
����������
�������

Citation: Jarray, R.; Al-Dhaifallah, M.;

Rezk, H.; Bouallègue, S. Parallel

Cooperative Coevolutionary Grey

Wolf Optimizer for Path Planning

Problem of Unmanned Aerial

Vehicles. Sensors 2022, 22, 1826.

https://doi.org/10.3390/s22051826

Academic Editors: Roberto

Opromolla and Giancarmine

Fasano

Received: 30 December 2021

Accepted: 21 February 2022

Published: 25 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Parallel Cooperative Coevolutionary Grey Wolf Optimizer for
Path Planning Problem of Unmanned Aerial Vehicles
Raja Jarray 1 , Mujahed Al-Dhaifallah 2,3 , Hegazy Rezk 4,* and Soufiene Bouallègue 1,5

1 Research Laboratory in Automatic Control (LARA), National Engineering School of Tunis (ENIT),
University of Tunis El Manar, Tunis 1002, Tunisia; raja.jarray@enit.utm.tn (R.J.);
soufiene.bouallegue@issig.rnu.tn (S.B.)

2 Control and Instrumentation Engineering Department, King Fahd University of Petroleum & Minerals,
Dhahran 31261, Saudi Arabia; mujahed@kfupm.edu.sa

3 Interdisciplinary Research Center (lRC) for Renewable Energy and Power Systems, King Fahd University of
Petroleum & Minerals, Dhahran 31261, Saudi Arabia

4 College of Engineering at Wadi Addawaser, Prince Sattam Bin Abdulaziz University,
Al-Kharj 11911, Saudi Arabia

5 High Institute of Industrial Systems of Gabes (ISSIG), University of Gabes, Gabes 6011, Tunisia
* Correspondence: hr.hussien@psau.edu.sa

Abstract: The path planning of Unmanned Aerial Vehicles (UAVs) is a complex and hard task
that can be formulated as a Large-Scale Global Optimization (LSGO) problem. A higher partition
of the flight environment leads to an increase in route’s accuracy but at the expense of greater
planning complexity. In this paper, a new Parallel Cooperative Coevolutionary Grey Wolf Optimizer
(PCCGWO) is proposed to solve such a planning problem. The proposed PCCGWO metaheuristic
applies cooperative coevolutionary concepts to ensure an efficient partition of the original search space
into multiple sub-spaces with reduced dimensions. The decomposition of the decision variables vector
into several sub-components is achieved and multi-swarms are created from the initial population.
Each sub-swarm is then assigned to optimize a part of the LSGO problem. To form the complete
solution, the representatives from each sub-swarm are combined. To reduce the computation time,
an efficient parallel master-slave model is introduced in the proposed parameters-free PCCGWO.
The master will be responsible for decomposing the original problem and constructing the context
vector which contains the complete solution. Each slave is designed to evolve a sub-component
and will send the best individual as its representative to the master after each evolutionary cycle.
Demonstrative results show the effectiveness and superiority of the proposed PCCGWO-based
planning technique in terms of several metrics of performance and nonparametric statistical analyses.
These results show that the increase in the number of slaves leads to a more efficient result as well as
a further improved computational time.

Keywords: unmanned aerial vehicles; paths planning; large-scale global optimization; grey wolf opti-
mizer; cooperative coevolutionary algorithms; parallel master-slave model; Friedman statistical analyses

1. Introduction

Unmanned Aerial Vehicles (UAVs) have recently become an interesting research topic,
due to their strong survivability in many activities such as agricultural, commercial, military,
and civilian [1–4]. To achieve repetitive and hard missions in dangerous environments,
path planning is a key task in the UAVs’ control system [5–8]. The purpose of drones’ path
planning is not only to find a collision-free path to reach the target but also to select an
optimal flyable path that minimizes some critical goals.

The complexity and hardness of UAVs’ path planning problems are increased due to
the increase in optimization factors such as UAV restrictions and environmental restrictions.

Sensors 2022, 22, 1826. https://doi.org/10.3390/s22051826 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22051826
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-3759-1436
https://orcid.org/0000-0002-8441-2146
https://orcid.org/0000-0001-9254-2744
https://orcid.org/0000-0003-3172-6333
https://doi.org/10.3390/s22051826
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22051826?type=check_update&version=1

Sensors 2022, 22, 1826 2 of 29

To deal with this complexity, researchers have gradually moved from using the conven-
tional to non-conventional planning approaches considered more effective. In study [9],
the authors proposed an improved Particle Swarm Optimization (PSO) algorithm, by intro-
ducing the competition strategy formalism, to solve the 3D path planning for fixed-wing
UAVs. In study [10], Jamshidi et al. described a CAN bus-based implementation of an
asynchronous distributed multi-master parallel Genetic Algorithm (GA) and PSO meta-
heuristics to improve the performance and computational time of the UAV path planning
task. A path planning approach based on the Water Cycle Algorithm (WCA) to find the
optimal or near-optimal path avoiding all obstacles in 2D environments is proposed in [11].
The authors in [12] proposed a comprehensively improved particle swarm optimization
to enhance the optimality and rapidity of automatic path planners for autonomous UAV
formation systems. In studies [13,14], the authors proposed a new methodology to dis-
cover the UAV optimal path planning based on a Multiobjective Multi-Verse Algorithm
(MOMVA). The authors in [15] proposed a novel approach to solve the UAV path planning
based on a Grey Wolf Optimizer (GWO) by proper choice of optimization models such as
the objective function for targets and constraints for obstacles’ avoidance. In study [16],
another GWO-based method is proposed to solve the UAV path planning problem for-
mulated as a hard optimization problem under operational constraints in terms of path
shortness and smoothness as well as avoidance of obstacles. In the same work, the perfor-
mance of the proposed parameters-free GWO algorithm is compared to other homologous
metaheuristics such as the Crow Search Algorithm (CSA), Differential Evolution (DE), Salp
Swarm Algorithm (SSA), and others. In study [17], the researchers proposed an improved
Adaptive Grey Wolf Optimization (AGWO) algorithm to solve the 3D path planning of
UAVs in a complex environment of material delivery in earthquake-stricken areas. Such an
algorithm runs with an adaptive convergence factor and updated positions of the search
agents. In study [18], a multi-population Chaotic Grey Wolf Optimizer (CGWO)-based
method is investigated to solve the 3D UAVs’ cooperative path planning problem. A chaotic
search strategy is introduced in this algorithm to improve the exploration/exploitation
capabilities of the search behavior. In study [19], Kumar et al. described a modified version
of the conventional GWO algorithm (MGWO) to design and optimize suitable paths for
autonomous robots.

Such an above study was carried out to arouse the interest in the GWO algorithm
widely applied in the field of UAVs’ path planning. The advantages in terms of simplic-
ity of software implementation, reduced number of the algorithm’s control parameters,
and convergence fastness make the GWO one of the most extensively used algorithms
in the past three years [20–23]. The increased number of scientific publications on this
topic explains the effectiveness of such a stochastic and parameters-free algorithm for
solving various optimization problems. However, it should be pointed out that the GWO
algorithm is often unable to escape trapping in local minima and presents a premature
convergence, especially for the Large-Scale Global Optimization (LSGO) problems. Like
most metaheuristics algorithms, the GWO suffers from the “dimensionality curse” and
often fails to solve these hard optimization problems [17]. Thus, a practical implementation
of such a metaheuristic algorithm presents a challenge in real-world applications due to its
prohibitive computational time and weakness concerning an increased number of decision
variables of optimization. Although the cited works [15–19] have been developed to solve
the UAVs’ path planning problem based on a GWO algorithm, most of them formulated the
planning problem with a small number of decision variables. Since the real-world planning
tasks are considered LSGO problems, the quantity of computation increases strongly with
the increase of the search space dimension, which implies a high probability of converging
towards the local optimum [24]. These limits present a serious challenge for the real-time
implementation of such an algorithm to design flyable and collision-free UAV paths.

To overcome these difficulties, the cooperative co-evolutionary concept of optimiza-
tion seems an interesting idea to further improve the use of GWO algorithms for LSGO
problems, particularly in UAVs’ path planning formalism. Such a design approach presents

Sensors 2022, 22, 1826 3 of 29

an effective tools’ panoply for solving hard problems thanks to its decomposition of opti-
mization problems into smaller-dimension sub-components. It is a “divide and conquer”
strategy initially proposed by Potter and De Jong in [25]. In the literature, the cooper-
ative coevolutionary approach has been successfully applied for various optimization
algorithms such as GA [26], PSO [27], DE [28], Simulated Annealing (SA) [29], Ant Colony
Optimization (ACO) [30,31], Firefly algorithm [32], and many others. On the other hand, a
large quantity of evaluation, due to the large number of problem decision variables, also
implies an increased prohibitive computation time. However, online implementation of the
standard GWO algorithm for a real-time path planning problem can be failed or at least
become ineffective to achieve the desired performance of planning. To overcome this com-
putation constraint, the parallelization concept can be introduced to reduce the complexity
of the planning tasks and further increase the computational time of the investigated GWO
algorithm.

Over the past decades, there has been a growing interest in the parallelization of
metaheuristics algorithms [33–40]. Such advanced mechanisms for computation accelerat-
ing and enhancement greatly contribute to the success of metaheuristics for solving hard
and large-scale optimization problems. In the literature, many types of metaheuristics
algorithms have been recently parallelized based on different architectures and hardware
resources. The Graphics Processing Units (GPUs) and multi-core Central Processing Units
(CPUs)-based techniques are the most extensively proposed approaches. In study [33], a
model of a vector parallel’s Ant Colony Optimization (ACO) algorithm is proposed using
a multi-core SIMD CPU architecture. Each ant is mapped with a CPU core and the tour
construction is accelerated by vector instructions. In study [34], a parallel heterogeneous en-
semble feature selection method based on the three genetic (GA), particle swarm (PSO), and
grey wolf (GWO) metaheuristics is proposed to enhance the performance of machine learn-
ing formalism. The hardware implementation is achieved on a multi-core CPU with GPU.
In study [35], a parallel GA algorithm on GPU is investigated and compared to a sequential
execution on CPU for wireless sensor data acquisition using a team of unmanned aerial
vehicles. In study [36], an island model-based parallel GA is proposed and implemented on
a GPU for solving the unequal area facility layout problem. In study [37], a comprehensive
survey on parallel PSO algorithms is presented along with their strategies and applications.
Several platforms and models, mainly the CPU- and GPU-based parallelization strate-
gies, have been described and discussed. Another comprehensive survey on the parallel
implementation of metaheuristics but within a multi-objective evolutionary framework
is presented in [38]. An up-to-date review of methods and key contributions to such a
research field are described. Other various techniques and strategies of metaheuristics
parallelization are described and discussed in [39,40].

Based on these observations, the idea of using the parameters-free GWO algorithm,
improved with the two concepts of cooperative coevolutionary and parallel computing,
remains a promising and encouraging solution to solve the UAVs’ path planning problems.
Indeed, in real-world UAVs’ planning applications, the most suited planners are those with
fewer tuning of the effective parameters and a high fastness of the computation processing
concerning the dynamics of navigation and software/hardware specifications of embedded
control units. High performances in terms of computation speediness, shorter and collision-
free flyable paths are always requested and recommended. In this work, a new Parallel
Cooperative Coevolutionary Grey Wolf Optimizer (PCCGWO) is proposed and successfully
applied in solving the UAVs’ path planning problem over large benchmarks and instances
of navigation. Such an improved GWO algorithm combines the cooperative coevolutionary
and parallelization mechanisms to ensure an efficient partition of the original large-scale
search space into multiple sub-spaces with reduced dimensions. The decomposition of
the decision variables vector into several sub-components is achieved and multi-swarms
are created from the initial population to be later assigned to optimize a part of the path
planning procedure formulated as an LSGO problem. The main contributions of this
paper are summarized as follows: (1) an intelligent and efficient path planning strategy is

Sensors 2022, 22, 1826 4 of 29

elaborated to guide UAV drones to reach the destination position while avoiding a high
number of obstacles and threats. (2) A novel parameters-free PCCGWO algorithm based on
an efficient parallelization master-slave mechanism is proposed and successfully applied to
solve the UAVs’ path planning problem over several flight scenarios. (3) A nonparametric
statistical analysis in the sense of Friedman and post hoc tests is carried out to show the
effectiveness and superiority of the proposed PCCGWO-based path planning approach.

The remainder of this paper is organized as follows. In Section 2, the path planning
problem for unmanned aerial vehicles is formulated as a constrained large-scale optimiza-
tion problem. Section 3 presents the proposed parallel cooperative coevolutionary grey
wolf optimizer as well as its designed master-slave architecture. A pseudo-code of the
proposed PCCGWO algorithm is given to solve the formulated UAVs’ path planning prob-
lem. In Section 4, demonstrative results over 20 different flight scenarios are carried out
and discussed to assess the effectiveness of the proposed planning approach. Section 5
concludes this paper.

2. Path Planning Problem Formulation

The planning of a flyable and feasible path is a key task in the formalism of drones’
control and navigation. The general definition of such a problem is the generation of a
path that guides the drone from a starting point A : (x1, y1, z1) to a predefined destina-
tion B : (xn, yn, zn). To ensure this, an environmental modeling is required [13,14,16,41].
The x-axis range (x1, xn) is divided into n − 1 equal segments delimited by geometric
perpendicular hyper-planes passing through the corresponding points {x1, x2, . . . , xn}. A
waypoint wi = (xi, yi, zi) will be taken at each perpendicular plane and a sequence of these
generated points ΩAB = {A, (x2, y2, z2), . . . , (xn−1, yn−1, zn−1), B} can be formed. The con-
nection of the different waypoints forming such a flight sequence leads to generating the
complete flyable path. In this manner, the path planning problem can be reformulated
as an optimization problem that consists in determining the optimal flight waypoints’ se-
quences minimizing a previously defined performance criterion, i.e., shorter, collision-free
and smoother flyable paths [14,41]. In this formulation, the decision variables of such a
constrained optimization problem are defined as the vector of coordinates of the waypoints
X = (y2, y3, . . . , yn−1, z2, z3, . . . , zn−1) ∈ R2n−4.

For the drones’ navigation, the length of the flyable path is an essential objective. The
shorter path can reduce the flight time and extend the battery life which ensures more safety.
Therefore, a shorter path remains desirable in all planning problems. To well formulate
such a design goal, the corresponding objective function to be minimized is chosen as
follows [14,41]:

f (X) =

n−1
∑

k=1

√
(xk+1 − xk)

2 + (yk+1 − yk)
2 + (zk+1 − zk)

2√
(xn − x1)

2 + (yn − y1)
2 + (zn − z1)

2
(1)

For any path planning problem, the obstacles’ collision avoidance constraint is a key
task. Indeed, to ensure that the planned path is safe, the UAV drone must avoid all obstacles.
On the other hand, to avoid the risk of being detected by the radars or missiles, a UAV
cannot pass through the dangerous regions and/or fly over them [13,14,16,41]. Thus, such
an obstacles’ avoidance constraint is modeled by the following expression:

g1(X) =
(

ri
obs + ∆

)
−
√(

xuav − xi
obs
)2

+
(
yuav − yi

obs
)2 ≤ 0 (2)

where ri
obs and

(
xi

obs, yi
obs
)

are the radius and position of the ith obstacle, respectively;
(xuav, yuav, zuav) means the coordinate of the UAV drone, and ∆ presents the predefined
safety distance between the drone and a detected obstacle.

When a UAV performs angle management, it can influence its dynamic characteristics
and make its flight operation inefficient. Therefore, the angle between two adjacent seg-

Sensors 2022, 22, 1826 5 of 29

ments is introduced to limit the straightness of the path. This performance constraint can
be formulated as follows [42]:

g2(X) =
∣∣ϕq,q+1

∣∣− ϕmax ≤ 0 (3)

where ϕq,q+1 is the angle between the two adjacent qth and (q+1)th segments connecting
the waypoints, and ϕmax is the maximum value of the steering angle.

Finally, the formulated constrained optimization problem for the UAVs’ path planning
procedure is defined as follows: 

Minimize
X∈D⊆Rd

f (X)

subject to :
g1(X) ≤ 0
g2(X) ≤ 0

(4)

where f (.) is the cost function of Equation (1), g1(.) and g2(.) are the constraints given
by Equations (2) and (3), respectively, X ∈ R2n−4 is the vector of decision variables, and
D =

{
X ∈ Rd

∣∣∣Xmin ≤ X ≤ Xmax
}

is the bounded d-dimensional search space.
To handle the operational constraints (2) and (3) of the optimization problem (4), a

static penalty function-based technique is used as follows [41]:

Φ(X) = f (X) +
ncon

∑
i=1

κimax{0, gi(X)}2 (5)

where κi are the scaling penalty coefficients and ncon means the number of constraints.

3. Proposed Parallel Cooperative Coevolutionary Algorithm
3.1. Grey Wolf Metaheuristic

The Grey Wolf Optimizer (GWO) is a swarm intelligence-based algorithm that is
inspired by the leadership hierarchy and hunting strategy of grey wolves in nature [43].
Three leader wolves named α, β, and δ are considered in the hierarchy of the GWO
formalism. The most dominating member among the group is called alpha (α), followed
by beta (β) and delta (δ) ones which help to lead the rest of the wolves, considered as
omega (ω) members, toward promising areas. The ith wolf is characterized by its position
xi

k =
(

xi
k,1, xi

k,2, . . . , xi
k,d

)
in the d-dimensional search space. The prey’s position is denoted

as xp
k =

(
xp

k,1, xp
k,2, . . . , xp

k,d

)
. The best candidate solutions α, β, and δ are characterized by

their positions xbest,1
k , xbest,2

k , and xbest,3
k .

For hunting a prey, the grey wolves follow the following three main steps, i.e., encir-
cling, hunting, and attacking [43]:

− Encircling: To mathematically model the strategy of encircling prey by wolves, the
following equations have been proposed:

xi
k+1 = xp

k − ∆kϑk (6)

∆k =
∣∣∣λkxp

k − xi
k

∣∣∣ (7)

ϑk = 2υkU (0, 1)− υk (8)

where λk are random numbers between 2 and 0, υk are linearly decreased from 2 to 0
over the iterations course, and U (0, 1) is a uniformly random number in [0, 1].

Sensors 2022, 22, 1826 6 of 29

− Hunting: The best candidate solutions α, β, and δ guide the other ω wolves to find the
global solution of the prey by updating their positions as follows:

xi
k+1 =

xbest,1
k + xbest,2

k + xbest,3
k

3
, i 6= α, β, δ (9)

where xbest,1
k = xα

k − ∆α
k ϑ1,k, xbest,2

k = xβ
k − ∆

β
k ϑ2,k, and xbest,3

k = xδ
k − ∆δ

kϑ3,k. In

Equation (9), the coefficient vectors ϑ1,k, ϑ2,k, and ϑ3,k as well as ∆α
k , ∆

β
k , and ∆δ

k are
computed as follows: ϑ1,k = 2υ1,kU (0, 1)− υ1,k ; ϑ2,k = 2υ2,kU (0, 1)− υ2,k ; ϑ3,k = 2υ3,kU (0, 1)− υ3,k

∆α
k =

∣∣λ1,kxα
k − xi

k

∣∣; ∆
β
k =

∣∣∣λ2,kxβ
k − xi

k

∣∣∣; ∆δ
k =

∣∣λ3,kxδ
k − xi

k

∣∣ (10)

where υj,k, j ∈ {1, 2, 3}, are linearly decreased from 2 to 0 over the iterations course
and λj,k are random numbers distributed uniformly between 2 and 0.

− Attacking: To mathematically model the prey attack approach, the value υk is linearly
decreased from 2 to 0 during iterations and involves the reduction of the fluctuation
range ϑk which is a random value in the interval [−2υk, 2υk]. When the value |ϑk| < 1,
the next positions of wolves will be between their current positions and the prey one
that may force them to attack. After the attack and at the next iteration, this process is
repeated until the termination criterion is verified.

Finally, a pseudo-code of the basic GWO algorithm is presented by Algorithm 1 as
given in [16,20,43].

Algorithm 1: GWO pseudo-code.

1. Randomly initialize the grey wolves’ population.
2. Initialize ϑj,0, υj,0, and λi

j,0.

3. Calculate the objective values for each search agent and select xα
0 , xβ

0 , and xδ
0.

4. Update the position of the current search agent.
5. Update ϑj,k, υj,k, and λi

j,k
6. Calculate the objective values of all search agents by applying Equation (10).
7. Update the positions xα

k , xβ
k , and xδ

k .
8. Check the termination criterion and make iterations repeated.

3.2. Cooperative Coevolutionary Concept

In cooperative coevolutionary algorithms, the optimization problem to be solved is
divided into sub-components in the search space and each of them is solved independently
by a species or a sub-swarm which is managed by a processor. In mono-objective opti-
mization formalism, Potter and De Jong were the first to propose such a model [25]. The
decision variables are split into sub-components and each sub-swarm seeks to optimize
its component by applying a standard evolutionary algorithm. These sub-swarms share
information among themselves during evolution. To assess the quality of its optimization,
a species builds a complete solution with the representative of all other species and its
dedicated decision subcomponent. This is how they cooperate in evolution. The represen-
tative of the sub-swarm can be defined by their current best individual or by a random
choice. For a given sub-swarm, the solutions consist of a fixed part and a variable part to
be optimized. The cooperative coevolutionary approach consists of three main steps [25]:

i. Decomposing the problem: The vector of decision variables is decomposed into
smaller sub-components which can be handled by certain evolutionary algorithms.

ii. Optimizing sub-components: Each sub-component will be evolved separately using
an evolutionary algorithm until the stopping criteria are met. This means that each
sub-component will be optimized by a sub-swarm.

Sensors 2022, 22, 1826 7 of 29

iii. Co-adapting sub-components: Since sub-components can be interdependent, co-
adaptation is necessary to take these interdependencies into account. They share
information among themselves during the evolution process.

3.3. Parallel Master-Slave Model

The master-slave model is one of the most popular approaches for parallel comput-
ing due to the simple exploitation of the parallelization capabilities of modern computer
systems and its simplicity of implementation. In study [44], Bethke is the first to describe
a parallel implementation of an evolutionary algorithm. Subsequently, Grefenstette pro-
posed [45] several prototypes of the parallel evolutionary algorithms representing several
variations of the master-slave models. A master-slave model implementation generally re-
quires essential knowledge of the corresponding computer system and minor programming
effort. In the master-slave model, one of the processors or cores is selected as the master
and the others as slaves of such a master core as shown in Figure 1. The master assigns
the slaves hard work or heavy computing tasks and then receives the results from them.
The different slaves perform their tasks simultaneously and there is no communication
requirement between them. The parallel master-slave model allows a significant reduction
in the total computing time required by the algorithm. In such a model of m ∈ N slaves, the
simultaneous evaluation of m individuals is possible, which leads to a significant reduction
in the total evaluation time of the population. The parallel software implementation will be
more meaningful in large-scale optimization problems [33–40].

Sensors 2022, 22, x FOR PEER REVIEW 7 of 31

its optimization, a species builds a complete solution with the representative of all other
species and its dedicated decision subcomponent. This is how they cooperate in evolution.
The representative of the sub-swarm can be defined by their current best individual or by
a random choice. For a given sub-swarm, the solutions consist of a fixed part and a varia-
ble part to be optimized. The cooperative coevolutionary approach consists of three main
steps [25]:
i. Decomposing the problem: The vector of decision variables is decomposed into

smaller sub-components which can be handled by certain evolutionary algorithms.
ii. Optimizing sub-components: Each sub-component will be evolved separately using

an evolutionary algorithm until the stopping criteria are met. This means that each
sub-component will be optimized by a sub-swarm.

iii. Co-adapting sub-components: Since sub-components can be interdependent, co-ad-
aptation is necessary to take these interdependencies into account. They share infor-
mation among themselves during the evolution process.

3.3. Parallel Master-Slave Model
The master-slave model is one of the most popular approaches for parallel compu-

ting due to the simple exploitation of the parallelization capabilities of modern computer
systems and its simplicity of implementation. In study [44], Bethke is the first to describe
a parallel implementation of an evolutionary algorithm. Subsequently, Grefenstette pro-
posed [45] several prototypes of the parallel evolutionary algorithms representing several
variations of the master-slave models. A master-slave model implementation generally
requires essential knowledge of the corresponding computer system and minor program-
ming effort. In the master-slave model, one of the processors or cores is selected as the
master and the others as slaves of such a master core as shown in Figure 1. The master
assigns the slaves hard work or heavy computing tasks and then receives the results from
them. The different slaves perform their tasks simultaneously and there is no communi-
cation requirement between them. The parallel master-slave model allows a significant
reduction in the total computing time required by the algorithm. In such a model of
m∈ slaves, the simultaneous evaluation of m individuals is possible, which leads to
a significant reduction in the total evaluation time of the population. The parallel software
implementation will be more meaningful in large-scale optimization problems [33–40].

Figure 1. Master-slave model setup.

3.4. Proposed Parallel Cooperative Coevolutionary Grey Wolf Optimizer
The standard GWO algorithm, initially proposed by Mirjalili in 2014, is prone to con-

vergence prematurity. It is also unable to escape local minima in complex multidimen-
sional optimization problems due to its suffering from the “dimensionality curse”. To
overcome these challenges, a Cooperative Coevolutionary Grey Wolf Optimizer
(CCGWO) is proposed and used to solve the UAVs’ path planning problem formulated
as a large-scale optimization one. The original d-dimensional search space is decomposed
into m∈ smaller-dimension subspaces j denoted as follows:

Figure 1. Master-slave model setup.

3.4. Proposed Parallel Cooperative Coevolutionary Grey Wolf Optimizer

The standard GWO algorithm, initially proposed by Mirjalili in 2014, is prone to
convergence prematurity. It is also unable to escape local minima in complex multidi-
mensional optimization problems due to its suffering from the “dimensionality curse”. To
overcome these challenges, a Cooperative Coevolutionary Grey Wolf Optimizer (CCGWO)
is proposed and used to solve the UAVs’ path planning problem formulated as a large-scale
optimization one. The original d-dimensional search space is decomposed into m ∈ N
smaller-dimension subspaces D j denoted as follows:

D = D1 ∪D2 ∪ . . . ∪Dm (11)

Each sub-space should be evaluated by a corresponding sub-swarm. Their dimensions
are denoted by d1, d2, . . . , dm which should verify the following condition:

d =
m

∑
j=1

dj, dj ≥ 1, j = 1, 2, . . . , m (12)

where d is the dimension of the original optimization problem.
The standard GWO algorithm employs a single d-dimensional swarm, but the CCGWO

one uses m sub-swarms denoted as S1,S2, . . . ,Sm. Each of them ensures the optimization
in the corresponding subspace D j of dimension dj < d. The size of a given sub-swarm S j
is denoted as nS j =

∣∣S j
∣∣.

Sensors 2022, 22, 1826 8 of 29

The research agents’ evaluation in each sub-swarm of the CCGWO algorithm is
identical to that in the standard GWO one as described in Section 3.1. However, this can
pose a significant problem. The agents cannot be updated with the objective function
due to the missing components. To overcome this problem, a shared buffer vector, also
called a context vector, is defined and contains the complete solution by combining all
representatives of sub-swarms [27]. This vector provides the missing information required
for each particle or research agent to update with the objective function. Let us consider c[j]

the representative of dj-dimensional for sub-swarm S j:

c[j] =
(

c[j]1 , c[j]2 , . . . , c[j]dj

)
(13)

The d-dimensional buffer vector C is then obtained by concatenating all different
representatives as follows:

C =

 c[1]1 , . . . , c[1]d1︸ ︷︷ ︸
representative of S1

, c[2]1 , . . . , c[2]d2︸ ︷︷ ︸
representative of S2

, . . . , c[m]
1 , . . . , c[m]

dm︸ ︷︷ ︸
representative of Sm

 (14)

The ith research agent of the jth sub-swarm of CCGWO, as given by Equation (15), is
evaluated by completing the missing components from the buffer vector C:

x[j]i =
(

x[j]i,1, x[j]i,2, . . . , x[j]i,dj

)
∈ D j (15)

To achieve this, the components x[j]i are replaced in the buffer’s components that
correspond to the representative of the jth sub-swarm by keeping the rest unchanged.
Hence, the cost value attributed to x[j]i is defined as:

f [j]i = f
(

C[j]
i

)
(16)

where C[j]
i =

c[1]1 , . . . , c[1]d1︸ ︷︷ ︸
unchanged

, . . . , x[j]i,1, . . . , x[j]i,dj︸ ︷︷ ︸
considered particle

, . . . , c[m]
1 , . . . , c[m]

dm︸ ︷︷ ︸
unchanged

 with i = 1, 2, . . . , nSj .

The representative of each sub-swarm is defined as its best current individual. To
parallelize this described cooperative coevolutionary GWO algorithm without changing its
co-evolutionary characteristics, a parallel master-slave model is established, resulting in
the proposed PCCGWO algorithm as depicted in Figure 2.

With more details, the master processor will be responsible for initializing the popula-
tion of research agents, then breaking it down into a set of sub-swarms. Each of them will
evolve on part of the problem as a sub-component. The master processor also initializes
the buffer vector C using randomly selected individuals from each sub-swarm. After that,
it sends to each slave a sub-swarm as well as the buffer vector C. Each slave is designed to
evolve a sub-swarm that seeks to optimize its component by applying a standard GWO
algorithm for a finite number of times. Such a slave sends the best individuals as repre-
sentatives to the master after the evolution cycle. The master will build a buffer vector C
by concatenating the different representatives and sending it to the different slaves for a
new cycle. The master always checks the stop condition, if it is reached, this process will
stop. Otherwise, it sends the buffer vector C to all the slaves and asks them to continue
the evolutionary process. Finally, Algorithm 2 provides the pseudo-code of the proposed
PCCGWO algorithm.

Sensors 2022, 22, 1826 9 of 29Sensors 2022, 22, x FOR PEER REVIEW 9 of 31

Figure 2. Master-slave modeling of the parallel cooperative coevolutionary grey wolf optimizer.

With more details, the master processor will be responsible for initializing the popu-
lation of research agents, then breaking it down into a set of sub-swarms. Each of them
will evolve on part of the problem as a sub-component. The master processor also initial-
izes the buffer vector C using randomly selected individuals from each sub-swarm. Af-
ter that, it sends to each slave a sub-swarm as well as the buffer vector C . Each slave is
designed to evolve a sub-swarm that seeks to optimize its component by applying a stand-
ard GWO algorithm for a finite number of times. Such a slave sends the best individuals
as representatives to the master after the evolution cycle. The master will build a buffer
vector C by concatenating the different representatives and sending it to the different
slaves for a new cycle. The master always checks the stop condition, if it is reached, this
process will stop. Otherwise, it sends the buffer vector C to all the slaves and asks them
to continue the evolutionary process. Finally, Algorithm 2 provides the pseudo-code of
the proposed PCCGWO algorithm.

Algorithm 2: PCCGWO pseudo-code.
Master process

1. Randomly initialize the grey wolf population.

2. Decompose the population into m sub-swarms denoted as 1 2, , , m   .

3. Initialize the buffer C using randomly selected individuals from each sub-swarm.
4. Send each sub-swarm to a slave.
5. Cycle = 0
6. While termination criteria = false do

7. Parallel for 1:j m= slaves

8. Send to slaves the buffer vector C defined in Equation (14).
9. Waiting for slaves.

Figure 2. Master-slave modeling of the parallel cooperative coevolutionary grey wolf optimizer.

Algorithm 2: PCCGWO pseudo-code.

Master process
1. Randomly initialize the grey wolf population.
2. Decompose the population into m sub-swarms denoted as S1,S2, . . . ,Sm.
3. Initialize the buffer C using randomly selected individuals from each sub-swarm.
4. Send each sub-swarm to a slave.
5. Cycle = 0
6. While termination criteria = false do
7. Parallel for j = 1 : m slaves
8. Send to slaves the buffer vector C defined in Equation (14).
9. Waiting for slaves.

10. Receive all representatives of sub-swarms from slaves.
11. End Parallel for
12. Update the buffer vector C.
13. Cycle = Cycle + 1
14. End While

Slave [j] process
15. While true do
16. Receive the buffer vector C from Master process.
17. Execute GWO on sub-swarm S j.
18. Send the representative of sub-swarm S j to Master process.
19. End While

3.5. PCCGWO for the UAVs’ Path Planning Problem

In the decision variables vector X = (y2, y3, . . . , yn−1, z2, z3, . . . , zn−1), the partition
rate n ∈ N is shown as an important design parameter. Such an effective parameter can
significantly affect the performance of the optimization algorithm PCCGWO. The more

Sensors 2022, 22, 1826 10 of 29

the n number increases, the dimension of the optimization problem increases, thus leading
to an increase in the search complexity. Indeed, a higher partition rate will lead to greater
route accuracy and greater planning problem complexity. The original d-dimensional
search space is decomposed into equal m smaller-dimension sub-spaces. In this problem,
the global path is divided into m sub-paths and each sub-component represents a part of
the path. Each sub-population is associated to generate the corresponding sub-path as
shown in Figure 3.

Sensors 2022, 22, x FOR PEER REVIEW 10 of 31

10. Receive all representatives of sub-swarms from slaves.
11. End Parallel for
12. Update the buffer vector C .
13. Cycle = Cycle + 1
14. End While

Slave [j] process
15. While true do
16. Receive the buffer vector C from Master process.

17. Execute GWO on sub-swarm j .

18. Send the representative of sub-swarm j to Master process.

19. End While

3.5. PCCGWO for the UAVs’ Path Planning Problem

In the decision variables vector ()2 3 1 2 3 1, ,..., , , ,...,n ny y y z z z− −=X , the partition rate
n∈ is shown as an important design parameter. Such an effective parameter can sig-
nificantly affect the performance of the optimization algorithm PCCGWO. The more the
n number increases, the dimension of the optimization problem increases, thus leading
to an increase in the search complexity. Indeed, a higher partition rate will lead to greater
route accuracy and greater planning problem complexity. The original d-dimensional
search space is decomposed into equal m smaller-dimension sub-spaces. In this prob-
lem, the global path is divided into m sub-paths and each sub-component represents a
part of the path. Each sub-population is associated to generate the corresponding sub-
path as shown in Figure 3.

Figure 3. Sketch map of the problem decomposition task.

To start optimization with the PCCGWO algorithm, the initial population with the
size popn is generated as follows:

Figure 3. Sketch map of the problem decomposition task.

To start optimization with the PCCGWO algorithm, the initial population with the
size npop is generated as follows:

Popwolves =


y1,2 y1,3 . . . y1,n−1
y2,2 y2,3 . . . y2,n−1

...
...

...
...

ynpop ,2 ynpop ,3 . . . ynpop ,n−1

z1,2 z1,3 . . . z1,n−1
z2,2 z2,3 . . . z2,n−1

...
...

...
...

znpop ,2 znpop ,3 . . . znpop ,n−1

 (17)

Such an initial population is decomposed into m sub-swarms S j. Each of them is
associated to evaluate the corresponding sub-component as follows:

Sensors 2022, 22, 1826 11 of 29

S1 =


y[1]1,2 y[1]1,3 . . . y[1]1,(d1/2)+1

y[1]2,2 y[1]2,3 . . . y[1]2,(d1/2)+1
...

...
...

...
y[1]nS1

,2 y[1]nS1
,3 . . . y[1]nS1

,(d1/2)+1

z[1]1,2 z[1]1,3 . . . z[1]1,(d1/2)+1

z[1]2,2 z[1]2,3 . . . z[1]2,(d1/2)+1
...

...
...

...
z[1]nS1

,2 z[1]nS1
,3 . . . z[1]nS1

,(d1/2)+1


...

S j =



y[j]

1,(
j−1
∑

i=1
(di/2))+2

y[j]

1,(
j−1
∑

i=1
(di/2))+3

. . . y[j]

1,(
j

∑
i=1

(di/2))+1

y[j]

2,(
j−1
∑

i=1
(di/2))+2

y[j]

2,(
j−1
∑

i=1
(di/2))+3

. . . y[j]

2,(
j

∑
i=1

(di/2))+1

...
...

...
...

y[j]

nS j
,(

j−1
∑

i=1
(di/2))+2

y[j]

nS j
,(

j−1
∑

i=1
(di/2))+3

. . . y[j]

nS j
,(

j
∑

i=1
(di/2))+1

z[j]

1,(
j−1
∑

i=1
(di/2))+2

z[j]

1,(
j−1
∑

i=1
(di/2))+3

. . . z[j]

1,(
j

∑
i=1

(di/2))+1

z[j]

2,(
j−1
∑

i=1
(di/2))+2

z[j]

2,(
j−1
∑

i=1
(di/2))+3

. . . z[j]

2,(
j

∑
i=1

(di/2))+1

...
...

...
...

z[j]

nS j
,(

j−1
∑

i=1
(di/2))+2

z[j]

nS j
,(

j−1
∑

i=1
(di/2))+3

. . . z[j]

nS j
,(

j
∑

i=1
(di/2))+1


...

Sm =



y[m]

1,(
K−1
∑

i=1
(di/2))+2

y[m]

1,(
m−1
∑

i=1
(di/2))+3

. . . y[m]
1,n−1

y[m]

2,(
K−1
∑

i=1
(di/2))+2

y[m]

2,(
m−1
∑

i=1
(di/2))+3

. . . y[m]
2,n−1

...
...

...
...

y[m]

nSm ,(
m−1
∑

i=1
(di/2))+2

y[m]

nSm ,(
m−1
∑

i=1
(di/2))+3

. . . y[m]
nSm ,n−1

z[m]

1,(
m−1
∑

i=1
(di/2))+2

z[m]

1,(
m−1
∑

i=1
(di/2))+3

. . . z[m]
1,n−1

z[m]

2,(
m−1
∑

i=1
(di/2))+2

z[m]

2,(
m−1
∑

i=1
(di/2))+3

. . . z[m]
2,n−1

...
...

...
...

z[m]

nSm ,(
m−1
∑

i=1
(di/2))+2

z[m]

nSm ,(
m−1
∑

i=1
(di/2))+3

. . . z[m]
nSm ,n−1



(18)

with d =
m
∑

j=1
dj and npop =

m
∑

j=1
nS j .

4. Results and Discussion
4.1. Parallel Computing Environment

To pass from a sequential program to a parallel one, the parallelization process is
the most efficient attempt. Parallel computing is a powerful way to speed up conception
time and the prototyping process. The implementation of a parallel algorithm is highly
dependent on the hardware architecture on which the program will be run, but it is also
influenced by the software environment. In this work, the MIMD (Multiple Instruction,
Multiple Data) systems are used as shared memory architectures commonly known as the
multiprocessor. Such hardware/software architecture corresponds to sets of interconnected
processors that share the same memory space. Today, most computers have multiple
processors, i.e., containing one or more cores, and therefore fall into the family of multi-
processor systems. In a shared memory system, different cores can run in parallel within
a process. Threads have access to the common global memory but have their execution
stack. The “Parallel Computing Toolbox” software of MATLAB environment allows doing
multithreaded programming [46]. In this work, the simplest “Parfor” structure in the
MATLAB tool is used to illustrate this functionality. The workers’ number is equal to the
iterations number of the parallel loop. MATLAB workers perform iterations independently
of each other. They evolve in parallel in the proposed PCCGWO algorithm (one per sub-
population). By using Parfor, workers are anonymous, have their execution stack, and
share common global memory.

4.2. Numerical Experimentations

To illustrate the performance of the proposed PCCGWO algorithm to solve the for-
mulated UAVs’ path planning problem, numerical experimentations with six versions of
PCCGWO are carried out and discussed. These proposed PCCGWO versions implement
algorithms with different sub-populations equal to 2, 4, 6, 8, 10, and 12. These parallel coop-

Sensors 2022, 22, 1826 12 of 29

erative coevolutionary algorithms with different sub-swarms are denoted as PCCGWO-2,
PCCGWO-4, PCCGWO-6, PCCGWO-8, PCCGWO-10, and PCCGWO-12. In this work,
the performances of the proposed PCCGWO algorithms in terms of solution quality and
computational speedup are compared to those of the standard GWO one. The effectiveness
of the proposed versions of PCCGWO in solving the path planning problem is presented
and analyzed under 20 different flight scenarios as described in Table 1.

Table 1. Information on external installations of the flight environment.

Scenario Starting Point (km) Destination Point (km) Threads’ Number Dimension

1 (0,0,0) (13,11,0) 10 100
2 (0,0,0) (16,13,0) 12 125
3 (0,0,0) (19,15,0) 15 150
4 (0,0,0) (22,15,0) 17 175
5 (0,0,0) (26,20,0) 20 200
6 (0,0,0) (28,17,0) 22 225
7 (0,0,0) (32,16,0) 25 250
8 (0,0,0) (35,17,0) 27 275
9 (0,0,0) (38,16,0) 30 300
10 (0,0,0) (41,17,0) 32 325
11 (0,0,0) (44,20,0) 35 350
12 (0,0,0) (47,20,0) 37 375
13 (0,0,0) (50,25,0) 40 400
14 (0,0,0) (53,25,0) 42 425
15 (0,0,0) (56,25,0) 45 450
16 (0,0,0) (60,25,0) 47 475
17 (0,0,0) (63,25,0) 50 500
18 (0,0,0) (66,30,0) 52 525
19 (0,0,0) (69,30,0) 55 550
20 (0,0,0) (75,30,0) 60 600

To assess the effectiveness of the proposed planning approach, these 20 scenarios are
different from each other in terms of the number and position of the obstacles as well as
the dimension of the planning problem. The problem dimension and obstacles’ number are
increased over the scenarios to increase the complexity and hardness of the flight mission.
To have equitable and reliable comparisons, the common parameters of the proposed
PCCGWO algorithms such as the population size and the maximum number of iterations
are set as npop = 1200 and niter = 1500, respectively. The proposed parallel cooperative
coevolutionary algorithms are coded under the MATLAB 2016a environment, and executed
on a computer with a Core i5 processor, having 12 cores at 2.90 GHz and 8.00 GB of RAM.

4.2.1. Solution Quality’s Analysis

The proposed parallel cooperative coevolutionary algorithms are performed on the
formulated path planning problem given by Equation (4). The six versions of PCCGWO are,
however, compared with the standard version of the GWO metaheuristic for the considered
different flight scenarios. Three performance criteria such as the value of standardized
costs, the path length, and the threats’ avoidance capability are used in each scenario to
assess the solution quality. All the proposed GWO and PCCGWO algorithms are executed
20 times independently in each scenario in Table 1. The statistical results of the numerical
experimentations under 20 independent runs are summarized in Table 2. All the proposed
algorithms are compared based on the objective function value obtained in the best, worst,
and mean optimization cases. A smaller standard deviation (STD) value indicates better
reproducibility of the optimization algorithm across independent optimization tests. On
the other hand, the threats’ avoidance capability of the reported algorithms is quantified
by the computation of the PF (Path’s Feasibility) metric. Such a performance index means
the percentage of the feasible paths satisfying the operational constraints of the planning
problem, i.e., non-collision flight.

Sensors 2022, 22, 1826 13 of 29

Table 2. Optimization results of the problem (4): standardized cost criterion.

Scenario GWO PCCGWO-2 PCCGWO-4 PCCGWO-6 PCCGWO-8 PCCGWO-10 PCCGWO-12

1

Best 1.1243 1.1198 1.0514 1.1721 1.0725 1.0386 1.1830
Mean 1.2544 1.1477 1.0836 1.3007 1.1210 1.1337 1.4000
Worst 1.4501 1.4712 1.3823 1.3761 1.3589 1.3832 1.4652
STD 0.2822 0.2622 0.1957 0.1937 0.1844 0.1822 0.1813

PF (%) 55 75 85 85 85 90 90

2

Best 1.2062 1.2132 1.1832 1.1821 1.1739 1.1747 1.1692
Mean 1.3298 1.2784 1.2587 1.2477 1.2454 1.2498 1.2254
Worst 1.3680 1.3529 1.2841 1.2783 1.2674 1.2683 1.2446
STD 0.0887 0.0698 0.0587 0.0492 0.0488 0.0487 0.0393

PF (%) 55 75 85 85 85 90 90

3

Best 1.1654 1.1262 1.1022 1.0765 1.0865 1.0923 1.0921
Mean 1.3235 1.2659 1.2514 1.2474 1.2414 1.2345 1.2212
Worst 1.4087 1.3674 1.3568 1.3356 1.3149 1.3116 1.3066
STD 0.1246 0.1215 0.1128 0.1127 0.1112 0.1072 0.1042

PF (%) 50 70 80 80 80 85 85

4

Best 1.2433 1.2387 1.2220 1.1887 1.1936 1.1814 1.1769
Mean 1.3312 1.2589 1.2498 1.2442 1.2365 1.2341 1.2219
Worst 1.3714 1.3258 1.3036 1.2774 1.2792 1.2581 1.2526
STD 0.0678 0.0474 0.0425 0.0448 0.0429 0.0391 0.0385

PF (%) 50 70 80 80 80 85 85

5

Best 1.2704 1.2341 1.2232 1.2103 1.2154 1.2636 1.1552
Mean 1.3391 1.2693 1.2608 1.3132 1.2971 1.3253 1.1804
Worst 1.3910 1.3698 1.3558 1.3641 1.3123 1.3842 1.2236
STD 0.0658 0.0738 0.0683 0.0674 0.0521 0.0603 0.0626

PF (%) 45 65 75 75 80 80 80

6

Best 1.2671 1.2236 1.1885 1.1714 1.1746 1.1701 1.1673
Mean 1.3288 1.3144 1.2656 1.2598 1.2545 1.2487 1.2423
Worst 1.3918 1.3846 1.2895 1.2787 1.2628 1.2736 1.2614
STD 0.0678 0.0814 0.0574 0.0571 0.0495 0.0541 0.0487

PF (%) 45 65 75 75 80 80 80

7

Best 1.2154 1.1765 1.1664 1.1535 1.1515 1.1513 1.1512
Mean 1.3254 1.3225 1.2787 1.2714 1.2663 1.2643 1.2635
Worst 1.3987 1.3747 1.3565 1.3565 1.3571 1.3441 1.3412
STD 0.0969 0.1046 0.1036 0.1031 0.1023 0.1012 0.0953

PF (%) 45 65 75 75 80 80 80

8

Best 1.2278 1.2341 1.2023 1.1898 1.1814 1.1713 1.1796
Mean 1.3245 1.3012 1.2844 1.2714 1.2655 1.2532 1.2564
Worst 1.3812 1.3787 1.3356 1.3082 1.2978 1.2771 1.2732
STD 0.0795 0.0745 0.0671 0.0614 0.0610 0.0546 0.0485

PF (%) 45 65 70 70 75 75 75

9

Best 1.2245 1.1845 1.1823 1.1741 1.1321 1.1036 1.0987
Mean 1.2880 1.2258 1.2168 1.2136 1.1524 1.1171 1.1488
Worst 1.3547 1.2851 1.2712 1.2548 1.1982 1.1654 1.1632
STD 0.0654 0.0512 0.0456 0.0401 0.0337 0.0312 0.0341

PF (%) 40 60 70 70 75 75 75

10

Best 1.2382 1.2241 1.2141 1.1941 1.1974 1.1814 1.1646
Mean 1.3345 1.3011 1.2784 1.2365 1.2213 1.1988 1.1865
Worst 1.3952 1.3554 1.3146 1.2936 1.2598 1.2462 1.2263
STD 0.0787 0.0667 0.0517 0.0497 0.0320 0.0334 0.0311

PF (%) 35 55 65 70 75 75 75

Sensors 2022, 22, 1826 14 of 29

Table 2. Cont.

Scenario GWO PCCGWO-2 PCCGWO-4 PCCGWO-6 PCCGWO-8 PCCGWO-10 PCCGWO-12

11

Best 1.1987 1.2122 1.1954 1.1933 1.1642 1.1502 1.1465
Mean 1.3300 1.3297 1.3222 1.3160 1.2574 1.2149 1.1904
Worst 1.3954 1.3798 1.3478 1.3424 1.2977 1.2698 1.2564
STD 0.1002 0.0861 0.0815 0.0792 0.0684 0.0598 0.0552

PF (%) 35 50 65 65 70 70 70

12

Best 1.2365 1.2245 1.1974 1.1676 1.1614 1.1519 1.1476
Mean 1.3122 1.2798 1.2512 1.2033 1.1825 1.1745 1.1698
Worst 1.3785 1.3695 1.2763 1.2326 1.2284 1.2046 1.1962
STD 0.0714 0.0712 0.0414 0.0327 0.0347 0.0273 0.0241

PF (%) 35 50 65 65 70 70 70

13

Best 1.2154 1.2245 1.1854 1.1544 1.1563 1.1584 1.1322
Mean 1.3142 1.3014 1.2868 1.1916 1.2013 1.1719 1.2146
Worst 1.3874 1.3762 1.3465 1.2789 1.2863 1.2541 1.2465
STD 0.0961 0.0758 0.0825 0.0637 0.0612 0.0517 0.0591

PF (%) 30 50 60 60 70 70 70

14

Best 1.2254 1.2398 1.2046 1.1841 1.1765 1.1898 1.1636
Mean 1.3065 1.2788 1.2641 1.2056 1.1958 1.1965 1.1842
Worst 1.3684 1.3514 1.3236 1.2695 1.2465 1.2445 1.2198
STD 0.0784 0.0574 0.0584 0.0498 0.0374 0.0284 0.0281

PF (%) 25 50 60 60 65 70 70

15

Best 1.2136 1.1988 1.1765 1.1699 1.1632 1.1532 1.1412
Mean 1.2974 1.2537 1.1841 1.1774 1.1765 1.1825 1.1723
Worst 1.3721 1.3462 1.2654 1.2465 1.2138 1.2132 1.1945
STD 0.0891 0.0749 0.0499 0.0423 0.0359 0.0301 0.0265

PF (%) 25 45 60 60 65 65 65

16

Best 1.2456 1.2226 1.2046 1.1836 1.1786 1.1562 1.1410
Mean 1.2987 1.2687 1.2465 1.2045 1.1874 1.1745 1.1501
Worst 1.3684 1.3536 1.2876 1.2593 1.2246 1.2082 1.1935
STD 0.0687 0.0674 0.0445 0.0392 0.0245 0.0254 0.0234

PF (%) 20 45 60 60 65 65 65

17

Best 1.2032 1.1849 1.2898 1.2263 1.1465 1.1434 1.1132
Mean 1.2948 1.2474 1.4029 1.3237 1.2059 1.2384 1.1508
Worst 1.3865 1.3669 1.4563 1.3412 1.2556 1.2514 1.1874
STD 0.0937 0.0922 0.0852 0.0648 0.0598 0.0592 0.0370

PF (%) 20 40 55 55 65 65 65

18

Best 1.2146 1.2325 1.1914 1.1746 1.1774 1.1643 1.1503
Mean 1.3065 1.2874 1.2475 1.2079 1.1866 1.1801 1.1820
Worst 1.3841 1.3631 1.2765 1.2663 1.2476 1.2287 1.2032
STD 0.0687 0.0657 0.0428 0.0411 0.0383 0.0336 0.0254

PF (%) 15 40 50 55 60 60 60

19

Best 1.2032 1.2033 1.1955 1.1865 1.1632 1.1539 1.1432
Mean 1.2981 1.2915 1.2163 1.2147 1.2055 1.1918 1.1635
Worst 1.3789 1.3562 1.3124 1.2893 1.2785 1.2312 1.2136
STD 0.0882 0.0736 0.0663 0.0536 0.0513 0.0375 0.0357

PF (%) 15 35 50 55 55 60 60

20

Best 2.1423 1.2865 1.2233 1.2133 1.2566 1.2365 1.1566
Mean 2.8221 1.3604 1.2990 1.2793 1.3415 1.2884 1.2076
Worst 2.9987 1.4562 1.3651 1.3741 1.3741 1.3456 1.2533
STD 0.4589 0.0851 0.0747 0.0878 0.0687 0.0587 0.0414

PF (%) 10 25 50 55 55 60 60

Sensors 2022, 22, 1826 15 of 29

While considering the length of the flyable path as an optimization criterion of the
problem (4), the investigated Straight-Line Rate (SLR) index is defined as follows:

SLR = path length/|AB| (19)

where |AB| is the straight line’s length between starting point A and destination B.
A smaller value of the SLR index indicates a better efficiency of the used planning

algorithm. The statistical results of numerical experiments over the considered 20 flight
instances and under 20 independent runs are summarized in Table 3. All versions of the
proposed PCCGWO algorithm are compared to the standard GWO.

From the statistical results of Tables 2 and 3, one can observe that the best mean
cost values and SLR performance indexes are often obtained with the variants of the
algorithm with the highest number of slaves, i.e., PCCGWO-10 and PCCGWO-12 ones.
Indeed, for this large planning benchmark with 20 instances, as the dimension of the
planning problem and the number of obstacles increase, the PF metric decreases for most
variants of the PCCGWO algorithms, except those having more increased slaves in their
parallel computation mechanisms. Finding a feasible path becomes more difficult when
the number of slaves is reduced for instances with high numbers of obstacles and problem
dimensions. The proposed PCCGWO-12 algorithm with 12 slaves becomes, on average, the
best performing algorithm with tighter forms of the SLR data distribution over the different
instances, followed by the PCCGWO-10 and PCCGWO-8 ones.

Table 3. Optimization results of the problem (4): SLR path length criterion.

Scenario GWO PCCGWO-2 PCCGWO-4 PCCGWO-6 PCCGWO-8 PCCGWO-10 PCCGWO-12

1

Best 1.1269 1.1132 1.0526 1.0548 1.0587 1.0822 1.1855
Mean 1.2889 1.1511 1.0863 1.0920 1.1336 1.1355 1.3845
Worst 1.4592 1.4632 1.3882 1.3726 1.3565 1.3811 1.4020
STD 0.2832 0.2723 0.1952 0.1936 0.1845 0.1814 0.1812

2

Best 1.2041 1.2012 1.1874 1.1845 1.1741 1.1721 1.1654
Mean 1.3254 1.2654 1.2511 1.2455 1.2412 1.2361 1.2354
Worst 1.3641 1.3541 1.2874 1.2754 1.2687 1.2614 1.2456
STD 0.0895 0.0723 0.0517 0.0498 0.0484 0.0465 0.0445

3

Best 1.2576 1.2079 1.1910 1.1803 1.1787 1.1720 1.1673
Mean 1.3261 1.2564 1.2518 1.2445 1.2418 1.2366 1.2223
Worst 1.4063 1.3580 1.3357 1.3133 1.2862 1.2747 1.2672
STD 0.0814 0.0706 0.0628 0.0527 0.0483 0.0455 0.0425

4

Best 1.2487 1.2354 1.2239 1.1854 1.1952 1.1841 1.1721
Mean 1.3121 1.2624 1.2515 1.2411 1.2401 1.2354 1.2301
Worst 1.3784 1.3254 1.3087 1.2774 1.2711 1.2544 1.2512
STD 0.0684 0.0414 0.0488 0.0441 0.0397 0.0354 0.0410

5

Best 1.2712 1.2495 1.2394 1.2533 1.2530 1.2599 1.1569
Mean 1.3381 1.2682 1.2555 1.3026 1.2934 1.3075 1.1773
Worst 1.3958 1.3565 1.3477 1.3382 1.3310 1.3251 1.2289
STD 0.0624 0.0515 0.0494 0.0439 0.0342 0.0479 0.0354

6

Best 1.2687 1.2263 1.1814 1.1798 1.1781 1.1741 1.1654
Mean 1.3345 1.3154 1.2684 1.2611 1.2566 1.2523 1.2465
Worst 1.3987 1.3874 1.2874 1.2841 1.2754 1.2759 1.2625
STD 0.0689 0.0884 0.0541 0.0514 0.0516 0.0541 0.0521

7

Best 1.2623 1.2446 1.2355 1.2122 1.2017 1.1910 1.1933
Mean 1.3268 1.3239 1.2794 1.2766 1.2674 1.2624 1.2611
Worst 1.3942 1.3798 1.3587 1.3383 1.3165 1.3052 1.2923
STD 0.0955 0.0660 0.0636 0.0529 0.0418 0.0401 0.0348

Sensors 2022, 22, 1826 16 of 29

Table 3. Cont.

Scenario GWO PCCGWO-2 PCCGWO-4 PCCGWO-6 PCCGWO-8 PCCGWO-10 PCCGWO-12

8

Best 1.2214 1.2365 1.2014 1.1987 1.1874 1.1788 1.1812
Mean 1.3255 1.2988 1.2874 1.2654 1.2612 1.2541 1.2443
Worst 1.3874 1.3841 1.3314 1.3121 1.2914 1.2744 1.2718
STD 0.0894 0.0644 0.0614 0.0541 0.0531 0.0504 0.0482

9

Best 1.2236 1.1987 1.1967 1.1774 1.1263 1.1099 1.1169
Mean 1.2880 1.2258 1.2168 1.2136 1.1524 1.1171 1.1488
Worst 1.3723 1.2854 1.2582 1.2356 1.1852 1.1554 1.1512
STD 0.0746 0.0474 0.0314 0.0296 0.0291 0.0245 0.0195

10

Best 1.2346 1.2251 1.2014 1.1987 1.1912 1.1847 1.1654
Mean 1.3387 1.2866 1.2755 1.2441 1.2241 1.2014 1.1988
Worst 1.3987 1.3541 1.3065 1.2907 1.2547 1.2465 1.2247
STD 0.0841 0.0674 0.0544 0.0476 0.0324 0.0321 0.0287

11

Best 1.2014 1.2156 1.1923 1.1904 1.1674 1.1541 1.1423
Mean 1.3044 1.3209 1.3121 1.2946 1.2213 1.2009 1.1846
Worst 1.3974 1.3874 1.3564 1.3465 1.2935 1.2756 1.2634
STD 0.0985 0.0865 0.0848 0.0794 0.0631 0.0612 0.0614

12

Best 1.2341 1.2285 1.1954 1.1695 1.1674 1.1547 1.1498
Mean 1.3155 1.3066 1.2466 1.1922 1.1899 1.1714 1.1655
Worst 1.3741 1.3654 1.2784 1.2354 1.2241 1.2014 1.1987
STD 0.0714 0.0693 0.0420 0.0345 0.0305 0.0246 0.0251

13

Best 1.2045 1.2236 1.1836 1.1582 1.1554 1.1456 1.1421
Mean 1.3246 1.3068 1.2531 1.1758 1.1621 1.1570 1.1795
Worst 1.3877 1.3756 1.3455 1.2765 1.2395 1.2353 1.2236
STD 0.0930 0.0761 0.0712 0.0638 0.0553 0.0544 0.0407

14

Best 1.2289 1.2354 1.2036 1.1751 1.1756 1.1714 1.1654
Mean 1.3011 1.2765 1.2566 1.2014 1.1967 1.1984 1.1852
Worst 1.3687 1.3574 1.3168 1.2541 1.2462 1.2387 1.2146
STD 0.0684 0.0613 0.0564 0.0407 0.0384 0.0345 0.0254

15

Best 1.2056 1.1987 1.1823 1.1643 1.1612 1.1548 1.1423
Mean 1.2960 1.2486 1.2209 1.1896 1.1869 1.1608 1.1531
Worst 1.3785 1.3564 1.2964 1.2563 1.2236 1.1952 1.1923
STD 0.0861 0.0813 0.0585 0.0471 0.0310 0.0217 0.0261

16

Best 1.2454 1.2214 1.2036 1.1874 1.1746 1.1574 1.1473
Mean 1.3022 1.2658 1.2514 1.2144 1.1945 1.1854 1.1532
Worst 1.3695 1.3541 1.2874 1.2541 1.2245 1.2019 1.1895
STD 0.0658 0.0678 0.0421 0.0375 0.0284 0.0228 0.0227

17

Best 1.2065 1.1886 1.1854 1.1822 1.1562 1.1432 1.1054
Mean 1.2881 1.2397 1.2501 1.2333 1.1725 1.1989 1.1200
Worst 1.3563 1.3265 1.3074 1.2854 1.2534 1.2254 1.1754
STD 0.0754 0.0698 0.0616 0.0586 0.0523 0.0431 0.0365

18

Best 1.2146 1.2236 1.1987 1.1741 1.1712 1.1689 1.1612
Mean 1.2987 1.2977 1.2411 1.2050 1.1897 1.1823 1.1754
Worst 1.3754 1.3574 1.2741 1.2414 1.2341 1.2241 1.2146
STD 0.0898 0.0675 0.0394 0.0348 0.0474 0.0274 0.0245

19

Best 1.2063 1.2136 1.1932 1.1632 1.1563 1.1524 1.1423
Mean 1.2955 1.2801 1.2274 1.1961 1.1983 1.1801 1.1780
Worst 1.3892 1.3541 1.3014 1.2756 1.2569 1.2365 1.2136
STD 0.0918 0.0712 0.0643 0.0598 0.0558 0.0430 0.0369

20

Best 1.2121 1.2036 1.2021 1.1754 1.1724 1.1532 1.1222
Mean 1.2977 1.2870 1.2440 1.2122 1.2193 1.1790 1.1404
Worst 1.3756 1.3687 1.3214 1.2874 1.2833 1.2333 1.1874
STD 0.0887 0.0814 0.0641 0.0556 0.0547 0.0414 0.0374

Sensors 2022, 22, 1826 17 of 29

On the other hand, Figure 4 shows the Box-and-Whisker plots for the proposed parallel
cooperative coevolutionary algorithms over the 20 flight scenarios. In Figure 4, the x-axes
of different curves denote the reported algorithms’ names, i.e., 1: GWO, 2: PCCGWO-2, 3:
PCCGWO-4, and so on, as shown in the figure’s legend. From these demonstrative results,
one can observe that the algorithms with an increased number of slaves, i.e., PCCGWO-10
and PCCGWO-12 variants, often give tighter forms of the SLR data distribution.

On the other hand, and for the threats’ avoidance criterion, some illustrations of the
planned paths corresponding to the average case of performance are shown in Figures 5–8
for the flight scenarios 5, 9, 17, and 20 of Table 1, respectively. As shown in Figures 5–8,
all versions of the proposed PCCGWO algorithm are more efficient than the standard
GWO in terms of the solution’s quality and fastness convergence. The exploration and
exploitation capacities of PCCGWO algorithms are further improved. In scenarios 5 and 9,
with problem dimensions equal to 200 and 300, respectively, all versions of the PCCGWO
algorithms as well as the standard GWO one give feasible paths and can avoid all obstacles.
In scenario 17, with problem dimensions equal to 500, only the PCCGWO-6, PCCGWO-8,
PCCGWO-10, and PCCGWO-12 optimizers avoid the danger zones. In scenario 20, with
a problem dimension equal to 600 and a high number of obstacles, only the proposed
PCCGWO-10 and PCCGWO-12 algorithms give feasible paths. It is obvious that for an
increase in the problem dimension, some PCCGWO algorithms become inefficient, due
to the fewer number of slaves which become insufficient to provide efficient parallel
computing and good research cooperation. In this case, variants of PCCGWO with a
higher number of slaves are needed and more sophisticated processors with more than
12 cores are then necessary for these treatments. Additionally, one can observe that the
standard GWO never moves between obstacles in the considered flight scenarios. On the
contrary, all versions of PCCGWO pass between obstacles to reach the target point. The
PCCGWO algorithm remains the more suited solver for performing flight missions with
high efficiency compared to the GWO one.

Let us now analyze the effect of slaves’ number, for a given problem dimension, on the
performance of the proposed PCCGWO-based planning process. For this purpose, another
10 flight scenarios, for the same dimension equal to 600 and various numbers and positions
of obstacles, are investigated as shown in Table 4. From this result, one can observe that
the increase in the number of slaves leads to a decrease in the SLR values. For the threats’
avoidance, the planned paths are shown in Figure 9. In scenarios 1, 2, and 3 of Table 4,
with fewer numbers of obstacles, the algorithms PCCGWO-6, PCCGWO-8, PCCGWO-10,
and PCCGWO-12 avoid the danger zones. In scenario 4, only the algorithms PCCGWO-8,
PCCGWO-10, and PCCGWO-12 give feasible paths. For more complex scenarios, i.e.,
flight environment with several obstacles, only the PCCGWO-10 and PCCGWO-12 variants
give feasible collision-free paths. Thus, for a concrete number of problem dimensions, as
the number of obstacles increases, more slaves in the PCCGWO algorithm are needed to
find feasible paths. The shorter and collision-free obtained paths confirm the superiority
and effectiveness of the proposed PCCGWO optimizers with an increased number of
slaves, i.e., PCCGWO-10 and PCCGWO-12 variants. Obviously, with each increase in the
dimension of the planning problem, algorithms with more slaves are needed to best handle
the complexity of the resulting optimization problem.

Sensors 2022, 22, 1826 18 of 29Sensors 2022, 22, x FOR PEER REVIEW 18 of 31

Figure 4. Box-and-Whisker plots of the SLR performance index over the flight scenarios.

On the other hand, and for the threats’ avoidance criterion, some illustrations of the
planned paths corresponding to the average case of performance are shown in Figures 5–
8 for the flight scenarios 5, 9, 17, and 20 of Table 1, respectively. As shown in Figures 5–8,
all versions of the proposed PCCGWO algorithm are more efficient than the standard
GWO in terms of the solution’s quality and fastness convergence. The exploration and
exploitation capacities of PCCGWO algorithms are further improved. In scenarios 5 and
9, with problem dimensions equal to 200 and 300, respectively, all versions of the
PCCGWO algorithms as well as the standard GWO one give feasible paths and can avoid
all obstacles. In scenario 17, with problem dimensions equal to 500, only the PCCGWO-6,
PCCGWO-8, PCCGWO-10, and PCCGWO-12 optimizers avoid the danger zones. In sce-
nario 20, with a problem dimension equal to 600 and a high number of obstacles, only the

SL
R

 v
al

ue

SL
R

 v
al

ue

SL
R

 v
al

ue

SL
R

 v
al

ue

SL
R

 v
al

ue

SL
R

 v
al

ue

SL
R

 v
al

ue

SL
R

 v
al

ue

SL
R

 v
al

ue

SL
R

 v
al

ue
SL

R
 v

al
ue

SL
R

 v
al

ue

SL
R

 v
al

ue

SL
R

 v
al

ue

SL
R

 v
al

ue

SL
R

 v
al

ue

SL
R

 v
al

ue

SL
R

 v
al

ue

SL
R

 v
al

ue

SL
R

 v
al

ue

Figure 4. Box-and-Whisker plots of the SLR performance index over the flight scenarios.

Sensors 2022, 22, x FOR PEER REVIEW 19 of 31

proposed PCCGWO-10 and PCCGWO-12 algorithms give feasible paths. It is obvious that
for an increase in the problem dimension, some PCCGWO algorithms become inefficient,
due to the fewer number of slaves which become insufficient to provide efficient parallel
computing and good research cooperation. In this case, variants of PCCGWO with a
higher number of slaves are needed and more sophisticated processors with more than 12
cores are then necessary for these treatments. Additionally, one can observe that the stand-
ard GWO never moves between obstacles in the considered flight scenarios. On the con-
trary, all versions of PCCGWO pass between obstacles to reach the target point. The
PCCGWO algorithm remains the more suited solver for performing flight missions with
high efficiency compared to the GWO one.

Figure 5. Planning performance in Scenario 5: (a) 3D planned paths; (b) 2D planned paths; (c) Algo-
rithms’ convergence.

Figure 6. Planning performance in Scenario 9: (a) 3D planned paths; (b) 2D planned paths; (c) Algo-
rithms’ convergence.

Figure 7. Planning performance in Scenario 17: (a) 3D planned paths; (b) 2D planned paths; (c) Al-
gorithms’ convergence.

Be
st

 C
os

t
Be

st
 C

os
t

Be
st

 C
os

t

Figure 5. Planning performance in Scenario 5: (a) 3D planned paths; (b) 2D planned paths;
(c) Algorithms’ convergence.

Sensors 2022, 22, 1826 19 of 29

Sensors 2022, 22, x FOR PEER REVIEW 19 of 31

proposed PCCGWO-10 and PCCGWO-12 algorithms give feasible paths. It is obvious that
for an increase in the problem dimension, some PCCGWO algorithms become inefficient,
due to the fewer number of slaves which become insufficient to provide efficient parallel
computing and good research cooperation. In this case, variants of PCCGWO with a
higher number of slaves are needed and more sophisticated processors with more than 12
cores are then necessary for these treatments. Additionally, one can observe that the stand-
ard GWO never moves between obstacles in the considered flight scenarios. On the con-
trary, all versions of PCCGWO pass between obstacles to reach the target point. The
PCCGWO algorithm remains the more suited solver for performing flight missions with
high efficiency compared to the GWO one.

Figure 5. Planning performance in Scenario 5: (a) 3D planned paths; (b) 2D planned paths; (c) Algo-
rithms’ convergence.

Figure 6. Planning performance in Scenario 9: (a) 3D planned paths; (b) 2D planned paths; (c) Algo-
rithms’ convergence.

Figure 7. Planning performance in Scenario 17: (a) 3D planned paths; (b) 2D planned paths; (c) Al-
gorithms’ convergence.

Be
st

 C
os

t
Be

st
 C

os
t

Be
st

 C
os

t

Figure 6. Planning performance in Scenario 9: (a) 3D planned paths; (b) 2D planned paths;
(c) Algorithms’ convergence.

Sensors 2022, 22, x FOR PEER REVIEW 19 of 31

proposed PCCGWO-10 and PCCGWO-12 algorithms give feasible paths. It is obvious that
for an increase in the problem dimension, some PCCGWO algorithms become inefficient,
due to the fewer number of slaves which become insufficient to provide efficient parallel
computing and good research cooperation. In this case, variants of PCCGWO with a
higher number of slaves are needed and more sophisticated processors with more than 12
cores are then necessary for these treatments. Additionally, one can observe that the stand-
ard GWO never moves between obstacles in the considered flight scenarios. On the con-
trary, all versions of PCCGWO pass between obstacles to reach the target point. The
PCCGWO algorithm remains the more suited solver for performing flight missions with
high efficiency compared to the GWO one.

Figure 5. Planning performance in Scenario 5: (a) 3D planned paths; (b) 2D planned paths; (c) Algo-
rithms’ convergence.

Figure 6. Planning performance in Scenario 9: (a) 3D planned paths; (b) 2D planned paths; (c) Algo-
rithms’ convergence.

Figure 7. Planning performance in Scenario 17: (a) 3D planned paths; (b) 2D planned paths; (c) Al-
gorithms’ convergence.

Be
st

 C
os

t
Be

st
 C

os
t

Be
st

 C
os

t

Figure 7. Planning performance in Scenario 17: (a) 3D planned paths; (b) 2D planned paths;
(c) Algorithms’ convergence.

Sensors 2022, 22, x FOR PEER REVIEW 20 of 31

Figure 8. Planning performance in Scenario 20: (a) 3D planned paths; (b) 2D planned paths; (c) Al-
gorithms’ convergence.

Let us now analyze the effect of slaves’ number, for a given problem dimension, on
the performance of the proposed PCCGWO-based planning process. For this purpose, an-
other 10 flight scenarios, for the same dimension equal to 600 and various numbers and
positions of obstacles, are investigated as shown in Table 4. From this result, one can ob-
serve that the increase in the number of slaves leads to a decrease in the SLR values. For
the threats’ avoidance, the planned paths are shown in Figure 9. In scenarios 1, 2, and 3 of
Table 4, with fewer numbers of obstacles, the algorithms PCCGWO-6, PCCGWO-8,
PCCGWO-10, and PCCGWO-12 avoid the danger zones. In scenario 4, only the algo-
rithms PCCGWO-8, PCCGWO-10, and PCCGWO-12 give feasible paths. For more com-
plex scenarios, i.e., flight environment with several obstacles, only the PCCGWO-10 and
PCCGWO-12 variants give feasible collision-free paths. Thus, for a concrete number of
problem dimensions, as the number of obstacles increases, more slaves in the PCCGWO
algorithm are needed to find feasible paths. The shorter and collision-free obtained paths
confirm the superiority and effectiveness of the proposed PCCGWO optimizers with an
increased number of slaves, i.e., PCCGWO-10 and PCCGWO-12 variants. Obviously, with
each increase in the dimension of the planning problem, algorithms with more slaves are
needed to best handle the complexity of the resulting optimization problem.

Table 4. Performance variation over varying numbers of PCCGWO’s slaves: SLR criterion.

Scenario Obstacles
Number of Slaves in the PCCGWO Algorithms

2 4 6 8 10 12
1 40 1.2488 1.2402 1.1923 1.1852 1.1653 1.1631
2 45 1.2671 1.2612 1.2079 1.1952 1.1680 1.1641
3 50 1.2967 1.2883 1.2119 1.2075 1.1978 1.1956
4 55 1.3181 1.2977 1.2172 1.2135 1.2147 1.2113
5 60 1.3483 1.3187 1.2467 1.2329 1.2245 1.2154
6 65 1.2870 1.2440 1.2122 1.2193 1.1790 1.1404
7 70 1.3714 1.3228 1.2603 1.2457 1.2251 1.2240
8 75 1.4070 1.3504 1.2695 1.2567 1.2274 1.2258
9 80 1.5832 1.3569 1.2716 1.2630 1.2317 1.2279
10 85 1.5929 1.3584 1.2874 1.2801 1.2585 1.2490

Be
st

 C
os

t

Figure 8. Planning performance in Scenario 20: (a) 3D planned paths; (b) 2D planned paths;
(c) Algorithms’ convergence.

Considering the two performance criteria, i.e., standardized cost and SLR, a statistical
comparison based on the nonparametric Friedman test is implemented and discussed
according to the mean values of performance over 20 different instances. The aim is
to statistically study significant differences between the considered PCCGWO variants
and standard GWO. For the seven reported algorithms (ζ = 7) and the twenty scenarios
(η = 20), the Iman–Davenport extension of the classical Friedman test [47] leads to the com-
puted value FF1 = 52.7465 for the objective value criterion and FF2 = 71.2460 for the SLR
criterion. Based on the F distribution table, the critical value with ζ − 1 and (ζ − 1)(η − 1)
degree-of-freedom is equal to F6,114,0.05 = 2.1750 < FF1 < FF2 at a confidence level of
α = 0.05. The null hypothesis is therefore rejected and there are significant differences be-
tween the performances of the proposed algorithms in solving the path planning problem.
Fisher’s LSD post hoc test [48] is applied to find out which algorithms differ from others.
The ranks’ sums for all proposed algorithms are summarized in Tables 5 and 6. When the

Sensors 2022, 22, 1826 20 of 29

absolute difference of the ranks’ sum of two algorithms is greater than a critical value, they
are declared to be different. Based on the statistical calculation formula given in [48], the
critical value is equal to 11.9624 for the standardized cost criterion and 10.6661 for the SLR
criterion. Paired comparisons are summarized in Tables 7 and 8. The underlined values
indicate the difference in the performance of the proposed algorithms. From the conducted
statistical study, one can see that the standard GWO is the worst performing algorithm
according to the standardized cost and SLR criteria of the UAVs’ path planning problem.
The six PCCGWO versions surpass the standard GWO in all scenarios with statistical
confidence. Indeed, the proposed algorithm PCCGWO-12 becomes the best, followed by
PCCGWO-10 and PCCGWO-8 ones. The total number of subpopulations has a big impact
on the performance of the PCCGWO algorithms. These demonstrative results show that the
proposed PCCGWO algorithm improves the quality of the standard GWO-based solutions.

Table 4. Performance variation over varying numbers of PCCGWO’s slaves: SLR criterion.

Scenario Obstacles
Number of Slaves in the PCCGWO Algorithms

2 4 6 8 10 12

1 40 1.2488 1.2402 1.1923 1.1852 1.1653 1.1631
2 45 1.2671 1.2612 1.2079 1.1952 1.1680 1.1641
3 50 1.2967 1.2883 1.2119 1.2075 1.1978 1.1956
4 55 1.3181 1.2977 1.2172 1.2135 1.2147 1.2113
5 60 1.3483 1.3187 1.2467 1.2329 1.2245 1.2154
6 65 1.2870 1.2440 1.2122 1.2193 1.1790 1.1404
7 70 1.3714 1.3228 1.2603 1.2457 1.2251 1.2240
8 75 1.4070 1.3504 1.2695 1.2567 1.2274 1.2258
9 80 1.5832 1.3569 1.2716 1.2630 1.2317 1.2279
10 85 1.5929 1.3584 1.2874 1.2801 1.2585 1.2490

Table 5. Friedman’s ranking of the algorithms for mean performance: standardized cost criterion.

Scenarios

Algorithms

GWO PCCGWO-2 PCCGWO-4 PCCGWO-6 PCCGWO-8 PCCGWO-10 PCCGWO-12

Rank Rank Rank Rank Rank Rank Rank

1 5 4 1 6 2 3 7
2 7 6 5 3 2 4 1
3 7 6 5 4 3 2 1
4 7 6 5 4 3 2 1
5 7 3 2 5 4 6 1
6 7 6 5 4 3 2 1
7 7 6 5 4 3 2 1
8 7 6 5 4 3 1 2
9 7 6 5 4 3 1 2
10 7 6 5 4 3 2 1
11 7 6 5 4 3 2 1
12 7 6 5 4 3 2 1
13 7 6 5 2 3 1 4
14 7 6 5 4 2 3 1
15 7 6 5 3 2 4 1
16 7 6 5 4 3 2 1
17 5 4 7 6 2 3 1
18 7 6 5 4 3 1 2
19 7 6 5 4 3 2 1
20 7 6 4 2 5 3 1

Ranks’ sum 136 113 94 79 58 48 32

Sensors 2022, 22, 1826 21 of 29
Sensors 2022, 22, x FOR PEER REVIEW 21 of 31

Figure 9. Effect of increasing numbers of PCCGWO’s slaves on the collision-free planning perfor-
mance.

Considering the two performance criteria, i.e., standardized cost and SLR, a statistical
comparison based on the nonparametric Friedman test is implemented and discussed ac-
cording to the mean values of performance over 20 different instances. The aim is to sta-
tistically study significant differences between the considered PCCGWO variants and
standard GWO. For the seven reported algorithms (7ζ =) and the twenty scenarios (

20η =), the Iman–Davenport extension of the classical Friedman test [47] leads to the
computed value

1
52.7465FF = for the objective value criterion and

2
71.2460FF =

for the SLR criterion. Based on the F distribution table, the critical value with 1ζ − and

Figure 9. Effect of increasing numbers of PCCGWO’s slaves on the collision-free planning
performance.

4.2.2. Computational Time

The performance of the proposed PCCGWO algorithms can be analyzed and compared
in terms of the runtime of all reported algorithms over 20 different flight scenarios. The
statistical results obtained for the Computational (CT) metric are summarized in Table 9.
The obtained runtime measures for the mean case of optimization are also graphically
shown in Figure 10. From these demonstrative results, one can notice that the increase
in the number of slaves in the parallel master-slave model leads to lower runtimes of
the reported PCCGWO algorithms. The PCCGWO-10 and PCCGWO-12 with the highest
number of slaves are often the best variants with a remarkable superiority regarding the

Sensors 2022, 22, 1826 22 of 29

other reported PCCGWO algorithms. The reason for these fast processing computations
is that the population and the decision variables are divided by the number of slaves that
are evolved in parallel, i.e., one per subpopulation. It is also noticed that as the size of the
problem increases, the runtime increases for all PCCGWO versions. As expected, a heavier
computational and communication burden in parallel algorithms may be imposed by the
manipulation and transmission of higher dimensional vectors.

4.2.3. Algorithms’ Sensitivity Analysis

In this subsection, a study on the impact of the main control parameters’ settings
of the PCCGWO versions, i.e., population size npop and maximum number of iterations
niter, is carried out while considering the path length and the execution time as perfor-
mance metrics. For this sensitivity analysis of the proposed PCCGWO algorithms, several
simulations with different settings of control parameters, as npop ∈ {1200, 1600, 2000},
and niter ∈ {1500, 2000, 2500}, are performed and summarized in Tables 10 and 11 for the
considered two performance metrics. For a given numerical experimentation, the impact
of a single parameter is examined while keeping the other parameter constant. All the
performance comparisons are conducted under Scenario 20 of Table 1 which represents the
hardest and most complicated path planning instance.

Table 6. Friedman’s ranking of the algorithms for mean performance: SLR criterion.

Scenarios

Algorithms

GWO PCCGWO-2 PCCGWO-4 PCCGWO-6 PCCGWO-8 PCCGWO-10 PCCGWO-12

Rank Rank Rank Rank Rank Rank Rank

1 6 5 1 2 3 4 7
2 7 6 5 4 3 2 1
3 7 6 5 4 3 2 1
4 7 6 5 4 3 2 1
5 7 3 2 5 4 6 1
6 7 6 5 4 3 2 1
7 7 6 5 4 3 2 1
8 7 6 5 4 3 2 1
9 7 6 5 4 3 1 2
10 7 6 5 4 3 2 1
11 5 7 6 4 3 2 1
12 7 6 5 4 3 2 1
13 7 6 5 3 2 1 4
14 7 6 5 4 2 3 1
15 7 6 5 4 3 2 1
16 7 6 5 4 3 2 1
17 7 5 6 4 2 3 1
18 7 6 5 4 3 2 1
19 7 6 5 3 4 2 1
20 7 6 5 3 4 2 1

Ranks’ sum 137 116 95 76 60 46 30

Table 7. Paired comparison of the proposed algorithms: standardized cost criterion.

PCCGWO-2 PCCGWO-4 PCCGWO-6 PCCGWO-8 PCCGWO-10 PCCGWO-12

GWO 23 42 57 78 88 104
PCCGWO-2 – 19 34 55 65 81
PCCGWO-4 – – 15 36 46 62
PCCGWO-6 – – – 21 31 47
PCCGWO-8 – – – – 10 26
PCCGWO-10 – – – – – 16

Sensors 2022, 22, 1826 23 of 29

Table 8. Paired comparison of the proposed algorithms: SLR criterion.

PCCGWO-2 PCCGWO-4 PCCGWO-6 PCCGWO-8 PCCGWO-10 PCCGWO-12

GWO 21 42 61 77 91 107
PCCGWO-2 – 21 40 56 70 86
PCCGWO-4 – – 19 35 49 65
PCCGWO-6 – – – 16 30 46
PCCGWO-8 – – – – 14 30
PCCGWO-10 – – – – – 16

From these demonstrative results, one can notice that the increase in the population
size leads to a decrease in the path length and, subsequently, an increase in the execution
time for all reported algorithms. It is also obvious that the elapsed time increases linearly
with the increase in the number of iterations, on the contrary, the path length decreases.
In Scenario 20 of Table 1, the PCCGWO-6, PCCGWO-8, PCCGWO-10, and PCCGWO-12
algorithms give achievable paths while avoiding all the obstacles. With parameters’ setting
npop = 1200 and niter = 1500, only the PCCGWO-10 and PCCGWO-12 algorithms give
feasible paths while respecting the collision avoidance constraint. Therefore, as the size
population and number of iterations increase, the efficiency of the proposed PCCGWO
metaheuristics algorithms improves.

Table 9. Computational time measurement of PCCGWO algorithms: CT metric (sec).

Scenario GWO PCCGWO-2 PCCGWO-4 PCCGWO-6 PCCGWO-8 PCCGWO-10 PCCGWO-12

1

Best 911.5413 305.5142 120.3264 95.8741 71.2225 63.2145 60.9884
Mean 919.3462 308.4683 123.6590 97.1411 73.4176 64.7595 61.5689
Worst 930.2144 312.2636 126.3254 99.2236 75.2214 66.2111 63.1114
STD 9.3403 3.3781 3.0112 1.5589 2.0226 1.4324 0.5781

2

Best 1321.3214 378.2141 138.2143 109.3254 78.1412 67.7841 64.7412
Mean 1345.6521 387.2136 141.3154 112.2165 79.6541 69.1252 66.2143
Worst 1378.5113 398.3214 146.2541 115.0536 81.9654 70.9143 67.9412
STD 28.7044 10.0721 2.5465 2.5077 1.2188 0.9677 0.7899

3

Best 1543.3652 421.2145 151.8874 124.9412 84.1521 74.6521 68.2541
Mean 1556.2145 425.2314 154.2142 126.2143 85.2541 75.2845 69.3251
Worst 1565.4133 428.2541 156.9984 128.5471 87.5241 76.2214 70.5241
STD 11.0471 3.5347 2.5541 1.5305 1.5241 0.7112 0.7014

4

Best 1675.3254 474.6251 173.5412 135.2146 90.2143 78.8965 69.1745
Mean 1689.2135 479.2143 175.9852 137.1456 91.3264 79.6541 70.2143
Worst 1700.3652 483.2145 177.6399 139.8854 92.6541 80.6231 71.2541
STD 12.5473 3.7941 2.0674 2.3489 1.2287 0.8674 0.7114

5

Best 1819.3214 515.2365 188.3146 147.2514 95.2256 84.2145 78.2254
Mean 1826.7733 518.0455 191.6003 149.0560 97.4111 86.7754 79.0130
Worst 1830.6214 522.3651 193.2146 151.2223 98.5874 88.2146 80.3365
STD 17.2485 3.5874 2.7789 1.90321 1.7223 2.0261 1.0558

6

Best 2066.3265 576.3652 196.3254 160.3214 101.3325 91.6541 82.5413
Mean 2076.3265 579.8523 198.2146 162.3264 102.3214 92.3641 83.6524
Worst 2089.3254 583.6521 201.3254 164.3265 103.9987 93.1234 84.8741
STD 11.5002 3.6474 2.5247 2.0074 1.3414 0.7341 1.1204

7

Best 2174.2541 651.2146 212.3265 173.2651 106.5241 97.5562 85.5527
Mean 2183.1258 654.3214 215.2463 175.8543 108.2541 98.5141 86.5412
Worst 2190.3265 659.5446 217.9985 178.3325 110.3254 99.8574 87.2141
STD 8.0014 4.2005 2.8874 2.5374 1.9044 1.1511 0.8374

Sensors 2022, 22, 1826 24 of 29

Table 9. Cont.

Scenario GWO PCCGWO-2 PCCGWO-4 PCCGWO-6 PCCGWO-8 PCCGWO-10 PCCGWO-12

8

Best 2355.9852 698.2541 226.3264 187.3254 110.3652 102.3254 89.6542
Mean 2365.2654 702.3614 228.9874 188.6413 111.2365 103.6521 90.3652
Worst 2378.7141 706.5234 230.3214 190.3265 112.6897 104.9852 91.2541
STD 11.4632 4.1332 2.0312 1.0112 1.1798 1.3205 0.8074

9

Best 2535.6231 758.2541 238.2541 197.2314 114.2289 109.8741 95.2148
Mean 2548.1259 762.6293 240.2468 199.4514 116.3322 110.8850 96.6493
Worst 2555.3251 765.2365 243.2561 201.2315 118.5698 111.6548 97.8854
STD 9.9021 3.8741 2.4412 2.0053 2.1002 0.8741 1.3365

10

Best 2752.3251 807.3254 259.8741 207.2146 122.6652 112.8745 103.6654
Mean 2765.3254 812.3254 262.3241 209.3652 123.6521 113.2146 104.2143
Worst 2774.6324 816.3251 264.6521 210.3265 124.8974 114.1236 105.1235
STD 11.2987 4.5114 2.3874 1.5998 1.1173 0.6474 0.7314

11

Best 2884.3651 838.6251 279.8412 215.2314 126.2541 114.3241 109.052
Mean 2898.9306 848.9878 288.0397 217.2632 128.7884 115.5282 110.0093
Worst 2895.3214 854.2341 292.3641 220.3214 130.2654 116.3541 111.3264
STD 7.5032 7.7242 6.7651 2.8254 2.0125 1.0144 0.8854

12

Best 3009.2314 1054.3241 305.3254 226.3254 135.4232 123.6524 117.7413
Mean 3015.6472 1057.2657 308.6874 227.8542 136.2143 124.6521 118.3214
Worst 3024.2134 1061.3241 310.2314 229.6541 137.6541 125.9874 119.6243
STD 7.3254 3.5174 2.1871 1.6677 1.1374 1.1701 0.9601

13

Best 3276.2156 1135.3621 317.2156 231.2541 140.3256 129.3254 121.5563
Mean 3285.9941 1145.9659 321.2547 235.7442 142.3955 131.2394 123.2458
Worst 3295.2596 1151.3214 327.3215 237.8213 145.3652 133.2231 124.3326
STD 9.2143 8.1456 5.0793 3.4687 2.0354 1.9231 1.3231

14

Best 3365.3210 1204.6652 336.5412 243.6541 147.1123 131.4152 126.8745
Mean 3371.3652 1208.3652 338.5413 245.6521 148.3214 132.2145 127.3264
Worst 3381.3250 1213.3254 340.6523 246.9985 149.8993 133.6541 128.5541
STD 8.0143 3.3001 2.0998 1.6822 1.3941 1.1319 0.8602

15

Best 3425.2231 1251.2134 349.3215 250.3214 154.3321 133.6998 131.3264
Mean 3432.5063 1264.4021 352.8324 254.0122 155.2483 134.4023 132.1470
Worst 3440.5231 1269.5874 356.2143 257.2145 157.3254 135.6252 133.6524
STD 7.1123 9.8774 3.4887 3.8857 1.5228 1.1712 0.9712

16

Best 3791.2513 1144.3265 374.8871 257.3241 161.2445 137.8741 136.8874
Mean 3798.3254 1146.6541 376.9852 259.3652 162.3254 138.5241 137.3264
Worst 3808.2365 1151.8521 378.9236 261.3265 163.8745 139.6412 138.9841
STD 8.1326 2.7102 2.0100 2.0088 1.3204 0.8901 1.1036

17

Best 3959.3214 1325.2141 387.2145 264.6325 168.2541 144.9985 141.3336
Mean 3964.5898 1335.9107 392.1166 266.0347 169.4657 145.4018 142.3379
Worst 3975.3256 1341.2365 396.3219 268.3214 171.3265 147.3261 142.9745
STD 8.1001 6.7789 4.4123 3.8514 1.5142 1.2487 0.8214

18

Best 4176.6541 1394.3254 405.3254 296.5241 173.8974 154.8764 147.8541
Mean 4189.6312 1399.5413 407.3267 298.7413 174.6652 155.8032 148.3621
Worst 4196.3214 1405.3214 410.3652 301.2354 175.8743 156.4123 149.1365
STD 9.4567 5.5087 2.5374 2.3774 0.9974 0.7778 0.7727

19

Best 4312.3261 1456.3257 412.3214 324.2314 177.3265 163.2523 154.5413
Mean 4322.3891 1461.5171 416.5431 326.2189 178.7762 164.5179 155.6984
Worst 4331.3251 1476.3652 422.3256 329.3254 179.3254 165.3288 156.3654
STD 9.0351 6.9974 4.2223 3.5541 1.0389 1.0141 0.9190

20

Best 4349.5412 1469.3254 431.2213 305.2314 186.8541 172.2235 167.8945
Mean 4358.7562 1473.0308 434.7432 307.9164 188.6586 173.1247 168.9587
Worst 4365.3254 1476.2541 436.2214 309.6685 189.9845 174.6547 169.6852
STD 7.0370 3.4226 2.5447 2.2668 1.5747 1.2874 0.9114

Sensors 2022, 22, 1826 25 of 29Sensors 2022, 22, x FOR PEER REVIEW 26 of 31

Figure 10. Time consumption performance index’s variations over the 20 flight scenarios.

4.2.3. Algorithms’ Sensitivity Analysis
In this subsection, a study on the impact of the main control parameters’ settings of

the PCCGWO versions, i.e., population size popn and maximum number of iterations

itern , is carried out while considering the path length and the execution time as perfor-
mance metrics. For this sensitivity analysis of the proposed PCCGWO algorithms, several
simulations with different settings of control parameters, as { }1200,1600,2000popn ∈ , and

{ }1500,2000,2500itern ∈ , are performed and summarized in Tables 10 and 11 for the con-
sidered two performance metrics. For a given numerical experimentation, the impact of a
single parameter is examined while keeping the other parameter constant. All the perfor-
mance comparisons are conducted under Scenario 20 of Table 1 which represents the
hardest and most complicated path planning instance.

Table 10. Path length under varying iterations and population sizes of the problem (4).

Max Iter Pop
Path Length (km)

GWO PCCGWO-2 PCCGWO-4 PCCGWO-6 PCCGWO-8 PCCGWO-10 PCCGWO-12

1500

1200 104.8208 103.9609 100.4901 97.9196 98.4952 95.2382 92.1185
1600 104.8161 103.9124 100.4175 97.6541 97.8856 95.1867 91.9874
2000 104.7852 102.4171 100.2145 97.1423 96.8451 95.1022 91.4213

2000

1200 104.7611 105.5241 100.6524 96.5240 96.6477 95.0536 90.8741
1600 104.7452 104.9640 100.5241 96.1234 95.5431 94.9741 90.1234
2000 104.7366 104.5231 100.4123 95.7441 94.3654 94.7541 89.9748

2500
1200 104.7014 108.9521 100.6974 95.1243 93.4271 94.5747 89.4574
1600 104.6974 108.6241 100.6142 94.6541 92.7841 94.4123 88.9874
2000 104,6841 108.5346 100.5978 93.3103 91.4484 94.2098 88.1024

Ti
m

e
C

on
su

m
pt

io
n

(s
ec

)
Ti

m
e

C
on

su
m

pt
io

n
(s

ec
)

Figure 10. Time consumption performance index’s variations over the 20 flight scenarios.

Table 10. Path length under varying iterations and population sizes of the problem (4).

Max Iter Pop
Path Length (km)

GWO PCCGWO-2 PCCGWO-4 PCCGWO-6 PCCGWO-8 PCCGWO-10 PCCGWO-12

1500
1200 104.8208 103.9609 100.4901 97.9196 98.4952 95.2382 92.1185
1600 104.8161 103.9124 100.4175 97.6541 97.8856 95.1867 91.9874
2000 104.7852 102.4171 100.2145 97.1423 96.8451 95.1022 91.4213

2000
1200 104.7611 105.5241 100.6524 96.5240 96.6477 95.0536 90.8741
1600 104.7452 104.9640 100.5241 96.1234 95.5431 94.9741 90.1234
2000 104.7366 104.5231 100.4123 95.7441 94.3654 94.7541 89.9748

2500
1200 104.7014 108.9521 100.6974 95.1243 93.4271 94.5747 89.4574
1600 104.6974 108.6241 100.6142 94.6541 92.7841 94.4123 88.9874
2000 104,6841 108.5346 100.5978 93.3103 91.4484 94.2098 88.1024

Table 11. Computational time under varying iterations and population sizes of the problem (4).

Max Iter Pop
Computational Time (sec)

GWO PCCGWO-2 PCCGWO-4 PCCGWO-6 PCCGWO-8 PCCGWO-10 PCCGWO-12

1500
1200 4358.7562 1473.0308 434.7432 307.9164 188.6586 173.1247 168.9587
1600 5874.3251 1712.0402 547.3584 370.5632 220.2547 204.6525 189.6521
2000 6587.3256 1998.6414 638.7512 401.5741 279.6514 256.3241 220.4512

2000
1200 7854.5567 2345.2411 786.8225 489.5127 301.4276 291.2354 260.5411
1600 8752.3389 2687.5418 865.1140 578.1143 356.8123 324.3521 298.6278
2000 9687.5241 2871.8892 974.6823 647.3328 387.4412 365.3248 335.5741

2500
1200 10475.531 3564.5241 1000.7412 698.3241 412.3641 398.6541 367.8749
1600 11541.317 4100.5241 1107.5241 745.6231 487.3364 465.3654 435.9871
2000 12081.541 4340.5618 1262.6289 873.7593 537.1352 483.0177 445.5718

4.2.4. Comparison with Other Metaheuristics Algorithms

To examine and evaluate the performance of the proposed PCCGWO-12, recent and
extensively used Water Cycle Algorithm (WCA), Crow Search Algorithm (CSA), Salp

Sensors 2022, 22, 1826 26 of 29

Swarm Algorithm (SSA), and Multi-Verse Optimizer (MVO) are considered for the compar-
ison. For these algorithms, the common parameters such as the population size and the
maximum number of iterations are set as npop = 1200 and niter = 1500, respectively. All the
performance comparisons are conducted under Scenario 20 of Table 1. All the compared
algorithms are independently executed 20 times. The specific control parameters of each
reported metaheuristic are summarized as follows:

− WCA [49]: number of rivers: 4, maximum distance: 1 × 10−16.
− SSA [50]: no control parameters.
− CSA [51]: awareness probability: 0.2, flight length: 1.
− MVO [52]: min and max of wormhole existence probabilities: 0.2 and 1.

Table 12 presents the optimization results of the compared algorithms in terms of SRL
and CT performance criteria. Based on these results, one can observe the superiority of the
proposed PCCGWO-12 algorithm in terms of solutions’ quality, results’ reproducibility,
and computational speedup, i.e., lower values for the mean SLR criterion, STD indices, and
computational time.

Table 12. Performance comparison of the PCCGWO-12 algorithm with recent metaheuristics.

Algorithms

WCA SSA CSA MVO PCCGWO-12

SLR CT SLR CT SLR CT SLR CT SLR CT

Best 1.2865 7636.214 1.3126 13758.21 1.4156 3854.654 3.1456 3974.216 1.1222 167.8945
Mean 1.3210 7788.391 1.4470 13859.58 1.5525 3998.179 3.4373 4260.839 1.1404 168.9587
Worst 1.4563 7892.321 1.5569 14014.36 1.7412 4063.541 3.7652 4465.321 1.1874 169.6852
STD 0.0982 112.7417 0.1389 119.0197 0.1741 101.8591 0.3198 204.6947 0.0374 0.9114

Figure 11 shows the planned paths of the proposed and compared algorithms. Shorter
and collision-free paths are obtained by the PCCGWO-12 planner that also better performs
the fastest computation processing. On the contrary, all other reported algorithms are not
efficient enough for the considered planning problem with increased numbers of obstacles
and dimensions. Some of these planners lead to not flyable paths that traverse the threat
zones with a lot of fluctuations. This weakness of WCA, SSA, CSA, and MVO algorithms
in the planning process is due to their “dimensionality curse” that often makes failure to
solve such large-scale optimization problems. In addition, the exploration and exploitation
capacities of the proposed PCCGWO-12 algorithm are superior compared to those of the
reported WCA, SSA, CSA, and MVO algorithms. Based on these established comparisons
and observations, the superiority and effectiveness of the proposed PCCGWO-based path
planning approach are further improved in terms of collision avoidance, shorter planned
paths, and fastness of the computation processing. The novelty and originality of our work
are well clarified compared to approaches using similar techniques.

Sensors 2022, 22, x FOR PEER REVIEW 28 of 31

Figure 11 shows the planned paths of the proposed and compared algorithms.
Shorter and collision-free paths are obtained by the PCCGWO-12 planner that also better
performs the fastest computation processing. On the contrary, all other reported algo-
rithms are not efficient enough for the considered planning problem with increased num-
bers of obstacles and dimensions. Some of these planners lead to not flyable paths that
traverse the threat zones with a lot of fluctuations. This weakness of WCA, SSA, CSA, and
MVO algorithms in the planning process is due to their “dimensionality curse” that often
makes failure to solve such large-scale optimization problems. In addition, the exploration
and exploitation capacities of the proposed PCCGWO-12 algorithm are superior com-
pared to those of the reported WCA, SSA, CSA, and MVO algorithms. Based on these
established comparisons and observations, the superiority and effectiveness of the pro-
posed PCCGWO-based path planning approach are further improved in terms of collision
avoidance, shorter planned paths, and fastness of the computation processing. The nov-
elty and originality of our work are well clarified compared to approaches using similar
techniques.

Figure 11. Comparison with WCA, SSA, CSA, and MVO metaheuristics: (a) 3D paths; (b) 2D paths;
(c) Algorithms’ convergence.

5. Conclusions
In this paper, a new Parallel Cooperative Coevolutionary variant of the Grey Wolf Op-

timizer (PCCGWO) based on a parallelization master-slave model has been proposed and
successfully applied to solve the UAVs’ path planning problem over large benchmarks and
instances of navigation. To overcome the limits and drawbacks of the standard GWO for
solving large-scale and complex path planning problems, particularly in terms of dimen-
sionality curse and prohibitive time consuming, two improvement mechanisms in terms of
parallelization and cooperative co-evolutionary search are introduced in the proposed
PCCGWO algorithm. The UAVs’ path planning problem is formulated as an LSGO problem
under operational constraints mainly in terms of obstacles’ collision avoidance and path’s
straightness. A cooperative coevolutionary mechanism is applied to make an efficient par-
tition of the original search space into smaller dimensional sub-spaces. The decision varia-
bles’ vector is decomposed into several subcomponents with reduced dimensions. An effi-
cient parallelization master-slave technique is then proposed to further reduce the compu-
tation time faced with the large-scale and hardness of the planning problem. Six PCCGWO
variants with an increased number of slaves, i.e., PCCGWO-2, PCCGWO-4, PCCGWO-6,
PCCGWO-8, PCCGWO-10, and PCCGWO-12, are proposed according to the number of the
partitioned sub-populations and the available cores of the computer CPU’s processor. Each
slave of such a parallel architecture is designed to evolve a sub-swarm that seeks to optimize
its component by applying a standard GWO algorithm. The master builds a buffer vector
by concatenating the different representatives from slaves, shown as best search agents, and
sending it again for a new cycle. The performance analysis of the proposed PCCGWO plan-
ners is carried out based on several experiments over different flight instances as well as a
comparative study with the standard GWO algorithm, and other recent and extensively

Be
st

 C
os

t

Figure 11. Comparison with WCA, SSA, CSA, and MVO metaheuristics: (a) 3D paths; (b) 2D paths;
(c) Algorithms’ convergence.

Sensors 2022, 22, 1826 27 of 29

5. Conclusions

In this paper, a new Parallel Cooperative Coevolutionary variant of the Grey Wolf
Optimizer (PCCGWO) based on a parallelization master-slave model has been proposed
and successfully applied to solve the UAVs’ path planning problem over large benchmarks
and instances of navigation. To overcome the limits and drawbacks of the standard GWO
for solving large-scale and complex path planning problems, particularly in terms of dimen-
sionality curse and prohibitive time consuming, two improvement mechanisms in terms
of parallelization and cooperative co-evolutionary search are introduced in the proposed
PCCGWO algorithm. The UAVs’ path planning problem is formulated as an LSGO problem
under operational constraints mainly in terms of obstacles’ collision avoidance and path’s
straightness. A cooperative coevolutionary mechanism is applied to make an efficient
partition of the original search space into smaller dimensional sub-spaces. The decision
variables’ vector is decomposed into several subcomponents with reduced dimensions.
An efficient parallelization master-slave technique is then proposed to further reduce the
computation time faced with the large-scale and hardness of the planning problem. Six
PCCGWO variants with an increased number of slaves, i.e., PCCGWO-2, PCCGWO-4,
PCCGWO-6, PCCGWO-8, PCCGWO-10, and PCCGWO-12, are proposed according to the
number of the partitioned sub-populations and the available cores of the computer CPU’s
processor. Each slave of such a parallel architecture is designed to evolve a sub-swarm
that seeks to optimize its component by applying a standard GWO algorithm. The master
builds a buffer vector by concatenating the different representatives from slaves, shown as
best search agents, and sending it again for a new cycle. The performance analysis of the
proposed PCCGWO planners is carried out based on several experiments over different
flight instances as well as a comparative study with the standard GWO algorithm, and
other recent and extensively used metaheuristics, i.e., Water Cycle Algorithm (WCA), Crow
Search Algorithm (CSA), Salp Swarm Algorithm (SSA), and Multi-Verse Optimizer (MVO).
The demonstrative results, as well as the nonparametric statistical analyses in the sense of
Friedman and post hoc tests, show the effectiveness and superiority of the proposed PC-
CGWO algorithms with the highest number of slaves, i.e., PCCGWO-10 and PCCGWO-12
variants. The performance metrics in terms of shorter and collision-free planned paths and
computational speedup are significantly improved. Obviously, with each increase in the
planning problem dimension and number of obstacles, i.e., a more intensive partition of
the flight environment, PCCGWO variants with more slaves are needed to best handle the
complexity of the resulting optimization problem. As the most suitable drone planners are
the ones that have the least parameters’ tuning with an increased computation speediness
regarding the software/hardware specifications of the onboard control units, the proposed
PCCGWO algorithm can be considered as a promising method for providing shorter and
collision-free flight paths in real-world environments.

Future works deal with the implementation of the proposed PCCGWO-based path
planning method using the real-world Parrot AR. Drone 2.0 prototype of UAVs and the
associated MATLAB/Simulink software. The real-world implementation and prototyping
of such a planning algorithm will be investigated regarding all engineering details and
managerial implications.

Author Contributions: Conceptualization, R.J. and S.B.; methodology, S.B.; software, R.J.; validation,
M.A.-D., H.R. and S.B.; formal analysis, H.R.; investigation, R.J.; resources, S.B.; data curation, M.A.-
D.; writing—original draft preparation, R.J.; writing—review and editing, S.B.; visualization, M.A.-D.;
supervision, S.B.; project administration, H.R.; funding acquisition, H.R. and M.A.-D. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study.

Sensors 2022, 22, 1826 28 of 29

Acknowledgments: The authors acknowledge the support of King Fahd University of Petroleum &
Minerals, Saudi Arabia.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mukhamediev, R.I.; Symagulov, A.; Kuchin, Y.; Zaitseva, E.; Bekbotayeva, A.; Yakunin, K.; Assanov, I.; Levashenko, V.; Popova, Y.;

Akzhalova, A.; et al. Review of Some Applications of Unmanned Aerial Vehicles Technology in the Resource-Rich Country. Appl.
Sci. 2021, 11, 10171. [CrossRef]

2. Rodríguez, M.V.; Melgar, S.G.; Cordero, A.S.; Márquez, J.M.A. A Critical Review of Unmanned Aerial Vehicles (UAVs) Use in
Architecture and Urbanism: Scientometric and Bibliometric Analysis. Appl. Sci. 2021, 11, 9966. [CrossRef]

3. Khelifi, A.; Ciccone, G.; Altaweel, M.; Basmaji, T.; Ghazal, M. Autonomous Service Drones for Multimodal Detection and
Monitoring of Archaeological Sites. Appl. Sci. 2021, 11, 10424. [CrossRef]

4. Lopez, R.L.; Sanchez, M.J.B.; Jimenez, M.P.; Arrue, B.C.; Ollero, A. Autonomous UAV System for Cleaning Insulators in Power
Line Inspection and Maintenance. Sensors 2021, 21, 8488. [CrossRef]

5. Gao, X.; Hou, Z.; Zhu, X.F.; Zhang, J.T.; Chen, X.Q. The shortest path planning for manoeuvres of UAV. Acta Polytech. Hungarica
2013, 10, 221–239.

6. Zhang, J.; Li, J.; Yang, H.; Feng, X.; Sun, G. Complex Environment Path Planning for Unmanned Aerial Vehicles. Sensors 2021, 21,
5250. [CrossRef]

7. Lee, W.; Jeon, Y.; Kim, T.; Kim, Y.-I. Deep Reinforcement Learning for UAV Trajectory Design Considering Mobile Ground Users.
Sensors 2021, 21, 8239. [CrossRef] [PubMed]

8. Qayyum, T.; Trabelsi, Z.; Malik, A.; Hayawi, K. Trajectory Design for UAV-Based Data Collection Using Clustering Model in
Smart Farming. Sensors 2022, 22, 37. [CrossRef]

9. Huang, C.; Fei, J. UAV Path Planning Based on Particle Swarm Optimization with Global Best Path Competition. Int. J. Pattern
Recognit. Artif. Intell. 2018, 32. [CrossRef]

10. Jamshidi, V.; Nekoukar, V.; Refan, M.H. Analysis of parallel genetic algorithm and parallel particle swarm optimization algorithm
UAV path planning on controller area network. Int. J. Control Autom. Syst. 2019, 31, 129–140. [CrossRef]

11. Tuba, E.; Dolicanin, E.; Tuba, M. Water Cycle Algorithm for Robot Path Planning. In Proceedings of the 2018 10th International
Conference on Electronics, Computers and Artificial Intelligence, Iasi, Romania, 28–30 June 2018.

12. Shao, S.; Peng, Y.; He, C.; Du, Y. Efficient path planning for UAV formation via comprehensively improved particle swarm
optimization. ISA Trans. 2020, 97, 415–430. [CrossRef]

13. Jarray, R.; Bouallègue, S. Intelligent Decision Making Approach for Multi-Criteria Path Planning of Unmanned Aerial Vehicles. In
Proceedings of the 7th International Conference on Automation, Control Engineering & Computer Science, Sousse, Tunisia, 12–13
October 2020.

14. Jarray, R.; Bouallegue, S. Multi-Verse Algorithm based Approach for Multi-criteria Path Planning of Unmanned Aerial Vehicles.
Int. J. Adv. Comput. Sci. Appl. 2020, 11. [CrossRef]

15. Soundarya, M.S.; Anusha, D.K.; Rohith, P.; Panneerselvam, K.; Srinivasan, S. Optimal path planning of UAV using grey wolf
optimizer. Int. J. Comput. Sci. Eng. 2019, 5, 129–136.

16. Jarray, R.; Bouallègue, S. Paths Planning of Unmanned Aerial Vehicles based on Grey Wolf Optimizer. In Proceedings of the 4th
International Conference on Advanced Systems and Emergent Technologies, Hammamet, Tunisia, 17–20 March 2020.

17. Zhang, W.; Zhang, S.; Wu, F.; Wang, Y. Path Planning of UAV Based on Improved Adaptive Grey Wolf Optimization Algorithm.
IEEE Access 2021, 9, 89400–89411. [CrossRef]

18. Yang, L.; Guo, J.; Liu, Y. Three-dimensional UAV cooperative path planning based on the MP-CGWO algorithm. International Int.
J. Innov. Comput. Inf. Control 2020, 16, 991–1006.

19. Kumar, R.; Singh, L.; Tiwari, R. Path planning for the autonomous robots using modified grey wolf optimization approach. J.
Intell. Fuzzy Syst. 2021, 40, 9453–9470. [CrossRef]

20. Fessi, R.; Rezk, H.; Bouallègue, S. Grey wolf optimization based tuning of terminal sliding mode controllers for a quadrotor.
Comput. Mater. Contin. 2021, 68, 2256–2282. [CrossRef]

21. Nadimi-Shahraki, M.H.; Taghian, S.; Mirjalili, S. An improved grey wolf optimizer for solving engineering problems. Expert Syst.
Appl. 2021, 166, 113917. [CrossRef]

22. Ahmadi, R.; Ekbatanifard, G.; Bayat, P. A Modified Grey Wolf Optimizer Based Data Clustering Algorithm. Appl. Artif. Intell.
2020, 35, 63–79. [CrossRef]

23. Lu, C.; Gao, L.; Li, X.; Hu, C.; Yan, X.; Gong, W. Chaotic-based grey wolf optimizer for numerical and engineering optimization
problems. Memetic Comput. 2020, 12, 371–398. [CrossRef]

24. Liu, Y.; Lu, H. A Strategy of Multi-UAV Cooperative Path Planning Based on CCPSO. In Proceedings of the 2019 IEEE International
Conference on Unmanned Systems, Beijing, China, 17–19 October 2019.

25. Potter, M.A.; De Jong, K.A. A Cooperative Coevolutionary Approach to Function Optimization. In Proceedings of the 3rd Parallel
Problem Solving from Nature—PPSN III, Jerusalem, Israel, 9–14 October 1994.

http://doi.org/10.3390/app112110171
http://doi.org/10.3390/app11219966
http://doi.org/10.3390/app112110424
http://doi.org/10.3390/s21248488
http://doi.org/10.3390/s21155250
http://doi.org/10.3390/s21248239
http://www.ncbi.nlm.nih.gov/pubmed/34960332
http://doi.org/10.3390/s22010037
http://doi.org/10.1142/S0218001418590085
http://doi.org/10.1007/s40313-019-00549-9
http://doi.org/10.1016/j.isatra.2019.08.018
http://doi.org/10.14569/IJACSA.2020.0111142
http://doi.org/10.1109/ACCESS.2021.3090776
http://doi.org/10.3233/JIFS-201926
http://doi.org/10.32604/cmc.2021.017237
http://doi.org/10.1016/j.eswa.2020.113917
http://doi.org/10.1080/08839514.2020.1842109
http://doi.org/10.1007/s12293-020-00313-6

Sensors 2022, 22, 1826 29 of 29

26. Sarkar, R.; Barman, D.; Chowdhury, N.A. Cooperative Co-evolutionary Genetic Algorithm for Multi-Robot Path Planning Having
Multiple Targets. In Computational Intelligence in Pattern Recognition; Das, A., Nayak, J., Naik, B., Pati, S., Pelusi, D., Eds.; Springer:
Singapore, 2020; Volume 999, pp. 727–740.

27. Bergh, F.V.D.; Engelbrecht, A. A Cooperative Approach to Particle Swarm Optimization. IEEE Trans. Evol. Comput. 2004, 8,
225–239. [CrossRef]

28. Sanchez-Ante, G.; Ramos, F.; Frausto, J. Cooperative Simulated Annealing for Path Planning in Multi-Robot Systems. In
Proceedings of the Mexican International Conference on Artificial Intelligence, Acapulco, Mexico, 11–14 April 2000.

29. Doerner, K.F.; Hartl, R.F.; Reimann, M. Cooperative Ant Colonies for Optimizing Resource Allocation in Transportation. In
Applications of Evolutionary Computing; Boers, E.J.W., Ed.; Springer: Berlin/Heidelberg, Germany, 2001; Volume 2037, pp. 70–79.

30. Yang, Z.; Tang, K.; Yao, X. Large scale evolutionary optimization using cooperative coevolution. Inf. Sci. 2008, 178, 2985–2999.
[CrossRef]

31. Vakhnin, A.; Sopov, E. Improving DE-Based Cooperative Coevolution for Constrained Large-Scale Global Optimization Problems
Using an Increasing Grouping Strategy. In Proceedings of the II International Scientific Conference on Advanced Advanced
Technologies in Aerospace, Mechanical and Automation Engineering- MIST: Aerospace, Krasnoyarsk, Russia, 18–21 September
2019.

32. Trunfio, G.A. Enhancing the firefly algorithm through a cooperative coevolutionary approach: An empirical study on benchmark
optimization problems. Int. J. Bio-Inspir. Com. 2014, 6, 108–125. [CrossRef]

33. Zhou, Y.; He, F.; Hou, N.; Qiu, Y. Parallel ant colony optimization on multi-core SIMD CPUs. Future Gener. Comput. Syst. 2018, 79,
473–487. [CrossRef]

34. Hijazi, N.M.; Faris, H.; Aljarah, I. A parallel metaheuristic approach for ensemble feature selection based on multi-core architec-
tures. Expert Syst. Appl. 2021, 182, 115290. [CrossRef]

35. Roberge, V.; Tarbouchi, M. Parallel Algorithm on GPU for Wireless Sensor Data Acquisition Using a Team of Unmanned Aerial
Vehicles. Sensors 2021, 21, 6851. [CrossRef]

36. Sun, X.; Lai, L.-F.; Chou, P.; Chen, L.-R.; Wu, C.-C. On GPU Implementation of the Island Model Genetic Algorithm for Solving
the Unequal Area Facility Layout Problem. Appl. Sci. 2018, 8, 1604. [CrossRef]

37. Lalwani, S.; Sharma, H.; Satapathy, S.C.; Deep, K.; Bansal, J.C. A Survey on Parallel Particle Swarm Optimization Algorithms.
Arab. J. Sci. Eng. 2019, 44, 2899–2923. [CrossRef]

38. Falcón-Cardona, J.G.; Gómez, R.H.; Coello, C.A.C.; Tapia, M.G.C. Parallel Multi-Objective Evolutionary Algorithms: A Compre-
hensive Survey. Swarm Evol. Comput. 2021, 67, 100960. [CrossRef]

39. Gnatowski, A.; Niżyński, T. A Parallel Algorithm for Scheduling a Two-Machine Robotic Cell in Bicycle Frame Welding Process.
Appl. Sci. 2021, 11, 8083. [CrossRef]

40. Jamshidi, V.; Nekoukar, V.; Refan, M.H. Real time UAV path planning by parallel grey wolf optimization with align coefficient on
CAN bus. Clust. Comput. 2021, 24, 2495–2509. [CrossRef]

41. Jarray, R.; Al-Dhaifallah, M.; Rezk, H.; Bouallègue, S. Path planning of quadrotors in a dynamic environment using a multicriteria
multi-verse optimizer. Comput. Mater. Contin. 2021, 69, 2159–2180. [CrossRef]

42. Chen, Y.; Yu, J.; Mei, Y.; Zhang, S.; Ai, X.; Jia, Z. Trajectory optimization of multiple quad-rotor UAVs in collaborative assembling
task. Chinese J. Aeronaut. 2016, 29, 184–201. [CrossRef]

43. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
44. Bethke, A.D. Comparison of Genetic Algorithms and Gradient-Based Optimizers on Parallel Processors: Efficiency of Use of

Processing Capacity. Available online: https://deepblue.lib.umich.edu/handle/2027.42/3571 (accessed on 10 January 2022).
45. Grefenstette, J.J. Parallel Adaptive Algorithms for Function Optimization; Tech. Rep. No.1CS-81-19; Vanderblit University, Computer

Science Department: Nashville, TN, USA, 1981.
46. MathWorks, Parallel Computing Toolbox™ User’s Guide, MathWorks Inc. 2021. Available online: https://ch.mathworks.com/

help/pdf_doc/parallel-computing/index.html (accessed on 20 November 2021).
47. Conover, W.J. Practical Nonparametric Statistics, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 1999.
48. Pereira, D.G.; Afonso, A.; Medeiros, F.M. Overview of Friedman’s test and post-hoc analysis. Commun. Stat. Simul. Comput. 2014,

44, 2636–2653. [CrossRef]
49. Eskandar, H.; Sadollah, A.; Bahreininejad, A.; Hamdi, M. Water cycle algorithm—A novel metaheuristic optimization method for

solving constrained engineering optimization problems. Comput. Struct. 2012, 110–111, 151–166. [CrossRef]
50. Mirjalili, S.A.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp swarm algorithm: A bio-inspired optimizer

for engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191. [CrossRef]
51. Askarzadeh, A. A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm.

Comput. Struct. 2016, 169, 1–12. [CrossRef]
52. Mirjalili, S.; Mirjalili, S.M.; Hatamlou, A. Multi-verse optimizer: A nature-inspired algorithm for global optimization. Neural.

Comput. Appl. 2016, 27, 495–513. [CrossRef]

http://doi.org/10.1109/tevc.2004.826069
http://doi.org/10.1016/j.ins.2008.02.017
http://doi.org/10.1504/IJBIC.2014.060621
http://doi.org/10.1016/j.future.2017.09.073
http://doi.org/10.1016/j.eswa.2021.115290
http://doi.org/10.3390/s21206851
http://doi.org/10.3390/app8091604
http://doi.org/10.1007/s13369-018-03713-6
http://doi.org/10.1016/j.swevo.2021.100960
http://doi.org/10.3390/app11178083
http://doi.org/10.1007/s10586-021-03276-6
http://doi.org/10.32604/cmc.2021.018752
http://doi.org/10.1016/j.cja.2015.12.008
http://doi.org/10.1016/j.advengsoft.2013.12.007
https://deepblue.lib.umich.edu/handle/2027.42/3571
https://ch.mathworks.com/help/pdf_doc/parallel-computing/index.html
https://ch.mathworks.com/help/pdf_doc/parallel-computing/index.html
http://doi.org/10.1080/03610918.2014.931971
http://doi.org/10.1016/j.compstruc.2012.07.010
http://doi.org/10.1016/j.advengsoft.2017.07.002
http://doi.org/10.1016/j.compstruc.2016.03.001
http://doi.org/10.1007/s00521-015-1870-7

	Introduction
	Path Planning Problem Formulation
	Proposed Parallel Cooperative Coevolutionary Algorithm
	Grey Wolf Metaheuristic
	Cooperative Coevolutionary Concept
	Parallel Master-Slave Model
	Proposed Parallel Cooperative Coevolutionary Grey Wolf Optimizer
	PCCGWO for the UAVs’ Path Planning Problem

	Results and Discussion
	Parallel Computing Environment
	Numerical Experimentations
	Solution Quality’s Analysis
	Computational Time
	Algorithms’ Sensitivity Analysis
	Comparison with Other Metaheuristics Algorithms

	Conclusions
	References

