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Severe malaria (SM) is a leading cause of global morbidity and mortality, particularly in
children in sub-Saharan Africa. However, existing malaria diagnostic tests do not reliably
identify children at risk of severe and fatal outcomes. Dysregulated host immune and
endothelial activation contributes to the pathogenesis of SM. Current research suggests
that measuring markers of these pathways at presentation may have clinical utility as
prognostic indicators of disease progression and risk of death. In this review, we focus on
the available evidence implicating soluble urokinase-type plasminogen activator receptor
(suPAR) as a novel and early predictor of severe and fatal malaria and discuss its potential
utility for malaria triage and management.
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1 INTRODUCTION

Malaria remains a primary cause of childhood illness and death in sub-Saharan Africa (1). Malaria
rapid diagnostic tests (RDTs) are overwhelmingly the diagnostic tool used in malaria-endemic
countries to confirm suspected cases. Although RDTs are less sensitive than microscopy or nucleic
acid amplification techniques, they are fast, inexpensive, and a low-expertise method to quickly
diagnose Plasmodium falciparum and Plasmodium vivax infections. Regardless of the method used
to detect malaria parasites, no current diagnostic test can reliably predict which children will
progress to severe or fatal disease. Dysregulated host immune and endothelial activation contributes
to the pathogenesis of severe malaria (SM) (2). Host-based prognostic biomarkers, especially if
incorporated into RDTs, have the potential to improve risk stratification and outcome of children
with malaria (2–6).

Soluble urokinase-type plasminogen activator receptor (suPAR) is an indicator of immune and
endothelial activation and plays an important role in processes including cell migration, adhesion,
Abbreviations: AKI, acute kidney injury; CI, confidence interval; CM, cerebral malaria; ECM, extracellular matrix; ELISA;
enzyme-linked immunosorbent assay; FPRL-1, formyl peptide receptor-like 1; FSG, focal segmental glomerulosclerosis; GPI,
glycosylphosphatidylinositol; ICAM-1, intercellular adhesion molecule 1; IFN-g, interferon gamma; IL-2, interleukin 2; RDT,
rapid diagnostic test; SM, severe malaria; suPAR, soluble urokinase-type plasminogen activator receptor; TLR, Toll-like
receptor; TNF-a, tumor necrosis factor alpha; UM, uncomplicated malaria; uPA, urokinase; uPAR, urokinase-type
plasminogen activator receptor.
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and chemotaxis. Elevated suPAR levels have been linked to poor
prognosis in various infections including HIV-1, tuberculosis,
and sepsis. Emerging evidence also suggests that increased
circulating levels of suPAR are associated with disease severity
and mortality in children with malaria. Here, we report an
overview of urokinase/urokinase-type plasminogen activator
receptor (uPA/uPAR) biology, review what is known about
suPAR in pediatric malaria, and discuss the ability of suPAR to
predict disease outcome and its potential as a druggable target.
We summarize putative mechanisms through which suPAR may
contribute to the pathogenesis of malaria. Lastly, we outline the
need for research investigating the causal role of suPAR in
malaria and the evaluation of a currently available suPAR
point-of-care test as a potential triage tool for severe malaria in
prospective trials.
2 STRUCTURE AND FUNCTION
OF SUPAR

uPAR is a glycosylphosphatydilinositol (GPI)-anchored protein
that contains three homologous domains (D1, D2, and D3) and is
expressed on the surface of various cell types including immune,
endothelial, epithelial, and smoothmuscle cells (7, 8). suPAR is the
soluble form of the membrane-bound receptor uPAR that is
released into circulation (9) (Figure 1). Three soluble forms of
uPAR are produced by cleavage at the GPI anchor and/or linker
region connecting D1 and D2: suPARD1–D3 (full-length suPAR),
suPARD2D3 (cleaved suPAR), and suPARD1. Full-length suPAR
is involved in various cellular processes including proteolysis,
migration, adhesion, and proliferation since it can interact with
other extracellular matrix (ECM) proteins and receptors (e.g.,
integrins and vitronectins) (10, 11). Also, this soluble form of
uPAR is a scavenger of urokinase-type plasminogen activator
(uPA; also known as urokinase), the ligand for membrane-
associated uPAR, in the ECM; thus, full-length suPAR can
competitively inhibit uPAR (12). In contrast, cleaved suPAR is
primarily involved in the chemotaxis of immune cells (e.g.,
monocytes and neutrophils) (13). Unlike these active forms of
suPAR, suPAR D1 has no known biological functions and is
rapidly cleared from circulation (14).

2.1 The uPA/uPAR System at the
Intersection of Inflammation,
Fibrinolysis, and Coagulation
uPA, a serine protease, and its cellular receptor uPAR exhibit
pleiotropic functions during both physiological and pathological
processes. The uPA/uPAR system mediates numerous critical
cellular functions including extracellular proteolysis, chemotaxis,
cell adhesion, vascular homeostasis, and tissue remodeling and
repair (10, 15–17).

The uPA/uPAR system has a central role in fibrinolysis and
the modulation of host inflammatory and immune responses
(18, 19). Binding of uPA to membrane-bound uPAR catalyzes
the activation of plasminogen to plasmin, an enzyme critical for
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the degradation of fibrin (20). Notably, uPA-mediated
plasminogen activation is implicated in various processes
requiring cell migration, which is an essential event in both
physiological and pathological processes (e.g., cell recruitment,
wound healing, and angiogenesis) (21–24).

The uPA molecule is directly involved in mechanisms of
migration, adhesion, and chemotaxis (16). Importantly, uPA can
regulate many of these processes independent of uPAR binding.
Unlike uPA, which can directly mediate fibrinolysis by activating
plasminogen, uPAR is thought to indirectly participate in local
fibrinolysis through its chemotactic activity (25). Full-length
suPAR, which contains the D1 uPA-binding domain, can bind
many of the same ligands (e.g., uPA, integrins, and vitronectin)
as membrane-bound uPAR (12, 26). Therefore, suPAR–integrin
interactions may trigger downstream signaling events. In
addition, increased production of suPAR may disrupt uPA/
uPAR-dependent proteolysis and/or alter cell signaling
pathways since suPAR competes with membrane-bound uPAR
for uPA in the ECM (27). In effect, suPAR may be a negative
regulator of uPA/uPAR-dependent plasminogen activation and
contribute to inhibited fibrinolysis, i.e., suPAR may indirectly
exert pro-coagulant functions. Thus, suPAR may induce and
modulate uPAR-dependent cell signaling responses and the
processes catalyzed by these molecules and their interaction
with membrane-associated uPAR (16). In contrast, cleaved
suPAR (suPAR D2D3), which lacks the D1 binding domain, is
mainly involved in chemotaxis since it can activate formyl
peptide receptor-like 1 (FPRL-1) thereby promoting the
immune response. The production of this form of suPAR by
activated neutrophils in sites of acute inflammation may
contribute to the recruitment of monocytes to these sites
during infection (28).

2.1.1 The uPA/uPAR System Promotes Inflammation
and Immune Activation
In addition to its role in fibrinolysis, the uPA/uPAR system
participates in inflammatory and immune activation pathways
(Figure 1A). uPAR anchors uPA at the cell surface which favors
ECM degradation and regulates cell migration, adhesion, and
proliferation, thereby influencing the development of
inflammatory and immune responses (15, 21). Since membrane-
tethered uPAR lacks transmembrane and intracellular domains, it
requires interactions with other coreceptors and proteins to induce
cell signaling and mediate cytoskeletal reorganization (10, 29).
uPAR on the cell surface interacts with integrin b1, b2, and b3
family members and G-protein-coupled receptors (GPRs)
including FPRL-1 to modulate cell adhesion and migration (10,
16, 30). Membrane-bound uPAR is involved in the recruitment of
leukocytes to acute sites of inflammation via integrated
mechanisms including proteolysis, adhesion, migration, and
mitogenesis (21, 22). The functional interaction between uPAR
and integrins is believed to be critical for leukocyte recruitment
and activation (21). In addition, membrane-bound uPAR interacts
with FPRL-1 to exert chemotactic effector functions, which
promotes the recruitment and activation of immune cells (e.g.,
monocytes, neutrophils, macrophages) during immune and
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FIGURE 1 | Schematic representation of the (A) normal physiological role of suPAR in inflammation and immune activation vs. (B) proposed mechanism of
action of suPAR in the pathogenesis of severe malaria. (A) uPAR is a three-domain (D1, D2, and D3) GPI-anchored protein expressed on the cell surface of
immune, endothelial, epithelial, and smooth muscle cells. Full-length suPAR is involved in a variety of cellular processes including proteolysis, migration,
proliferation, and adhesion through its interactions with ECM proteins such as integrins and vitronectins as well as other receptors. Also, suPAR is a regulator
of the plasminogen activation system since it can scavenge and bind the serine protease uPA in the ECM thereby competitively inhibiting uPAR. Cleaved
suPAR interacts with FPRL-1 to induce chemotaxis of immune cells (e.g., monocytes, neutrophils). suPAR D1 is rapidly cleared from circulation and is
biologically inactive. suPAR is released into circulation during infection, and therefore, the circulating concentrations of suPAR reflect the extent of immune
activation and inflammation in an individual. Under normal physiological conditions, low levels of circulating suPAR are detected in the healthy population.
(B) During P. falciparum infection, PEs bind to and sequester in microvascular endothelial cells. Recognition and binding of parasite products (e.g., PfGPI) to
Toll-like receptors on monocytes and ECs activates them to produce and secrete pro-inflammatory cytokines (e.g., TNF-a) and chemokines, and there is
upregulation of the expression of cell-adhesion molecules on endothelial cells (e.g., ICAM-1) to which PEs bind. Increased production of pro-inflammatory
cytokines/chemokines and immune activation stimulate uPAR-expressing cells (e.g., monocytes) to produce and secrete suPAR. Initially, increased local levels
of suPAR in children with malaria may promote protective innate immune responses in the host defense by promoting the recruitment of immune cells (e.g.,
neutrophils and monocytes) to acute sites of infection via its chemotactic effector functions. Through its interactions with other ECM proteins and receptors
(e.g., integrins), suPAR can also trigger downstream signaling resulting in the upregulation and expression of adhesion molecules (e.g., ICAM-1). In the
absence of early treatment, parasite numbers continue to increase and PEs further accumulate and sequester in microvascular ECs due to the upregulated
expression of adhesion molecules. As a result, the production and secretion of pro-inflammatory cytokines/chemokines are exacerbated, ultimately resulting in
a systemic increase in inflammation and immune activation. Elevated circulating suPAR may amplify the release of cytokines/chemokines and the recruitment
of immune cells, which contributes to sustained systemic inflammation and immune activation. Excessive inflammation in malaria could also trigger biological
processes leading to marked increases in circulating suPAR. Although further studies are needed to elucidate its role, suPAR may contribute to enhanced
chemokine and cytokine secretion that culminates in endothelial dysfunction, multiorgan failure, and death in children with malaria. High circulating
concentrations of suPAR in children with malaria may therefore reflect excessive activation of immune cells, adhesion of PEs at sites of inflammation,
disturbances in hemostasis, or a combination of these. Collectively, suPAR may be involved in a positive feedback loop that results in high levels of local and
systemic immune activation and inflammation through its own pro-inflammatory properties and by activating and recruiting other chemokines and cytokines via
chemotaxis. Also, the pathobiology of severe falciparum malaria is associated with upregulation of coagulation pathways. Elevated suPAR levels may indirectly
exert pro-coagulant effects by enhanced binding to uPA and competitive inhibition of membrane-bound uPAR thereby indirectly inhibiting uPA-dependent
fibrinolysis or by stimulating activation of coagulation mechanisms via intrinsic and extrinsic pathways. Elevated levels of suPAR in children with malaria may
reflect the degree to which some or all of these processes occur. EC, endothelial cell; ECM, extracellular matrix; P. falciparum, Plasmodium falciparum; PfGPI,
GPI, Plasmodium falciparum glycosylphosphatidylinositol; GPI, glycosylphosphatidylinositol; ICAM-1, intercellular adhesion molecule-1; PE, parasitized
erythrocyte; SM, severe malaria; suPAR, soluble urokinase-type plasminogen activator receptor; uPA, urokinase or urokinase-type plasminogen activator;
uPAR, urokinase-type plasminogen activator receptor.
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inflammatory responses (16). Vitronectin, an extracellular protein,
is another important uPAR ligand that promotes cell adhesion and
migration (8). Vitronectin is at the intersection of the uPA/uPAR
and integrin systems since it can bind both uPAR and integrins,
and integrin-bound vitronectin is required for uPAR (31, 32). In
addition, uPAR regulates integrin activity and uPAR-bound uPA
enhances uPAR binding to vitronectin, which highlights the
importance of the uPA/uPAR system in coordinating cell–cell
and cell–ECM interactions (21, 29). uPAR and its partners cross-
regulate each other and there is considerable cross-talk between
these pathways (32).

2.2 uPAR/suPAR and
Endothelial Dysfunction
Dysregulated host endothelial activation is a keypathophysiological
feature in P. falciparum infection (2). uPAR and suPAR have
previously been linked with endothelial dysfunction (33–35).
uPAR is expressed on endothelial cells and upregulated during
endothelial activation (36, 37). Post-mortem tissues of patientswith
cerebral malaria (CM) showed upregulated expression of uPAR on
endothelial cells limited to CM-associated lesions, implicating
uPAR in blood–brain barrier disruption and immunologic injury
during CM (38). The authors also suggested that uPAR may be an
additional adhesion molecule for parasitized erythrocytes (PEs) on
activated endothelial cells since uPAR reactivity exclusively co-
localized to lesions with PEs sequestered in cerebral
microvasculature. suPAR levels also positively correlate with
circulating markers of endothelial dysfunction (39, 40). The uPA/
uPAR system has been suggested to contribute to the pathogenesis
of SM by influencing platelet sequestration and/or activating the
endothelium (37, 38, 41, 42). Upregulated expression of cellular
adhesion molecules (e.g., ICAM-1) on endothelial cells promotes
sequestration of PEs to the vascular endothelium in vivo (43, 44).
Interactions between endothelial cells and immune cells stimulate
the release of suPAR, suggesting a potential link between elevated
levels of suPAR and inflammatory processes in the microvascular
endothelium (45). Given the role of suPAR inmodulating immune
responses and cell adhesion, it is possible that suPAR may
contribute to endothelial dysfunction in SM by inducing
intracellular signaling cascades that lead to upregulated
expression of cellular adhesion molecules on the surface of
microvascular endothelial cells and/or promoting pro-
inflammatory cytokine production, which may also contribute to
the upregulation of host adhesion receptors.

2.3 uPA, uPAR, and suPAR Are
Upregulated During Infection
The importance of the uPA/uPAR system in modulating
immune and inflammatory responses during infection has
been well documented. uPAR expression is upregulated on
endothelial and hematopoietic cells during bacterial infection
and in response to pro-inflammatory cytokines [e.g., tumor
necrosis factor alpha (TNF-a), interferon gamma (IFN-g), and
interleukin 2 (IL-2)] (25). For example, patients with melioidosis
have upregulated uPAR expression, and in the experimental
model of Burkholderia pseudomallei melioidosis, uPAR
knockout mice had reduced neutrophil migration to the
Frontiers in Immunology | www.frontiersin.org 4
primary site of infection and increased bacterial growth and
organ inflammation (46). These findings indicate that uPAR
deficiency may result in impaired host innate immune responses
to infection. In vitro, uPAR-deficient macrophages and
granulocytes had impaired phagocytosis of B. pseudomallei.
Similar findings from other animal models show that uPAR
deficiency in mice impairs the recruitment of neutrophils and
leukocytes (22, 47). In vitro, antisense blockade of uPAR leads to
impaired leukocyte migration (48). uPA-knockout mice have
impaired recruitment of mononuclear cells during infection in
vivo (49). Furthermore, the uPA/uPAR system is involved in the
activation and differentiation of T cells; uPA and uPAR are
upregulated during T-cell activation (19). In response to
Pseudomonas aeruginosa infection, uPA- and uPAR-knockout
mice have impaired lymphocyte recruitment to the lung, which
suggests that uPA/uPAR may promote T-cell effector functions
at the sites of infection (22). Collectively, these findings show that
uPA and uPAR modulate host defense in response to infection
and are important for protective immunity. The role of suPAR in
innate immune responses in vivo is relatively unexplored.
Evidence suggests that suPAR may elicit the recruitment and
activation of pro-inflammatory cells (i.e., monocytes and
neutrophils) (28). However, as with other innate immune
responses, dysregulated suPAR production during infection has
the potential to mediate disease pathobiology.

2.3.1 Dysregulation of the uPA/uPAR System Is
Linked to Pathology
Upregulated uPA, uPAR, and suPAR are linked with various
pathological conditions (50–55). In patients with systemic
inflammation and cirrhosis, circulating suPAR levels are related
to immune activation and function as a marker of poor clinical
outcomes (56, 57). In vivo, suPAR may stimulate the recruitment
and activation of leukocytes, which promotes inflammation and
immune activation (28). Excessive inflammation is an established
mechanismcontributing to tissuedamage andorgandysfunction in
multiple infections (58–60). Thus, it is not unexpected that
dysregulation of the uPA/uPAR system and suPAR, which
promotes inflammation and immune activation, may mediate
host pathobiology. Evidence from a preclinical study of HIV-1
supports this notion. In cell culture, suPAR expression and release
was upregulated in lymphoid organs during HIV-1 infection (53).
Cleaved suPAR in HIV-infected cells inhibited chemotaxis and
induced virus expression, suggesting that suPAR contributes to
dysregulated immuneactivationandpathogenesis inHIV infection.
Considerable evidence from clinical studies also supports a link
between suPAR and the pathophysiology and clinical outcomes of
various life-threatening infections, including malaria (40, 61, 62).
3 SUPAR IS A MARKER OF DISEASE
PROGRESSION AND POOR PROGNOSIS
IN INFECTIOUS DISEASES

The prognostic value of suPAR has previously been documented
in infectious diseases of variable origin (bacterial, viral, and
June 2022 | Volume 13 | Article 931321
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parasitic) including tuberculosis, bacteremia and/or sepsis,
meningitis, hepatitis B and C, HIV-1, hemorrhagic fever,
hantavirus, malaria, and most recently coronavirus disease
2019 (COVID-19) (63–72). Across multiple infectious diseases,
suPAR levels are elevated and predict the severity of illness and
poor clinical outcomes.

In patients with HIV-1 infection, suPAR is associated with
disease severity, mortality risk, and ineffective immune recovery
(54, 68). Elevated plasma suPAR levels (both intact and cleaved
suPAR) have been reported to reflect immune activation and
independently predict mortality outcome in HIV-1-infected
patients (68). In a study of critically ill children with sepsis,
circulating suPAR levels were significantly higher in non-
survivors compared with survivors, and suPAR was a reliable
indicator of ICU mortality (73). Consistent with these findings,
suPAR was an excellent predictor of mortality outcome in
patients with hemorrhagic fever (69). Similarly, patients with
meningitis have elevated cerebrospinal fluid suPAR levels, and
increased suPAR is a strong predictor of a fatal outcome (61).
suPAR is also associated with clinical severity and case fatality in
COVID-19 (40, 72).

In a study of patients with symptoms of COVID-19, suPAR
levels were significantly higher in patients who developed severe
and critical illness compared with those who were moderately ill,
and it was shown that suPAR cutoffs could be used to risk-
stratify patients (74, 75). In hospitalized COVID-19 patients,
suPAR was predictive of in-hospital acute kidney injury (AKI)
and the need for dialysis (76). At least in COVID-19, suPAR has
been shown to be an early indicator of endogenous alarmins such
as IL-1a, and its levels increase earlier than other biomarkers of
disease progression, such as CRP, IL-6, and D-dimers (76, 77). It
is this early warning, sentinel-like property of suPAR that
positions it as a useful tool for patient triage and has been
applied as such in at least three studies of COVID-19. suPAR
point-of-care (POC) testing was used to triage and discharge
patients with COVID-19 symptoms early from the emergency
department (78).

Another set of studies used suPAR POC testing to quantify
suPAR levels, risk-stratify patients to identify those at higher risk
of respiratory failure or death, and provide early targeted
treatment for these individuals with a drug intervention
(anakinra) (79, 80).
4 THE PROGNOSTIC ROLE OF
SUPAR IN MALARIA

4.1 suPAR in Children With Malaria
Only a few studies to date have examined the prognostic role of
suPAR in malaria (Supplementary Table 1). Limited data have
linked elevated suPAR levels with disease severity and outcome
in pediatric malaria. In a study of African children with acute P.
falciparummalaria, Perch et al. found that serum suPAR levels at
study inclusion were associated with parasite density and
children with the highest parasitemia had significantly higher
suPAR levels than children who had lower parasitemia or had a
Frontiers in Immunology | www.frontiersin.org 5
negative blood film (81). Of note, suPAR levels were significantly
reduced in all malaria-positive children 7 days following
initiation of antimalarial treatment. The most marked
reduction in suPAR levels following treatment was in the
group with the highest parasitemia where suPAR decreased to
almost half its level at inclusion; however, this level was still
significantly higher than the suPAR levels reported in all other
groups on day 7. The authors suggest that elevated suPAR levels
in children with high parasitemia may normalize over a longer
treatment period. Similarly, Ostrowski et al. reported
significantly higher plasma suPAR concentrations in malaria-
positive children compared with those who were malaria-
negative and healthy controls (82). Among the malaria-positive
children, the highest suPAR levels were in children who had
complicated diseases and in those who died. suPAR positively
correlated with parasitemia and increased plasma suPAR
concentration at admission was associated with a fatal outcome.

Contrary to the findings of Ostrowski et al., elevated suPAR
levels were not associated with poor outcome in Cameroonian
children with falciparummalaria (83). Instead, a gradual trend in
increasing plasma suPAR levels was observed between children
with asymptomatic malaria (AM) and those with uncomplicated
malaria (UM) as well as between children with SM and those
with CM. suPAR was excellent at discriminating between
children with AM and those with UM with an area under the
receiver operating characteristic curve (AUROC) of 0.958.
However, a strong association with SM was not observed.
suPAR levels were not informative in differentiating between
severe (non-cerebral) and cerebral malaria. The lack of
relationship between suPAR and SM reported in this study is
unknown but may reflect, at least in part, the absence of fatal
cases in the study population. In a study of Beninese children
with P. falciparum infection, plasma suPAR levels were
associated with malaria severity, coma, and mortality (84).
suPAR was significantly higher in children with SM [CM/
severe non-cerebral malaria (SNCM)] than in children with
UM. Elevated suPAR levels were also associated with the
presence of coma. suPAR was significantly higher in children
with SM (CM/SNCM) who died compared with those who
survived. However, suPAR was not a strong discriminator
between SM subtypes (CM vs. SNCM). When compared with
other inflammatory, angiogenic, and vascular markers, suPAR
had relatively low prognostic accuracy in discriminating between
UM vs. CM/SNCM, coma vs. no coma, and fatal vs. non-fatal
cases with AUROC <0.70 for each analysis.

In summary, the available studies were largely underpowered
to assess mortality outcomes. Therefore, the current evidence base
is inadequate to determine whether suPAR levels are clinically
useful as prognostic predictors in pediatric malaria. Additional
larger prospective studies that enroll consecutive children with a
broad disease severity spectrum are required to determine the
utility of suPAR to risk-stratify children with malaria.

4.2 suPAR in Adults With Severe Malaria
Evidence for the prognostic role of suPAR in adults with malaria
infection is limited. In a study of Bangladeshi adults with P.
falciparum infection and AKI, increased suPAR levels were
June 2022 | Volume 13 | Article 931321
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associated with increasing AKI severity, and levels at admission
predicted a later requirement for renal replacement therapy (62).
However, suPAR concentrations were not significantly different
between survivors and non-survivors with AKI in SM. The
authors posited that the lack of association between suPAR
levels and mortality in this study may reflect the limited
spectrum of malaria severity in their cohort (i.e., all patients
had severe illness) and that including patients with UM might
confirm the potential link between suPAR levels and mortality
outcome in adults with SM. Alternatively, it is possible that
elevated suPAR levels in adults with SM may not predict an
increased risk of death or do so, albeit, to a lesser extent than in
children. This could be expected since age is a known risk factor
for fatal outcome in patients with SM and the risk of mortality is
disproportionately higher in children under 5 years old (85).

4.3 suPAR in Malaria in Pregnancy
To date, there is only one study that has evaluated the prognostic
role of suPAR in malaria in pregnancy (71). In their study,
Ostrowski et al. investigated the relationship between suPAR
levels and fetal outcome in pregnant African women. Plasma
suPAR concentrations were measured in maternal (at
enrolment) and cord (at delivery) samples in women with
histology-confirmed placental malaria (active or past infection)
and women with no history of malaria infection. They found that
maternal suPAR levels were significantly higher in women with
active malaria infection compared with women with past
infection or non-infected. Cord suPAR levels did not differ
across placental histology groups. Maternal suPAR was also
positively correlated with maternal peripheral parasitemia.
Importantly, in women with active infection, elevated maternal
suPAR independently predicted low birth weight. Both maternal
and cord suPAR levels were not associated with stillbirth in any
of the histology groups. These findings suggest that maternal
suPAR levels are potentially associated with adverse birth
outcomes in women with malaria. However, cord suPAR levels
were not associated with birth weight after adjusting for
gestational age, suggesting that cord suPAR is less influenced
by maternal malaria infection. The role of suPAR in malaria in
pregnancy needs to be further evaluated in prospective studies
with longitudinal sampling across pregnancy and assessment of
additional adverse birth outcomes (e.g., preterm birth).
5 A MECHANISTIC ROLE FOR SUPAR IN
MALARIA PATHOLOGY?

Given that dysregulated endothelial and immune activation
contributes to the pathogenesis of severe falciparum malaria,
we propose a model of how suPAR may be a mediator of these
pathways (Figure 1B). The limited preclinical data that exist
suggest a role of the uPA/uPAR pathway in the pathogenesis of
malaria. uPAR-deficient mice infected with Plasmodium berghei
have reduced mortality, attenuated thrombocytopenia, absent
platelet trapping, enhanced leukocytosis, and reduced apoptosis
compared with wild-type mice (41). Evidence that uPA/uPAR
Frontiers in Immunology | www.frontiersin.org 6
deficiency in P. berghei-infected mice attenuates disease severity
and delays mortality in vivo suggests that attenuation of this
pathway (including suPAR) might be beneficial. In cell culture
experiments, uPA binds to human erythrocytes infected with
mature forms of P. falciparum and is required for the rupture of
erythrocytes and the release of merozoites, which suggests that
uPA may be an additional adhesion molecule for PEs (86). The
only evidence to date that implicates the uPA/uPAR pathway to
human malaria pathogenesis comes from a post-mortem study
of patients with CM that reported increased expression of uPAR
on macrophages, microglial cells, astrocytes, and endothelial cells
in CM-associated lesions, suggesting that uPAR may contribute
to blood–brain barrier disruptions and immunopathology in
CM (38).

Additional studies are required to determine whether the
uPA/uPAR pathway plays a mechanistic role in the pathogenesis
of malaria. Antibodies or small molecular inhibitors that prevent
uPAR cleavage or that specifically bind and sequester suPAR
from circulation could provide further insights (55, 87).
Experimental evidence from a murine model of focal segmental
glomerulosclerosis (FSG) indicates that circulating levels of
suPAR can contribute to the pathogenesis of FSG and that
administration of blocking uPAR antibodies improves suPAR-
induced kidney damage (55). If suPAR directly contributes to the
pathogenesis of SM, this pathway could represent a potential
therapeutic target.
6 CONCLUSIONS

Prognostic/severity markers could facilitate the early recognition
and treatment of children with impending severe malaria.
Integrating these markers into POC RDT platforms, or added to
current malaria RDTs, could transform community-based triage of
pediatric malaria cases, especially in low-resource settings (3). This
could inform individualized management and potentially reduce
malaria deaths. The few available studies investigating the
prognostic role of suPAR in children with malaria have been
underpowered to robustly assess clinical outcomes (most have
few or no fatal cases) and/or use limited measures of disease
severity. Discrepancies in suPAR levels reported across studies in
patients with malaria may reflect differences in the assay used to
quantify suPAR (Supplementary Table 1) and may limit the
comparability of suPAR findings. Alternatively, they could be
explained by varying baseline circulating suPAR concentrations
in different patient populations; differences in age, malaria
exposure, and immunity status; other coinfections or different
etiologies inducing changes in suPAR; and/or underlying
nutritional deficiencies which may affect the levels of
inflammation and immune activation and, thus, circulating
suPAR concentrations (63, 68, 88–91). Future studies controlling
for these factors andusing standardized commercial kits to quantify
suPAR would help to elucidate the potential relationship between
suPAR levels and clinical outcomes (e.g.,mortality) in patients with
malaria. In addition, large prospective studies including children
across a broad disease severity spectrum with adequate power to
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assess mortality outcomes are required to confirm the potential
value of suPAR to risk-stratify children with malaria. These studies
would need to determine and validate quantitative cutoffs that can
accurately identify patients needing urgent care and parenteral
artesunate treatment. Several testing platforms are available to
quantify suPAR concentrations including turbidimetric
immunoassays, sandwich ELISAs, and magnetic bead-based
multiplex assays. Given that a POC test for suPAR already exists,
prospective trials can be designed to assess its clinical utility and
establish cutoffs to guide triage and management decisions (74).
The validation of a POC test based on suPAR levels that accurately
risk-stratifies children with malaria could have a direct impact for
enhanced triage and management and improved health outcomes
for children in resource-limited settings.
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