continuity of continuously transforming stimuli and a purely
associative (Hebbian) learning rule with lateral competition to
associate together successive transforms of a stimulus (Stringer
et al., 2006). Presentation of an initial transform will excite one
or more postsynaptic neurons and through the Hebbian learn-
ing rule, will strengthen the synapses between those cells. If there
is enough overlap (similarity) between the original and a new
transform, the same postsynaptic neuron(s) will be excited and
so increase their synaptic strengths to the neurons of the current
transform. This process can continue across a series of overlap-
ping transforms until they are all mapped onto the same output
cells. Since similar images are more likely to be transforms of the
same object than different stimuli, the CT mechanism provides
an explanation for how transformation-invariant representations
may develop in the ventral visual system.
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In this set of simulations, the parameters were chosen to
encourage the operation of the CT learning mechanism (Stringer
et al., 2006) while excluding any trace-like effects (Földiák,
1991). To this end, spatial overlap between successive trans-
forms was generally kept high (13 transforms per stimulus each
covering 56 neurons and shifting by 12 neurons per transform
by default). Also a short time constant of 2 ms was used for the
Excitatory-Excitatory (feed-forward) synaptic conductances, τEE.
These conditions were hypothesised to support a CT-like learning
mechanism in a spiking neural network.

3.1.1. Invariance learning with CT
This simulation demonstrates the formation of transformation-
invariant representations in the output cells through STDP as
illustrated by the raster plots in Figure 3 (which contrast the
untrained with the trained network) and the information plots of
Figures 4A and B. The level of inhibition had to be tuned so that
the spikes from additional neurons from successive transforms (in
the input layer) could be brought into phase with those already
firing from the previous transforms. While the feed-forward exci-
tatory weights were plastic and hence modified through learning,
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FIGURE 3 | Raster plots of output layer cells before and after training

from the CT baseline simulation. Before training (A) the output cells
respond randomly to transforms of each stimulus. After training

(B) the raster plot shows cells sensitive to all transforms of stimulus one
(0–3250 ms) and other cells sensitive to all transforms of stimulus two
(3250–6500 ms).
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FIGURE 4 | Baseline demonstration of translation-invariant

representations for four degrees of training: untrained,

2 epochs, 10 epochs, and 50 epochs. The single cell information
analysis (A), shows that for 10 or more epochs of training,

approximately 40 output cells have achieved a very high information
content and the multiple cell information plot (B) confirms that both
of the stimuli are represented by cells which are exclusively tuned to one
stimulus or the other.
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their maximum level was set to 4 nS to achieve a reasonable level
of output layer activity for the network size and connectivity. It
can be seen from the pre-training raster plot (Figure 3A) that
before learning, output neurons respond to a random set of
transforms of each stimulus. However, post-training (Figure 3B),
there are several cells which are responsive across the whole set
of transforms for the first stimulus which are presented contigu-
ously over the first 3250 ms, and several other cells which respond
to all transforms of the second stimulus presented contiguously
over the second 3250 ms.

In accordance with the raster plot, the I(s, R) (single-cell infor-
mation measure) plots show many more cells in the network have
attained the maximum information content (1 bit) than in the
untrained case, demonstrating both transformation-invariance
and stimulus specificity. Examining the I(s, s′) (multiple cell
information measure) plots shows that the maximum informa-
tion about the stimulus set S is reached with fewer than the
10 available cells of the output ensemble of the highest scoring
cells (in terms of their I(s, R) values), thus confirming that both
stimuli are represented invariantly.

3.1.2. Temporal specificity
By default, the learning time constants, τC and τD, used in these
simulations are 15 and 25 ms in accordance with Perrinet (2003).
Here we reran the same simulations but shortened or lengthened
these time constants by a factor of five (maintaining the same
3/5 ratio) to give 3/5 ms and 75/125 ms for τC/τD, respectively.
Figure 5A shows a trend of a much greater information content in
the network with the shorter (more temporally specific) time con-
stants (3/5 ms) with the accompanying I(s, s′) plot confirming
that both stimuli are being represented (see Figure 5B). Network
performance drops, however, with the longer (less temporally
specific) STDP time constants 75/125 as the learning rule is less

capable of capturing the temporally specific causal relationship of
the input/output spike volleys.

The effect of shortening the STDP time constants is that after
a pre-post spike pairing results in LTP, the following presynaptic
spike from the next wave comes a relatively long time after the
initial pair, such that the effect of its post-pre LTD is significantly
lessened. The synaptic weight distributions in Figure 6 support
this, exhibiting a peaked distribution of synaptic efficacies aris-
ing from the initially flat uniform distribution (as expected from
a multiplicative model of STDP in the standard case, τC =
15 ms, τD = 25 ms, Figure 6B) and more peaked distributions
with shorter STDP time constants (Figure 6C) indicating more
specific learning. The higher proportions of large weights with
the shorter learning time constants are what might be expected
from an unbalanced learning rule dominated by LTP when waves
of input spikes are widely spaced relative to the time delay until
the postsynaptic spikes which they cause. In contrast, the weight
distribution with the longer STDP time constants is smoother,
indicating a less trained layer of synaptic weights (Figure 6A).

3.1.3. Lateral inhibition and synchrony
From earlier simulations, it is apparent that this training
paradigm and the STDP model are very sensitive to the effects
of the strength of inhibition on the synchronization of input
spikes. We therefore systematically varied the strength of �gIE, the
Inhibitory → Excitatory conductances (which were non-plastic)
to understand these effects in more detail.

Figure 7 shows that as the level of inhibition is reduced and the
cell membrane potential noise begins to cause jitter in the spike
timings, the new input layer neurons from successive transforms
no longer fire in phase with those neurons from previous trans-
forms. This reduces invariance learning in the output layer, where
the information content can also be seen to be reduced (Figure 8).

A B

50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cell rank

In
fo

rm
at

io
n 

(b
its

)

 

 

τ
C

/τ
D

 : 75/125

τ
C

/τ
D

 : 15/25

τ
C

/τ
D

 : 3/5

Untrained

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ensemble size

In
fo

rm
at

io
n 

(b
its

)

 

 

τ
C

/τ
D

 : 75/125

τ
C

/τ
D

 : 15/25

τ
C

/τ
D

 : 3/5

Untrained

FIGURE 5 | Information plots of varying STDP time constants, τC and τD .

With shorter time constants the single cell information content (A) is seen to
increase as learning becomes more temporally specific. The multiple cell
information (B) demonstrates that for short plasticity time constants, both

stimuli are represented by the ensemble of output cells. STDP (with
sufficiently temporally specific time constants) together with the
synchronization of neuronal firing is here able to facilitate the learning of
transformation-invariant representations.
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FIGURE 6 | Synaptic Weight Distributions of varying STDP time

constants, τC and τD . Compared to the standard case
{τC = 15 ms, τD = 25 ms} (B) longer plasticity time constants
{τC = 75 ms, τD = 125 ms} (A) result in a smoother, more distributed profile

of synaptic weights. With shorter time constants {τC = 3 ms, τD = 5 ms} (C)

the distribution is seen to become more peaked with larger synaptic weights
as learning becomes more temporally specific and the weight updates
experience more LTP.
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FIGURE 7 | Raster plots of the inputs (for all transforms of

Stimulus 1 only) presented during training for two levels of

inhibitory conductance. The raster plot produced with the standard
inhibitory conductance strength of �gIE = 2.5 nS shows synchronised

input volleys across all transforms of the stimulus (A). It can be seen
at the lower inhibitory strength (�gIE = 0.5 nS) that the neurons within
some of the transforms become desynchronized with respect to one
another (B).

3.1.4. Degree of overlap
From previous rate-coded simulations it is clear that CT learning
requires a high degree of resemblance among adjacent members
of a set of transforms in order to associate them together. If this
mechanism is being employed in the present spiking model, its
performance should suffer by reducing this transform similar-
ity. This was tested by removing intermediate transforms leaving
only every 2nd or 3rd transform from the original sets of 13
transforms per stimulus (with a consecutive transform overlap of
44 neurons) such that there were only 7 or 5 transforms per stim-
ulus, respectively. Since they still occupied the same proportion of

the input layer, the degree of overlap between any two consecutive
transforms was correspondingly lower, being 32 or 20 neurons,
respectively.

It can be seen from Figure 9 that by reducing the spa-
tial overlap between successive transforms of each object, the
information content of the output layer declines (despite there
being fewer transforms to associate together) since there are
fewer cells that respond invariantly across all transforms of
a given stimulus. This confirms that the network is learn-
ing invariance by a spiking equivalent of the CT learning
mechanism.
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FIGURE 8 | Single and Multiple cell information plots for different

degrees of inhibitory strength. As the inhibitory strength decreases, the
information in the network declines, as shown in the single cell (A) and

multiple cell (B) information measures. This is due to the increased difficulty
for the whole set of neurons representing a particular transform of a stimulus
to fire in synchrony.
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FIGURE 9 | Information plots for three different degrees of overlap

between successive transforms. The information content of the output
cells can be seen to fall, in the single cell measure (A) and the multiple cell

measure (B) as the degree of overlap is reduced. This is a property of CT
learning which requires a sufficient degree of spatial overlap between
transforms to build invariance.

3.1.5. Interleaved transforms
Since the degree of similarity between any two transforms of a
stimulus is the same regardless of when they are presented to
the network, under a CT learning regime it should not mat-
ter whether the transforms are seen close together in time or
not. One of the key properties of CT learning is therefore its
ability to enable a network to learn about stimuli, even when
their transforms are interleaved with those of another stimulus

(analogous to learning to recognize two faces or objects as the
viewer saccades back and forth between them). To test this
hypothesis we presented transforms of each stimulus alternately
i.e., St1

1 , St1
2 , St2

1 , St2
2 , . . . , Stn

1 , Stn
2 . If neurons are able to develop

transformation-invariant responses with this training paradigm,
it proves the learning mechanism is not utilizing a temporal trace.

Here it is evident from the information analysis (Figure 10)
that the network has managed to learn about the individual
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FIGURE 10 | Information plots showing the difference in training the

network normally and by interleaving transforms of both stimuli. By
interleaving the collections of transforms, the single cell information content

has not declined (A) while the multiple cell information (B) confirms that both
stimuli are still represented. This is a property of CT learning, which does not
require different transforms of a stimulus to be seen consecutively in time.

stimuli with this additional constraint. Both the single and mul-
tiple information measures show not just comparable results to
the consecutive presentation of each stimulus’s transforms during
training but surprisingly, an improvement over the standard case.
Examining the input layer rasters, this enhancement to learning
from interleaving the stimuli seems to be due to the fact that
under normal training, the first one or two spike volleys of a new
transform have not yet recruited the additional neurons (which
were not part of the previous transform) due to the lateral inhi-
bition suppressing them. In contrast, neurons in the overlapping
region are under constant stimulation from the injected current
and so continue to fire, whereas those neurons exclusive to the
previous transform stop firing when no longer stimulated with
direct current.

When the stimuli are interleaved, however, all of the input
neurons representing the new transform are stimulated by
current injection at the same time (rather than their cell mem-
brane potentials starting at different points in the stimulation
cycle) and so fire simultaneously from the very first volley. Using
a stimulating direct current of 1 nA with the cell body parameters
and network connectivity given in Table 1, the neurons will
fire approximately five complete volleys of spikes in the 100 ms
presentation period (50 Hz). The ultimate effect of this training
difference is that in the interleaved case, each transform will be
represented by five complete spike volleys (as opposed to only
three of four in the standard case) and hence will be trained more
fully (with more useful weight updates) over the same training
duration.

3.1.6. Randomized transform order
CT learning is also able to form transformation-invariant rep-
resentations when the individual transforms of an object are
presented in a random order during training. This is analogous

to learning to recognize a face or object from a number of
random “snapshot” views rather than seeing it move smoothly.
The consequence of such a training regime is that there is
not necessarily any overlap between two consecutive transforms
in time. At the beginning of training when the feed-forward
weights are randomly initialized, this training regime may mean
that different output neurons learn to respond to different
subsets of each stimulus’ transforms, thus making it harder
for the similarity-based CT mechanism to associate all related
(overlapping) transforms together onto the same output neu-
rons. If, however, there is a sufficient number of such training
epochs and degree of competition in the output layer, even-
tually each transform will be randomly followed by a similar
enough transform such that the same postsynaptic cell is fired
which eventually learns invariance across the whole set of trans-
forms.

Initially randomizing the order of transforms degraded the
network performance as expected. However, building upon the
learning enhancement found in the previous simulations with
interleaving the stimuli, simulations were repeated with simul-
taneously randomized transform order and interleaved stimuli.
Figure 11 demonstrates that the network is able to cope with
randomizing the order of the transforms.

3.2. TRACE LEARNING
Trace learning utilizes the temporal continuity of objects in the
world to learn transformation-invariant representations (Földiák,
1991). The mechanism relies upon the proposal that over short
time scales, successive images are more likely to be transforms
of the same object rather than different objects. The trace
learning rule (Földiák, 1991; Wallis and Rolls, 1997) uses these
temporal statistics of visual input by incorporating a tempo-
ral trace of the previous (typically postsynaptic) neural activity
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FIGURE 11 | Information plots showing the effect of training the

network by randomizing the order of transforms. Despite this
paradigm representing more difficult learning conditions for a CT
mechanism, the single cell (A) and multiple cell information measures

(B) demonstrate good performance. CT learning is thus able to
build invariance if enough overlapping transforms are presented to
the network over time, irrespective of the temporal sequence they
are presented in.

into a simple Hebbian learning rule, which helps to maintain
firing in the same output cell(s) when successive transforms
are presented. Through further Hebbian synaptic modifica-
tions, successive transforms may become associated together
onto the same output cells leading to transformation-invariant
neurons.

In contrast to the CT simulations (section 3.1), here we
lengthen the synaptic time constant τEE to 150 ms to explore
the hypothesis that by continuing to bleed current into a post-
synaptic neuron, the activity generated by one transform may be
associated with the next. In this way, a temporal trace effect may
be achieved, allowing a spiking neural network to learn through
temporal rather than spatial continuity.

3.2.1. Invariance learning with a temporal trace
This simulation demonstrates the formation of transformation-
invariant representations in the output cells through STDP and a
trace-like effect from longer E → E synaptic time constants. The
other parameters remained the same as in the CT simulations
except that the maximum strength of the plastic feed-forward
excitatory synapses was reduced to 1.25 nS (from 4 nS) to com-
pensate for the greater degree of excitation arising from the
longer feed-forward synaptic time constant. Also the stimuli
were changed such that in the following trace simulations, there
are 10 transforms per stimulus (consisting of 20 neurons each)
which are shifted by 20 neurons for each transform such that
there is no spatial overlap between transforms. Since these trans-
forms are orthogonal, any CT effects from spatial overlap are
eliminated. Additionally, since the spatio-temporal statistics of
natural stimuli tend to have different transforms of the same
stimulus closer together in time more frequently than transforms
of different stimuli, the neurons were allowed to settle between

presentation of the two sets of transforms (stimuli) to effec-
tively reduce the temporal continuity between different stimuli
so as to avoid introducing an artificial trace effect between them.
These changes allow for a controlled investigation of whether
orthogonal transforms may be linked together by a trace-like
learning mechanism by lengthening the excitatory synaptic
conductance.

Due to the random initialization of the feed-forward weights,
output neurons before training respond to a random set of
transforms of each stimulus (Figure 12A), whereas after train-
ing Figure 12B shows both stimuli are represented by cells which
are invariant to most transforms of their respective stimuli, while
the information plots (Figure 13) confirm that both stimuli may
be identified with a small ensemble of output neurons. In earlier
simulations without allowing the neurons to settle between each
set of transforms (not shown here), the multiple cell information
measure was found to drop with further training. This was caused
by the association of the two stimuli together since they are pre-
sented consecutively in time during training with long synaptic
time constants, so the last transform of the first stimulus was still
active as the first transform of the second stimulus was presented,
thereby leading to their association.

3.2.2. Temporal specificity
Lengthening the synaptic conductance time constant, τEE, may
affect the dynamics of synaptic plasticity in unforseen ways, so it
was important to explore a range of values for the plasticity time
constants as for the first set of CT simulations. As before, τC =
15 ms and τD = 25 ms were used as standard for the learning time
constants but here they are shortened and lengthened by a factor
of five (keeping the same 3/5 ratio) for comparison (while τEE

remains fixed at 150 ms).
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FIGURE 12 | Raster plots of output layer cells before and after training

from the trace baseline simulation. Before training (A) the output cells
respond to random subsets of transforms of each stimulus. After training (B)

some cells are sensitive to most or all transforms of Stimulus 1 (0–2500 ms),
while other output cells are sensitive to most or all transforms of Stimulus 2
(2500–5000 ms).
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FIGURE 13 | Baseline demonstration of translation-invariant

representations for varying levels of training. The single cell information
analysis (A) shows fewer maximally informative cells than in the CT

simulations but the multiple cell information plot (B) confirms that both
stimuli are represented by cells which are exclusively tuned to one stimulus
or the other.

The results are shown in the information plots of Figure 14
and the synaptic weight distributions of Figure 15. In con-
trast to the previous CT simulations, the network performance
degrades with more temporally specific (shorter) STDP time con-
stants (Figure 14) but improves with longer, less specific STDP
time constants (the reverse trend). Similarly, this opposite trend
is borne out by the synaptic weight distributions (Figure 15)
exhibiting a smoother profile (indicating less useful training) for
short STDP time constants and a more peaked profile for longer,
less temporally specific STDP time constants.

This reverse effect may be understood in the context of
the two learning mechanisms whereby CT learning performs
best with tightly synchronized, temporally-specific causal spike
volleys, hence a temporally specific form of STDP is most
appropriate. In contrast, trace learning requires activity to con-
tinue over an extended period of time between different trans-
forms in order to associate them together, and as such the
relationship it needs to capture is less temporally specific and
thus a less specific form of STDP is better suited for this
purpose.
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FIGURE 14 | Information plots of varying STDP time constants, τC and

τD . Both single cell (A) and multiple cell (B) information measures show an
increase in network performance with longer, less temporally specific STDP

time constants and a decrease in performance with shorter STDP time
constants. This is the reverse of the trend found in the equivalent CT
simulations.
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FIGURE 15 | Synaptic Weight Distributions of varying STDP time

constants. In contrast to the standard case {τC = 15 ms, τD = 25 ms} (B)

the more peaked distribution for longer STDP time constants {τC = 75 ms,

τD = 125 ms} indicates more useful learning under this regime (A). Contrary
to the equivalent CT simulations, the use of shorter STDP time constants
{τC = 3 ms, τD = 5 ms} (C) yields a smoother, less trained profile.

3.2.3. Lateral inhibition and synchrony
As the level of inhibition is reduced, and the effects of timing jitter
from the cellular membrane potential noise become more promi-
nent, the new input layer neurons from successive transforms no
longer fire in phase with those neurons from previous transforms
and the information content of the output layer (Figure 16) can
be seen to be reduced.

3.2.4. Interleaved transforms
By interleaving transforms of the two stimuli alternately through
time, transforms from different stimuli should be associated
together by their temporal continuity with a trace-like mech-
anism. Unlike in the previous CT simulations (where the
association is not time-dependent, only similarity dependent),
this inter-stimulus association should lead to a large drop in

information since the network will be unable to distinguish
between the two stimuli. The neurons were not allowed to set-
tle between presentations of different stimuli (as with previous
trace simulations) as this would negate the effect of interleav-
ing the stimuli and undermine the purpose of this section of
simulations.

From Figure 17 it is evident that interleaving the trans-
forms of the two stimuli has significantly reduced the infor-
mation content of the network as expected. In the inter-
leaved case, the single-cell information content (Figure 17A)
has dropped to a poorer level than the untrained case (tested
with a random uniform distribution of synaptic weights) as
transforms from each stimuli have been associated together,
meaning the output cells are less able to discriminate between
stimuli than in their initial untrained, random state. From the
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FIGURE 16 | Single and Multiple cell information plots for different degrees of inhibitory strength. As the inhibitory strength decreases the information in
the network declines, exemplified in both single (A) and multiple cell (B) information measures.
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FIGURE 17 | Information plots showing the difference in training

the network normally and by interleaving transforms of

both stimuli. By interleaving the collections of transforms, the single
cell (A) and multiple cell (B) information measures indicate that

performance has dropped to lower levels than obtained with a random
(untrained) network. This is a typical property of Trace learning and is in
marked contrast to the equivalent CT learning results with short synaptic
time constants.

multiple-cell information plot (Figure 17B) it is clear that virtu-
ally all transforms of all stimuli have become associated together
since even using the ten best single-cell information neurons
barely raises the multiple cell information measure above 0-bits
since the cells are unable to discriminate one stimulus from
the other.

3.2.5. Randomized transform order
If the network is using a temporal trace to associate orthog-
onal transforms together, randomizing the order of those
transforms within a stimulus block, but still presenting all trans-
forms of one stimulus followed by all transforms of the other,
should not significantly degrade its performance. Moreover,
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FIGURE 18 | Information plots showing the difference in training the

network by presenting the transforms sequentially and by randomizing

the order of transforms. It is evident from the single cell (A) and multiple
cell (B) information measures that trace learning exhibits better performance

with randomized transformation order. This is because under the randomised
training regime, there is greater scope for associations to be made between
more pairs of transforms (rather than each with just its sequential neighbors)
over the course of many training epochs.

there is good reason to expect that the performance should
be improved slightly, as this training paradigm will help to
associate each transform, Stn

1 , with each other from the same

stimulus rather than just its neighboring transforms, Stn−1
1 and

Stn+1
1 .

It is clear from Figure 18 that with the longer synaptic con-
ductance time course (τEE = 150 ms) and the same degree of
training, the randomized transform case has performed bet-
ter than the standard non-randomized paradigm as expected,
improving further with more epochs of training. In previous
simulations this training paradigm proved difficult for the CT
mechanism with an initially random set of feed-forward weights,
since different pools of output neurons were stimulated by ran-
domly ordered transforms (due to having less spatial overlap
between consecutive transforms on average). In the case of
randomly ordered transforms with the trace learning mecha-
nism, however, the lower degree of spatial overlap is irrelevant
as the same pool of output neurons is kept active for all the
transforms of a particular stimulus by virtue of the longer
synaptic time constants and the consecutive presentation of
all transforms of a particular stimulus (albeit not necessarily
in order).

4. DISCUSSION
In the above simulations we have shown that a biologically realis-
tic spiking neural network with STDP can operate in two very
different ways to achieve transformation-invariant representa-
tions. These simulations lend more biological plausibility to the
Trace and CT learning mechanisms, which may be utilized by the
same model with slight differences in the training environment or
the physical parameters of the neurons.

With short synaptic conductance time constants between
the pyramidal neurons (τEE), the model works similarly to the
CT learning mechanism. In this case, the network requires the
transforms to be spatially overlapping (as a direct consequence
of the learning mechanism) but can cope with interleaving the
transforms of different stimuli and thus bears the characteristics
of the equivalent rate-coded mechanism (Stringer et al., 2006).
Importantly, this mechanism is sensitive to the strength of lateral
inhibition, which under optimal conditions serves to maintain
the synchronous firing of neurons representing the novel part of
an unseen transform with those already potentiated from previ-
ous learning of another transform. Without this effect of lateral
inhibition, these novel neurons will most likely fire outside the
time window for significant LTP, and may possibly come after the
postsynaptic neuron has fired leading to LTD.

Lengthening the very same synaptic conductance time con-
stants (τEE), enables the model to work with a Trace learning
mechanism. In this case the network uses temporal continuity
to associate together orthogonal (completely non-overlapping)
transforms and consequently fails to develop invariance and
stimulus specificity if the transforms of different stimuli are inter-
leaved. While these properties are the same as for the classic
McCulloch-Pitts neuron, it is interesting to note that in such a
rate-coded model, the trace term is associated with the presynap-
tic or (more commonly) postsynaptic neuron (Rolls and Milward,
2000). In contrast, in a conductance-based spiking neural net-
work, the trace can instead be associated with the individual
synapses between two connected neurons. This is a measur-
able property of biological neurons and suggests where to focus
neurophysiological investigation aiming to understand invariance
learning mechanisms.
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While the Trace and CT learning mechanisms have been stud-
ied here in isolation, it seems likely that a combination of both
would be employed to varying degrees depending upon the
statistics of the inputs to each layer of the brain. In early lay-
ers (e.g., V1), the patterns of stimulation are likely to change
more from one transform to another since the neurons here are
highly specific in their sensitivity to a location and orientation.
In later layers, however, such as Inferotemporal cortex (IT), the
invariance built in the earlier layers will mean that inputs to
these cells are less changeable from one transform to another.
Having passed through several layers of pyramidal cells with
lateral inhibition acting at each stage, the spike volleys represent-
ing a stimulus may also become more synchronized (Diesmann
et al., 1999). Under these conditions, we therefore expect that
as the similarity between transforms increases through the lay-
ers, the CT mechanism will become more prominent and trace
effects will become less important, which would be evidenced by
progressively quicker synaptic conductance decays (shorter time
constants).

If it is the case that the ventral visual system uses an effec-
tive synaptic time constant between the two extremes presented in
the simulations here, we would therefore predict that the type of
learning occurring for any given stimuli would be highly depen-
dent on how those stimuli are presented, for example with rapidly
transforming (and hence spatially dissimilar successive views)
leading to more of a Trace learning regime, whereas tempo-
rally separate exposures would require a high degree of similarity
between the views for the CT mechanism to work.

The work presented here is a first step toward understanding
how the Trace and CT learning rules may be utilised in a spik-
ing neural network, and as such will naturally have limitations.
So far, the model has been presented with orthogonal, non-
overlapping “toy” stimuli rather than the more distributed, spa-
tially overlapping stimuli found in the natural world. Whilst we
acknowledge that these highly idealized representations are some-
what lacking in ecological validity, they were employed in order
to isolate each learning mechanism in a precise and identifiable
way. Further work would benefit however from exploring these
learning mechanisms with more natural, spatially overlapping
stimuli.

A further limitation concerns the Trace learning mechanism.
By lengthening the time constant of the feed-forward synaptic
conductances, τEE, the excitatory activity reaching the output
neurons decays more slowly and results in much higher firing
rates in the output neurons (approximately 200 spikes/s) than
in the CT simulations (approximately 50 spikes/s). While these
rates are still within the realms of biological plausibility, they are
towards the edge of it and so the conclusions would be on firmer
ground through exploring additional mechanisms to reduce these
high firing rates.

4.1. FUTURE DIRECTIONS
In understanding the dynamics of learning transformation-
invariant representations in spiking neural networks, we have
only demonstrated translation invariance so far. A natural

extension to this body of work would therefore be to investigate
this learning process with with other kinds of transforms com-
monly found in natural visual scenes and investigated in rate-
coded models including, for example, rotations (Stringer et al.,
2006), occlusions (Stringer and Rolls, 2000) and changes in scale
(Wallis and Rolls, 1997). This would provide a more general
understanding of the variations in the problems of visual object
recognition that the visual system must overcome.

Furthermore, the use of realistic 3D shapes and faces will
also allow the model to be more directly compared to psy-
chophysical data, both in terms of the effects on representa-
tions formed from exposure to realistic images (Simoncelli, 2003;
David et al., 2004; Felsen and Dan, 2005; Felsen et al., 2005)
and testing if invariance learning may be achieved at natural
speeds of transformation (e.g., rotation). Neuronal parameters
such as the synaptic time constants (e.g., τEE) and the learning
time constants (τC and τD) may be crucial to invariance learn-
ing with realistic stimuli. Exploring the interaction between the
speed of transformation of objects and the parameters of the
model should lead to concrete predictions which may be tested
against neurophysiological data. For example this may reveal an
upper-threshold of stimulus movement speed which still allows
transformation-invariant representations to form, or even that
our visual systems typically use a number of static views to learn
invariance.

Natural stimuli will also test the model’s ability to learn
transformation-invariant representations with effectively dis-
tributed, overlapping representations rather than the orthogonal
non-overlapping representations employed so far. This would
mean that the network could no longer appear to solve the
problem through learning about retinal location.

In addition to enhancing the ecological validity of the
stimuli and their presentation paradigm, the model itself
could be modified to incorporate additional features found
in its biological counterpart including lateral excitatory con-
nectivity, cell firing-rate adaptation and multiple layers of
feed-forward weights, some or all of which may prove to be
necessary for solving the more complex invariance learning prob-
lems, for instance, with natural scenes composed of multiple
objects.

5. CONCLUSION
In the work presented here, we have demonstrated how a spiking
neural network may exhibit two very different modes of invari-
ance learning, which share the characteristic properties of their
rate-coded counterparts. This was achieved in a single model by
changing, (most notably), the time constant of the feed-forward
synaptic conductances and the properties of the stimulus sets.
Through developing more biologically accurate spiking models in
this way, we may build upon incites from previous work to more
fully understand the detailed mechanisms of visual invariance
learning in the brain.
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