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ABSTRACT For many years has been well known that smoking could cause lung damage. Chronic
obstructive pulmonary disease and lung cancer have been the two most common smoking-related lung
diseases. In the recent years, attention has also focused on the role of smoking in the development of
interstitial lung diseases (ILDs). Indeed, there are three diseases, namely respiratory bronchiolitis-
associated ILD, desquamative interstitial pneumonia and pulmonary Langerhans cell histiocytosis, that are
currently considered aetiologically linked to smoking and a few others which are more likely to develop in
smokers. Here, we aim to focus on the most recent findings regarding the role of smoking in the
pathogenesis and clinical behaviour of ILDs.
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Introduction
Cigarette smoking is a very common and addictive habit and is well known for its harmful effects because of
the high number of chemicals contained. The role of smoking in many human diseases, such as chronic
obstructive pulmonary disease (COPD), lung cancer and atherosclerosis, has already been defined [1–3].
Interestingly, the link between cigarette smoking and interstitial lung diseases (ILDs) is not yet well established.

Recently, VASSALLO et al. [4] proposed four groups of smoking-related ILDs based on associations with
cigarette smoking (table 1). The first group includes respiratory bronchiolitis-associated ILD (RB-ILD),
desquamative interstitial pneumonia (DIP) and pulmonary Langerhans cell histiocytosis (PLCH), three
chronic diffuse lung diseases that are strongly aetiologically linked to smoking (fig. 1) [5, 6]. The second
group consists of two acute ILDs, acute eosinophilic pneumonia and pulmonary haemorrhage syndrome, in
which smoking seems to have an important pathogenetic role, although to a lesser extent than in the first
group. The third group contains idiopathic pulmonary fibrosis (IPF) and rheumatoid arthritis-related ILD
(RA-ILD), diseases in which smoking is increased in prevalence. Finally, the fourth group includes
sarcoidosis and hypersensitivity pneumonitis, two diseases that are actually less likely to develop in smokers
[4]. The protective effect of smoking in these diseases may result from suppression of T-helper cell (Th)1
immunity by cigarette smoking, but at a price in terms of other forms of damage and functional impairment
of the immune system, potentially leading to alternative lung diseases. Nonetheless, even in sarcoidosis it has
been demonstrated that when smokers develop the disease the outcome is worse than in nonsmokers [7].

Plainly, identifying the exact role of smoking in ILDs is extremely important as understanding the relevant
pathogenetic pathways may allow the development of new drugs targeting pathways activated by smoking
as well as the inclusion of ILDs in the campaigns against smoking, as is already happening with great
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success for non-ILDs including COPD and lung cancer. It is also important from a clinical point of view
as recognition of a smoking-related phenotype would facilitate early diagnosis and treatment, especially
with regard to IPF, the most common and progressive form of ILD.

Is smoking related to the pathogenesis of ILDs?
There has been a lot of progress regarding the understanding of the role of smoking in the pathogenesis of
ILDs, but many pieces of the jigsaw are still missing. The lungs of smokers are continuously exposed to
insults, such as the cytotoxic, mutagenic and proinflammatory substances contained in cigarettes, leading
to an increasing risk of the development of lung disorders. Respiratory bronchiolitis, which is present
histologically in all active smokers, is characterised by the accumulation of pigmented “smoker’s
macrophages” in respiratory bronchioles and neighbouring alveoli, containing granular, yellow-brown
cytoplasmic pigments [8]. Therefore, respiratory bronchiolitis may be considered a “normal” physiological
response to cigarette smoking unless it is sufficiently severe to have the features of a clinically overt ILD,
based on clinical symptoms or lung function impairment [4, 9–13]. Thus, the definition of a healthy
smoker refers to an asymptomatic smoker with normal lung function values, even if respiratory
bronchiolitis is present. Oxidative stress, increased epithelial apoptosis and deregulated immune responses
represent well known smoking induced mechanisms [14–21]. It is known that cigarette smoking causes
inflammatory cell recruitment, mostly macrophages, which have reduced apoptosis and increased survival.
Lung macrophages are also functionally affected and recent evidence suggests an induction of the M2
phenotype upon smoking stimulation [22–25]. The M2 phenotype of macrophages is known to enhance
resolution of inflammation and tissue remodelling.

Osteopontin
PRASSE et al. [26] showed that osteopontin (OPN), a glycoprotein with cytokine properties, is significantly
increased in patients with smoking-related ILDs (fig. 2). This glycoprotein is found in the extracellular
matrix of bone and has chemotactic properties for macrophages, monocytes, dendritic cells and
Langerhans cells. Interestingly, this study demonstrated evidence of chronic nicotine stimulation in
macrophages of patients with DIP and PLCH. The authors also proposed that nicotine is able to promote
increased OPN and granulocyte-macrophage colony-stimulating factor production by alveolar
macrophages, suggesting an association between nicotine and the accumulation of immune cells in
smoking related-ILDs [26]. Nicotine is known to affect many organs in the human body and to alter the
normal function of cells that express nicotine receptors.

Nicotine
Nicotine has pleiotropic effects which seem to be concentration-dependent; it has been hypothesised that
it enhances fibrogenesis through several mechanisms [27] including endothelial and epithelial damage,
production of proinflammatory cytokines, and activation of transforming growth factor (TGF)-β,
macrophages and fibroblasts. An in vivo study, by ROOMANS et al. [28], reported that nicotine alters the
homeostasis of epithelial cells in the lung, enhances inflammatory reactions and increases eosinophil
numbers in the trachea. In the mouse kidney, nicotine increases the production of TGF-β and the
expression of epithelial–mesenchymal transition markers [29]. While in human hepatic cells it also
induces TGF-β and collagen expression, promoting fibrogenesis [30]. In addition, TGF-β release is
induced by smoke exposure in rat tracheal explants, potentially promoting airway remodelling [31].

TABLE 1 Classification of smoking related-interstitial lung diseases (ILDs)

1) Chronic ILDs strongly associated with
cigarette smoking

Respiratory bronchiolitis-associated ILD
Desquamative interstitial pneumonia
Adult pulmonary Langerhans cell histiocytosis

2) Acute ILDs related to smoking Acute eosinophilic pneumonia
Pulmonary haemorrhage syndromes

3) ILDs that are more prevalent in smokers Idiopathic pulmonary fibrosis
Rheumatoid arthritis-associated ILD

4) ILDs that may be less prevalent in smokers Hypersensitivity pneumonitis
Sarcoidosis

Reproduced and modified from [4] with permission from the publisher.
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Smoking-related epigenetic alterations
Smoking promotes epigenetic alterations that persist for years even after smoking cessation. It has been
detected that smokers display increased levels of promoter hypermethylation, and higher levels of DNA
methyltransferase 1, resulting in decreased expression of several genes, mainly associated with the cell cycle
[32]. Histone H4 acetylation, in parallel with reduced function of histone deacetylase-2, is also induced by
smoking [33–35]. Two studies by Coward and colleagues suggested that defective histone acetylation and
histone hypermethylation may have a role in the fibrogenic process in IPF [36, 37], highlighting the
importance of epigenetic deregulation in the development of the disease.

Citrullination
Citrullination, a post-translational modification of proteins that alters their structure and has functional
consequences regarding their immunogenicity, is triggered by smoking and appears to be characteristic of
rheumatoid arthritis. Patients with anti-citrullinated protein antibodies (ACPAs) are more likely to have
lung abnormalities [38, 39]. Interestingly, FISCHER et al. [40] showed that, in some patients, ACPA positivity
and lung abnormalities develop prior to joint disease. It is established that in smokers with rheumatoid
arthritis there are citrullinated peptides in the bronchoalveolar lavage fluid cells, which are not present in
nonsmokers [41]. Two recent studies revealed higher levels of specific ACPAs in RA-ILD patients than in
patients with rheumatoid arthritis without ILD [42, 43], and there was also an association with a usual
interstitial pneumonia (UIP) pattern on high-resolution computed tomography (HRCT) [43]. These
findings may be indicative of an important role for smoking and citrullination in the development of ILD
related to rheumatoid arthritis and provide new diagnostic tools concerning lung involvement [38, 44].

a) b)

c) d)

FIGURE 1 High-resolution computed tomography images of smoking-related interstitial lung diseases (ILDs).
a) Pulmonary Langerhans cell histiocytosis, b) respiratory bronchiolitis-associated ILD, c) combined pulmonary fibrosis
and emphysema, and d) desquamative interstitial pneumonia.
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Premature ageing
Premature ageing may be an important pathogenetic mechanism in lung diseases [45–48]. Cellular senescence,
telomere shortening, oxidative stress and DNA damage are considered hallmarks of the ageing process [49].
Telomeres are special nucleotide repeats at the ends of chromosomes that provide chromosomal stability.
Telomeres shorten progressively during replication, without losing coding information. When telomeres reach
a critical length, however, the cell dies. Cigarette smoking is known to promote telomere shortening and this
phenomenon has been described in alveolar epithelial cells and in peripheral blood cells in IPF [50–52].
Interestingly, circulating leukocytes in smokers have shorter telomeres in a dose-dependent manner [53, 54].
Additionally, DNA damage and oxidative stress have been found in higher levels in smokers [46, 55]. It has
been demonstrated that tobacco, and other stimuli that cause DNA damage, result in an abnormal repair
process and fibrosis, partially due to senescent bone marrow-derived stem cells [56]. These cells can migrate
and make a major contribution to lung repair mechanisms. Cigarette smoke is also a known source of
exogenous oxidants, resulting in an imbalance of pro-oxidant and antioxidant molecules, especially in the
presence of a deficiency in the cellular control systems of reactive oxygen species (ROS) production [45, 57].

Autophagy/mitophagy
During ageing, proteins and cellular debris are ineffectively cleared and accumulate in the cell. Such a
defect in cellular housekeeping mechanisms leads to senescence or apoptosis [46, 58, 59]. Autophagy is a
tightly regulated and selective process responsible for the degradation of cellular components via the
lysosomal pathway. It is vital for cellular homeostasis, as it represents a quality control mechanism for the
cell and participates in bioenergetic adaptation to starvation. It has several physiological and
pathophysiological functions contributing to human disease pathogenesis [60–63]. Mitophagy is the
selective autophagy of mitochondria, which are central to healthy cell metabolism but can also inflict
cellular damage and trigger apoptosis by releasing toxic by-products of oxidative phosphorylation.
Oxidative stress causes mitochondrial depolarisation and dysfunction and the accumulation of impaired
mitochondria determinates cell fate and function [64]. Mitophagy is the major mechanism for efficient
clearance of dysfunctional mitochondria, thereby having an important role in homeostasis [64–66].
Although recent studies have examined the contribution of autophagy and mitophagy to the development
of lung disorders, its pathogenetic role is not well established. Smoke exposure enhances autophagy in
mouse lungs leading to emphysema, perhaps by increasing epithelial cell apoptosis [67, 68]. However,
autophagy is supposedly specific to cell type and, thus, in alveolar macrophages in COPD patients, there
appears to be a selective defect in autophagy resulting in impaired clearance of damaged and dysfunctional
mitochondria [69]. After treatment with cigarette smoke, recent studies have shown altered mitochondrial
structure (elongation) and function in alveolar epithelial cells [70], and in primary bronchial epithelial
cells [71]. By contrast, HARA et al. [72] demonstrated mitochondrial fragmentation in primary human
bronchial epithelial cells upon stimulation with cigarette smoke extract for 48 h. It has been suggested that
while mitochondria initially adapt to cigarette smoke and oxidative stress by altering their structure, this
may be not beneficial in the long term due to a resultant decrease in mitophagy [70]. Recently, AHMAD

et al. [73] proposed a pathway of smoke-induced cellular senescence due to impaired mitophagy. In 2012,
PATEL et al. [74] showed low levels of autophagy in IPF lungs. The suggested mechanism is TGF-β-induced
activation of phosphatidylinositol-3 kinase and the mammalian target of rapamycin, which are known

FIGURE 2 Chronic nicotine
stimulation leads to recruitment of
inflammatory cells. nAchR: nicotinic
acetylcholine receptors.

Nicotine stimulation

nAchR expression in alveolar macrophages

Osteopontin and granulocyte-macrophage 
colony-stimulating factor

Recruitment and survival of macrophages and
dendritic cells
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inhibitors of autophagy. It has been suggested that autophagy protects against lung fibrosis and, thus,
smoking may suppress autophagy by inducing TGF-β production. A more recent study by PATEL et al. [75]
demonstrated damaged mitochondria in IPF lungs and mitochondrial depolarisation in TGF-β treated
lung epithelial cells. It had already been reported by BUENO et al. [76], in 2014, that a defect in mitophagy
due to deficiency of a major regulatory molecule (PTEN-induced putative kinase (PINK)1) leads to
mitochondrial damage and lung fibrosis.

Is smoking a risk factor and does it affect the progression of ILDs?
In IPF, smoking is now considered a risk factor, and probably interacts with genetic predisposition and
other factors such as viral infections and gastro-oesophageal reflux [77]. Current or former smokers are
almost 60% more likely than lifelong nonsmokers to develop IPF [78, 79]. In former smokers, the shorter
the time interval from quitting smoking then the higher the likelihood of developing IPF is. Relatives of
patients with familial IPF, which is either symptomatic or asymptomatic, with features of ILD on HRCT
have a significantly higher prevalence of smoking compared with those without ILD features [80].

It should be stressed that, ideally, the exact effect of smoking on the development and progression of ILDs
would be explored through longitudinal studies, which are very unlikely to ever be undertaken due to the
relative rarity of ILDs and the high number of the scans required. However, recent studies of lung cancer
screening and COPD may shed some light on this matter. In the COPD Gene study, 8% of smokers had
interstitial lung abnormalities (ILAs) on HRCT, which were subclassified as subpleural, centrilobular,
subpleural and centilobular, and “radiographic evidence of ILD”. The presence of ILD was associated with
a significantly higher likelihood of a history of smoking and significantly greater exposure to tobacco
smoke in smokers [81]. A follow-up HRCT trial for cancer screening has identified ILAs in 9.7% of
participants who were current or former smokers with a smoking history >30 pack-years [82].
Non-fibrotic ILAs, defined as ground-glass opacities, consolidations and mosaic attenuation, were present
in 5.9% of cases whereas fibrotic ILAs, defined as reticulation with or without ground-glass opacities and
honeycombing, were present in 2.1% of cases. After a follow-up of 2 years, 49% of non-fibrotic ILAs had
improved and 11% had progressed. In contrast, none of the patients with fibrotic ILAs (which may
represent UIP or fibrotic nonspecific interstitial pneumonia) had improved and 37% had progressed [82].
However, the authors did not find any association between disease progression on HRCT and smoking
status or smoking dose (pack-year smoking history). In another study, 25% of smokers with initial
abnormalities defined as “other chronic interstitial pneumonia” had progressed after 3 years, with
progression always linked to continuation of smoking [83]. The question of whether smoking is the only
risk factor responsible for the development of ILD in smokers remains unanswered. A panel of clinicians,
radiologists and pathologists with expertise in ILDs were unable to accurately specify smoking status in a
group of patients with an unknown smoking history simply by applying characteristic HRCT ILD features
identified in a group of known smokers. For example, in one patient considered to have truly classical
features of smoking-related ILD, there was no history of either active or passive smoking, providing
indirect support for the contribution of other pathogenetic factors [84].

Surprisingly, it was suggested in one study that smoking may confer a protective effect against IPF
progression, based on the observation that currently smoking IPF patients had a better survival [85].
However, this finding is likely to be related to the fact that smokers with more severe disease usually quit
smoking whereas smokers with less severe disease are less likely to. Therefore, current smoking is
associated with lengthier survival by virtue of linkage to less severe disease. The existence of this apparent
paradox, a form of the “healthy smoker effect”, was confirmed in a subsequent IPF study, in which current
smokers lived longer but had no survival advantage after adjustment for initial disease severity using the
composite physiologic index (which captures the functional effects of ILD while excluding those of
emphysema [86]). In this study, survival was significantly better in never-smokers compared with former
smokers and also with the combined group of former and current smokers [87].

The coexistence of emphysema and IPF has drawn attention recently. The entity, known as combined
pulmonary fibrosis and emphysema (CPFE), is characterised by the presence, on HRCT, of emphysema
mainly in the upper lobes and fibrosis mainly in the lower lobes although the two patterns can be also
admixed (fig. 1) [88]. This entity has some peculiarities. First, there is a spurious preservation of lung
volumes in association with a disproportionate and sometimes devastating reduction in diffusing capacity
of the lung for carbon monoxide and transfer coefficient of the lung for carbon monoxide. This means
that serial forced vital capacity (FVC), the most reliable means of detecting disease progression in ILD, is
likely to be less accurate in this context. This is especially important in IPF where even a minimal
reduction in FVC (i.e. 5–10%) in 6 months has been associated with increased mortality [89]. These
patients are more likely to develop pulmonary hypertension than IPF patients without emphysema with an
important impact on survival [90], although it remains unclear whether a worse outcome merely reflects
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greater baseline disease severity when two separate disease processes are admixed. Importantly, it is
sometimes difficult to discriminate between honeycombing and an admixture of emphysema and fibrosis
on HRCT, a distinction that is pivotal in the diagnosis of IPF. CPFE can be also observed in the context of
connective tissue disorders such as rheumatoid arthritis and systemic sclerosis [91, 92].

Clearly, smoking can indirectly affect the survival of patients with pulmonary fibrosis through the
development of bronchogenic carcinoma. Certain intriguing similarities between lung cancer and IPF with
regard to pathobiology and disease behaviour have been highlighted [93]. Conceivably, the development of
lung cancer has a detrimental effect on survival of IPF patients. Recently, and in accordance with previous
studies, it has been observed that patients with lung cancer have significantly lower median survival
(38.7 months) than patients with IPF (63.9 months) [94]. This difference was mainly due to progression of
lung cancer or to complications of IPF such as acute exacerbations after diagnostic or therapeutic
procedures for lung cancer. Patients in the early stage of both diseases have better survival and a lower
likelihood of complications than patients with severe disease. Therefore, early diagnosis and the accurate
staging of severity in both diseases are equally important.

Conclusion
Our knowledge regarding the involvement of smoking in the pathogenesis of ILDs has evolved in the
recent years. Smoking is now considered the principal pathogenetic factor for RB-ILD, DIP and PLCH,
whereas it is an important cofactor, probably acting in synergy with genetic and environmental factors, for
the development of other ILDs such as IPF and RA-ILD. It definitely has a significant impact on the
survival of patients with either an isolated ILD or in cases of concurrent development of emphysema and
lung cancer, two well established smoking-related lung diseases. Therefore, smoking cessation should be
advised in all patients with ILDs.
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