
GASTRULATION

May the force be with you
Understanding the coordination of the forces generated in embryos by

two processes, convergent extension and convergent thickening, is key

to understanding how a hollow sphere of cells develops into an

elongated embryo.
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G
astrulation is a key embryonic event dur-

ing which the three-dimensional frame-

work of an animal is established. Indeed,

it has been said that ‘it is not birth, marriage or

death, but gastrulation which is truly the most

important time in your life’ (Slack, 1991). Generally

speaking, the process of gastrulation accomplishes

two goals. First, it positions the precursors of the

internal organs inside the embryo and surrounds

themwith cells that will go on to form skin. Second,

it converts an essentially spherical ball of cells into

the elongated form with the defined head-to-tail

axis that is found in animals as diverse as insects,

worms and vertebrates. Not surprisingly, achieving

these two goals involves the robust movement of

cells and tissue.

After more than a century of study, well-

defined maps of these tissue movements have

been established for many animals (Stern, 2004),

and more recent work has focused on under-

standing how the forces responsible for tissue

movement are generated and transmitted in a

coordinated manner between individual cells.

A popular model for the study of gastrulation

and tissue mechanics is the frog Xenopus laevis

(Figure 1A; Keller et al., 2003). The large size

of Xenopus cells makes them amenable to live

imaging, and the even distribution of yolk

throughout all the cells allows Xenopus tissue to

survive and develop well in explant cultures

(Davidson and Keller, 2007). However, the

mechanisms by which the forces that move tis-

sues are generated and directed have remained

unclear. Now, in eLife, David Shook of the Uni-

versity of Virginia and co-workers – Eric Kaspro-

wicz (Thomas Jefferson University Hospital),

Lance Davidson (University of Pittsburgh) and

Raymond Keller (Virginia) – report new insights

into the generation of long-range forces during

gastrulation in Xenopus (Shook et al., 2018).

Very early embryos are made up of three

germ layers: the outer layer or ectoderm, the

middle layer or mesoderm, and the inside layer

or endoderm. During gastrulation in Xenopus, a

ring of cells that later forms the mesoderm

(called the presumptive mesoderm) rolls inwards

over a structure called the blastopore lip

(Figure 1A). This process is called involution.

The presumptive mesoderm cells then rearrange

to form a narrower and longer embryo in a pro-

cess called axis elongation (Figure 1B;

Shindo, 2018). Convergent extension has long

been considered to be the sole source of con-

vergence force in embryos and has been well

characterized in animals ranging from insects to

amphibians, fish and mammals.

Shook et al. identified a central role for

another process, called convergent thickening, in

which the cells rearrange themselves in order to

increase the thickness of the tissue (Figure 1C).

Curiously, convergent thickening had been iden-

tified decades ago, but was previously thought to
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play only a relatively minor role in gastrulation

(Keller and Danilchik, 1988). Shook et al. found

that the entire ring of presumptive mesoderm

undergoes convergent thickening before involu-

tion, thus adding new layer of mechanical com-

plexity to this long-studied process.

So how do embryos co-ordinate the pro-

cesses of convergent extension and convergent

thickening? The transition from convergent

thickening before involution to convergent

extension after involution suggests that there is

a mechanical connection between these two

processes that generates a driving force across

the whole embryo throughout gastrulation. To

explore this question Shook et al. used an exper-

imental set-up called the ’tractor pull’ to study

samples of tissue taken from the presumptive

mesoderm. This approach involves attaching

two plastic strips to the ends of the tissue to

control its position, and an optical fiber to pull

the tissue; forces generated in the tissue cause

the optical fiber to bend, and its deflection can

be used to calculate the force.

Shook et al. found that the convergence force

increased throughout gastrulation, then pla-

teaued during a stage known as early neurula-

tion (during which the central nervous system is

formed), and then increased again during late

neurulation (Figure 1D). Since convergent

extension occurs dominantly in the dorsal tissue

(that is, the upper side or back of the animal),

and convergent thickening lasts longer on the

ventral side (the lower side or front), Shook et al.

tried to unravel the origin of the behavior shown

in Figure 1D by changing the proportion of ven-

tral and dorsal tissue. When just ventral tissue

was studied, the second increase during late

neurulation did not happen; and when just
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Figure 1. Force generating ’engines’ during gastrulation in Xenopus. (A) During gastrulation a hollow sphere of

cells (left) is transformed into an elongated embryo (right). This starts with cells on the dorsal (upper) side of the

embryo rolling over a structure called the blastopore (red circle) and moving to the inside of the sphere. This

reduces the size of the blastopore. Cell-autonomous convergence forces (purple) then cause the sphere to

elongate, leading to the formation of the anterior–posterior axis. (B) The process by which tissue elongates along

the anterior-posterior (AP) axis, and becomes narrower along the medio-lateral (ML) axis, is called convergent

extension. (C) Shook et al. discovered that a process called convergent thickening – which involves the tissue

becoming thicker in the direction at right angles to the convergent extension – is also important during

gastrulation. (D). Sketch showing how the convergence force (y-axis) increases through gastrulation, and then

plateaus (during early neurulation) before increasing again (during late neurulation).
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dorsal tissue was studied, there was no plateau

phase. This suggests that the convergence force

before involution is mostly driven by convergent

thickening across the whole tissue, and that after

involution convergence force results solely from

convergent extension in the dorsal tissue.

Shook et al. also performed experiments in

which the tractor pull set-up was used to apply

forces to tissue. They found that dorsal tissues

under convergent extension are capable of gen-

erating and transmitting higher forces than tis-

sues under convergent thickening. Therefore,

when the transition from thickening to extension

occurs in the dorsal tissue and spreads to the

ventral tissue, regions of ventral tissue that have

not yet undergone thickening-to-extension tran-

sition will limit the generation and transmission

of force in the medio-lateral direction.

The work of Shook et al. provides new insights

into the mechanics of gastrulation, while raising

new questions and invigorating old ones. For

example, while the mechanisms of convergent

extension are well defined (Shindo, 2018), the

mechanisms that drive convergent thickening

remain essentially unknown. Since convergent

thickening relies on radially-directed cell move-

ment, it is tempting to speculate that it uses simi-

lar mechanisms to other recently defined radial

migration events (Sedzinski et al., 2016;

Szabó et al., 2016). Moreover, while planar cell

polarity signaling, a conserved genetic network

that controls the position of cells within a popula-

tion, is known to direct convergent extension

(Butler and Wallingford, 2017), its role in con-

vergent thickening is unknown; this issue warrants

further examination because the disruption of

planar cell polarity in ventral tissues where con-

vergent thickening predominates substantially

disrupts gastrulation (Ewald et al., 2004).

Ultimately, this work is significant because

gastrulation in most animals relies on the com-

plex interplay of multiple force-generating

’engines’ (such as convergent extension and

convergent thickening) yet how such engines

work in concert remains largely unexplored in

other animals, including mammals

(Nowotschin and Hadjantonakis, 2010; Soln-

ica-Krezel, 2005). The results reported by Shook

et al. should motivate others to attack similarly

complex processes in other animals.
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