
Computational and Structural Biotechnology Journal 20 (2022) 3161–3172
journal homepage: www.elsevier .com/locate /csbj
Review
Boolean modelling as a logic-based dynamic approach in systems
medicine
https://doi.org/10.1016/j.csbj.2022.06.035
2001-0370/� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Abbreviations: BN, Boolean Network; BF, Boolean Function.
⇑ Corresponding author at: Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6 Avenue du Swing, L-4367 Belvaux, Luxembourg.

E-mail address: marek.ostaszewski@uni.lu (M. Ostaszewski).
Ahmed Abdelmonem Hemedan a, Anna Niarakis b,c, Reinhard Schneider a, Marek Ostaszewski a,⇑
a Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
bUniversité Paris-Saclay, Laboratoire Européen de Recherche pour la Polyarthrite rhumatoïde – Genhotel, Univ Evry, Evry, France
c Lifeware Group, Inria, Saclay-île de France, 91120 Palaiseau, France
a r t i c l e i n f o

Article history:
Received 15 March 2022
Received in revised form 14 June 2022
Accepted 14 June 2022
Available online 17 June 2022

Keywords:
Logical modelling
Boolean networks
Modelling formats
Systems Biology standards
a b s t r a c t

Molecular mechanisms of health and disease are often represented as systems biology diagrams, and the
coverage of such representation constantly increases. These static diagrams can be transformed into
dynamic models, allowing for in silico simulations and predictions. Boolean modelling is an approach
based on an abstract representation of the system. It emphasises the qualitative modelling of biological
systems in which each biomolecule can take two possible values: zero for absent or inactive, one for pre-
sent or active. Because of this approximation, Boolean modelling is applicable to large diagrams, allowing
to capture their dynamic properties. We review Boolean models of disease mechanisms and compare a
range of methods and tools used for analysis processes. We explain the methodology of Boolean analysis
focusing on its application in disease modelling. Finally, we discuss its practical application in analysing
signal transduction and gene regulatory pathways in health and disease.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
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1. Introduction

Extensive amounts of omics data generated to understand
disease mechanisms require interpretation to formulate mean-
ingful hypotheses [1]. Pathway databases [2–4] give an overview
of disease-related processes, while mathematical models give
qualitative and quantitative insights into their complexity. Simi-
larly to pathway databases, mathematical models are stored and
shared using dedicated platforms [5–9]. Moreover, community-
driven initiatives such as disease maps [10] encode disease-
specific mechanisms in both computable and diagrammatic form
using dedicated tools for diagram biocuration [11–13] and visu-
alisation [14,15]. In all cases, computationally readable content
can be used as a scaffold to build dynamic models in an auto-
mated fashion to investigate the dynamic properties of the sys-
tem [16].

Modelling of a biological process depends on the scope and it
may vary depending on the nature of the process (e.g.signalling
vs metabolic). The experimental design and resulting data also
influence the model structure and analysis [17]. Dynamic mod-
elling approaches include Boolean or Multi-valued Networks
[18], Petri nets [19] or Ordinary Differential equations (ODEs)
[20]. However, model parameterisation is a challenging task
[21] making logical models an interesting alternative [22,23].
Boolean models are qualitative rather than quantitative and do
not require detailed kinetic information. However, in some
research areas, such as pharmacogenomics, presenting data to
simple Boolean models may be challenging, and does not intro-
duce the best description of the biological system [24]. Therefore,
researchers studied the qualitative nature of Boolean models,
facilitating the integration with other quantitative methods to
allow better analysis [25–27]. Such methods, including ODEs
and Petri nets, combined with BNs and constraint-based models,
show that Boolean models are useful scaffolds for quantitative
models [24].

Boolean network (BN) represents a dynamic system under the
Boolean formalism, where the state of biomolecules has two
possible values, one or zero, and changes following their interac-
tions described by Boolean functions (BFs). BFs define the state
of the outputs based on the interaction inputs and their internal
logic. The order of evaluating BFs in a BN is governed by an
updating scheme [28]. This straightforward framework of BNs
was applied to a range of biological problems [29–31] and
model qualitative behaviours [32,33]. Here, we review the appli-
cation of Boolean modelling to systems medicine problems. First,
we explain the modelling process itself, and follow by reviewing
applications of Boolean modelling in clinical and translational
medicine. We conclude by discussing emerging tools and meth-
ods improving the reproducibility and reuse of such models in
biomedical research.

2. Boolean modelling process

Boolean models represent a logical formalism, where available
variables have binary values one (ON) or zero (OFF). These vari-
ables are connected by BFs, which define the state of output vari-
ables based on input variables. BFs (interactions) connect the
variables (nodes) in a model, creating a Boolean Network (BN).
The updating schemes define conditions and order in which the
BFs are calculated.

A BN can describe the dynamics of a biological system, where
biomolecules are represented by the variables and BFs encode
the interactions between the biomolecules, describing the beha-
viour of regulated outputs based on regulator inputs. Connectivity
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and logic of BNs are usually constructed based on biocuration, by
defining relevant biomolecules and interactions based on available
literature. BNs can also be built from mechanistic data, like time
series or phosphoproteomics [28,34]. Finally, the updating
schemes of BNs need to be selected, to govern the transitions of
BN components from one state to another following the defined
BFs.
2.1. Building the model structure

BNs can be manually built from literature. This requires selec-
tion of key components (nodes) to represent the biological system,
including non-physical elements such as pathway endpoints (phe-
notypes). The interactions (edges) between these network compo-
nents are based on relevant literature and represent logical
dependencies of the components, i.e. the BFs of the system [35].
When building a BN, it is crucial to define its purpose and use cases
to better determine information that should be collected and kept
throughout the analysis [36]. Importantly, a process of manual
curation depends on the expertise and reasoning of the curator.
To ensure reliability of such models, curated BNs should be well
documented, harmonised with community guidelines, and repro-
ducible with the corresponding data [37]. The literature based
curation can be complemented by model inference from time-
series data, which allows constructing hypothesis-free models
[38–41].

For gene expression time series, the data is binarised based on a
given threshold to infer ON/OFF states of particular genes in each
time step. There are a range of possible approaches for determining
an optimal threshold [38,42], and they should be chosen based on
the nature of the measured biological process. After binarization,
BFs can be inferred based on the sequence of state changes of
selected genes, which may involve adjustments of the original
binarization thresholds [43,44]. Importantly, such inference may
be inaccurate for coexpressed genes [43]. To improve accuracy, dif-
ferent binarization methods can be combined to reduce the net-
work complexity and rank common candidates by the
performance of inferred models [45]. Another approach to infer
the BN from expression data is to first construct a regulatory net-
work and then assign BFs, avoiding data binarization. Here, the
TIGRESS algorithm [40] can be used to infer the network and pass
it to the TaBooN workflow [41] that infers the fittest BFs based on
the compatibility with given expression profiles by using a Tabu
metaheuristic[46].

BNs built from literature or inferred from expression data may
require further refinement. Such refinement is possible by match-
ing the performance of a BN against additional datasets [29], like
perturbation experiments or phosphoproteomic readouts. Based
on such data, a BN can be reduced to a version that best explains
the validation data. This search can get computationally expensive,
requiring heuristic-based approaches to identify a set of the most
fitting BNs. For instance, in [47] the algorithm weights the fit
between the data and a BN by measuring the deviation between
the model steady states and the perturbation data in matched con-
ditions (knockouts, overexpressions). However, this approach is
not scalable in large complex networks. To solve this problem,
caspo workflows [48] were proposed to infer all optimised BNs
by using the Answer Set Programming (ASP) [49]. This approach
was used to infer BNs of different cell lines from curated networks
and infer their BFs based on phosphoproteomic datasets [48].
Importantly, for each perturbation condition only the correspond-
ing part of the BN is analysed, selected based on the downstream
phenotype. The ASP then identifies a set of BNs which fit the exper-
imental data and satisfy a specific condition.



Fig. 1. (A) illustrates a simple directed Network [35], with typically used logical functions. Red arrow refers to the inhibition effects. Black arrows refer to the activation effect.
(B) shows Boolean functions either in basic logical expressions or as a truth table. (C) shows the Boolean gates AND/OR/NOT, describing the dynamics update from time (t) to
(t + 1). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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2.2. Construction of Boolean functions

Biological processes can be modelled as interactions of biomo-
lecules, controlled by their regulators, where BFs describe the rela-
tionship between all interaction participants (see Fig. 1). The state
of a biomolecule is changed based on these BFs in an iterative man-
ner [50]. In each iteration, the states of biomolecules are changed
based on a chosen updating scheme [28].

The three basic BFs are AND, OR, and NOT. BFS can be repre-
sented using a truth table in which each row represents a combi-
nation of Boolean variables and their output values (see Fig. 1).
Other types of BFs are not as widely used, as they describe complex
and non-intuitive relationships [51]. One of such functions is a
canalysing function, allowing to define a hierarchical relationship
between multiple input variables of a BF [52]. A canalysing func-
tion has a defined structure with at least one input and a fixed out-
put. An input takes a specific value and determines the value of the
function, making the network stable [52].

BFs can also be constructed by probability distributions [51] to
represent combinatorial effects of regulations in a simple and
interpretable representation [53]. In models with such BFs, called
threshold Boolean Networks (TBNs), biomolecule regulation is an
additive process, in which the operator functions describe the
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sequence of events in the regulatory system [32,54]. The dynamics
of a TBN can be described by:
xi t þ 1ð Þ ¼

1;
P
j
aij xj tð Þ > 0

0;
P
j
aij xj tð Þ < 0

xi tð Þ; P
j
aij xj tð Þ ¼ 0

8>>>>>><
>>>>>>:

ð1Þ

x i ðt þ 1Þ represents the expression of the regulated biomole-
cule i at the next time.

(t þ 1Þ, and the interaction coefficient a ij refers to the strength
and type of regulation that biomolecule j exerts on i. Positive reg-
ulation is specified by positive values of and negative regulation
by negative values of a ij. Any regulation is a product of the reg-
ulator’s state x j ðtÞ and the type and strength of the regulation a
ij. The next state of a biomolecule depends on its regulator’s state.
In particular, the next state x i ðt þ 1Þ of a biomolecule i is ON if
the sum of its regulators’ regulatory effects surpasses 0, OFF if the
sum is below 0, and when the sum is 0, the state remains the
same.



Fig. 2. represents the network updating in time for a simple regulatory graph. (A) Boolean network includes three components X1, X2, X3 which have states (zero/one). The
dynamics of a component is represented by Boolean function BF. Synchronous updating scheme updates all states at the same time, the successor states have two possible
values, one (ON) or zero (OFF). In the asynchronous updating scheme, the start states are not updated at the same time (one state is updated per iteration), the successor
states have two possible values one (ON) or zero (OFF). (B) A Probabilistic Boolean network shows that states are updated at the same time and the successor states present
different probabilities; p represents the updated probability values of the variables. Importantly, an asynchronous updating scheme can be used in PBNs as well.
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3. Analysis of Boolean models

The dynamics of a model are simulated by incremental execu-
tion of one or more of its BFs. They change the states corresponding
biomolecules in a series of discrete time steps called transitions.
The spectrum of all possible transitions is illustrated using the
state transition graph. The vertices represent 2n possible states
(n: number of the network elements) and the edges represent
the transition from a state (s) to another (s0) as follows::

T s; s0ð Þ ¼
^n

i¼1
ðx0i $ f i ðxi1; xi2:::xikÞ ð2Þ

In which f i is the updating function and ðxi1; xi2; :::xik) are state
variables.
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The order at which BFs are executed is governed by an updating
scheme [55]. The most frequently used are synchronous, asyn-
chronous and hybrid updating schemes [35]. The synchronous
scheme updates the state of all biomolecules at the same time
(see Fig. 2.A) and is deterministic in nature. Another class is the
asynchronous scheme, which updates randomly the state of a sin-
gle biomolecule per transition (see Fig. 2.A), making each execution
non-deterministic [56]. This makes the runtime considerably
longer, especially for complex networks. This limitation is
addressed by improved updating schemes such as random order
asynchronous [57] and deterministic asynchronous [58] that apply
reduction techniques to simplify the BNs. Another limitation of
synchronous and asynchronous schemes is that they may inaccu-
rately represent mechanisms that need more than one time step.
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This limitation is addressed by probabilistic BNs (PBN). This
scheme assigns probabilities to the BFs, and biomolecules are
updated based on this probability (see Fig. 2B) [35,53].

In a hybrid updating scheme, using synchronous and asyn-
chronous schemes is possible. The synchronous update can
include time delays in interactions between regulators and their
final products [35,38]. This scheme assumes partitioning the net-
work into groups, the variables at each group are synchronously
updated, but the update between groups is asynchronous, caus-
ing time delays during the executing partitions of a network
[35,59].
3.1. Attractor analysis

A simulated model can reach a stable dynamic behaviour,
where the states of the biomolecules converge to a stable configu-
ration, called an attractor, which is interpreted as a physiological
endpoint [35,50].

An attractor is a state of a BN with no outgoing edges in the
state transition graph. Attractors can be classified as i) stable
states (fixed points) which are time invariant, and ii) complex
attractors – sets of possible outcomes that can be reached follow-
ing the synchronous and asynchronous scheme [60]. The set of
states within an attractor is called the basin of attraction. It can
be interpreted as a set of possible biological scenarios, supporting
testable hypotheses [61]. In synchronous and deterministic asyn-
chronous schemes, the system may oscillate regularly when
attractors form a limit cycle, and each node has not more than
one successor. An example of a limit cycle is the cell cycle in
models of a eukaryotic cell [62–64]. In a stochastic asynchronous
scheme, the system may oscillate irregularly due to the random
initial condition selection leading to loose attractors. That means
the network does not oscillate in a cycle due to the target node
having more than one successor. It is challenging to interpret
complex attractors with large numbers of steady states that oscil-
late in an irregular cycle.

To find an attractor, the past states of themodel are compared to
the updated ones to find recurring patterns. This search process can
be exhaustive or heuristic. An exhaustive search starts from all
states synchronously until the attractor is reached. This mode is
mostly limited to small-size networks [65], although a SAT solver
can increase the search speed, identifying the possible attractors
in large networks with hundreds of components [66]. In turn, the
heuristic search starts with a chosen subset of states to identify
the attractor synchronously or asynchronously. The heuristic search
performs random transitions, creating network states with a high
probability. Then, the algorithm computes the forward reachable
sets of the network states. If all sets are similar, an attractor is iden-
tified [56].

Identifying an attractor in a complex network is challenging.
Many reduction techniques were implemented to simplify the
original BFs to include a fewer number of operations [58,67,68].
This can be achieved by removing components that do not affect
the behaviour of the original BFs. For example, some reduction
techniques identify the biomolecules whose state do not change,
turning the corresponding BFs into a simpler model [58,67]. In
complex BNs, this technique is followed by removing interactions
with one input and output and self-loops [67]. Another approach
splits the network into strongly connected components (SCCs) to
decrease the model complexity, and the simulations are run for
all the SCCs independently [69]. Recently proposed Most Permis-
sive Boolean Network simulations (MPBNs) is a paradigm to per-
form trajectories sampling and to reach the complete set of
attractors faster than the asynchronous search, allowing to run
more fine-grained simulations [70].
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3.2. Topology, perturbation, and controllability analysis

Simulation of BNs to identify their stable states and attractors
provides insights into the behaviour of the model. From this point,
it is possible to predict meaningful interventions towards desired
outcomes by analysing the structure of the model and its response
to perturbations. To gain insight into the model structure, it is
important to study the topology of a BN which may be a necessary
prerequisite for some updating schemes and/or attractor analysis
(the ones that need modularisation). Such analysis helps to under-
stand the connectivity of the network components and how they
affect phenotypes. This information can improve the understand-
ing of BN dynamics under different updating schemes or attractor
analysis [71] by identifying structural cycles in the BN topology.
Moreover, this information can be used to define components sen-
sitive against perturbations [72].

Perturbation analysis means changing the state of a biomole-
cule or its BFs, to analyse the topological robustness and the
dynamic resilience of the Boolean model, and the attractors it
reaches [73,74]. Comparing the original attractors with those after
perturbation allows evaluating its impact. One of frequently used
perturbations sets the state of a biomolecule to a fixed value, zero
or one, emulating permanent activation or activation, e.g., due to a
drug action. Other types of perturbation may change the rule struc-
ture of the BFs, either entirely (rule-flip) or partially. Such partial
perturbations are called edge perturbations, as they affect the con-
nectivity of a BN (Fig. 3).

The control of the BNs can be achieved by adding external sets
of signals to affect the state of the biomolecules so the model
reaches the desirable stable state or attractor [75,76]. The added
signals, represented as additional nodes in the BNs, have no parent
interactions and their values are a series of state values corre-
sponding to simulation time steps, guiding the model towards
the desirable states. They can represent possible therapies e.g.,
the control of gene expression essential for therapeutic interven-
tions [75]. The second approach to control a BN is to perturb the
states of the network randomly to select the biomolecules that
may result in attractors representing the desired outcomes of the
model. This approach was implemented as an algorithm [77] that
identifies the optimal one-bit perturbation, i.e., the simplest form
of perturbation that inverts the states of biomolecules in an attrac-
tor, for a given configuration of external inputs.

3.3. Boolean modelling formats and tools

A Boolean model can be constructed and represented using var-
ious modelling tools relying on different formats, as illustrated in
Fig. 4. One of these formats is the simple interaction format (SIF),
which is used for encoding a model topology from a list of interac-
tions, giving an easy solution for combining new interactions to
models. SIF is supported by different tools and databases such as
Cytoscape [78], OmniPath [79] and Signor [80].

In order to re-use or integrate models, they need to be trans-
lated from their original format. Literature-constructed diagrams
can be transformed into BNs as a SIF using automated conversion
tools (Fig. 4). SIF can be translated into a list of BFs in Boolsim for-
mat [81] using a Standardised QUAlitative Dynamic approach
(SQUAD) [82]. In addition, GNA allows the encoding of model func-
tions and specifies qualitative values of a model from the experi-
mental literature.[83].

Model annotations can be stored along with the topology and
BFs using a SBML-qualitative format (SBML-qual). SBML-qual is a
standard format designed by the CoLoMoTo community [84],
extending the SBML [85] to represent the qualitative models of
biological networks [86]. Pathway diagrams from KEGG, BioCarta
and SABIO-RK [87] can be transformed to SBML-qual using



Fig. 3. represents a regulatory graph in which the X3 node is subjected to activation (green link)/inhibition effects (red link). Node perturbations represent the changes of the
X3 states based on Knockout/overexpression. Edge perturbations represent the changes of functions based on X1 ->X3 interaction mutations. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Interoperability of Boolean modelling tools, libraries, and formats. The format of data resources (white colour) can be translated by tools and libraries (grey colour) to
modelling formats (blue colour), to be used by the popular Boolean modelling tools (green colour). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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PAth2Models [87]. Using a dedicated converter CaSQ [16], Cell-
Designer SBML format can be translated to SBML-qual. Notably,
SBML can be translated into SBML-qual by CellNOpt [29] and
SQUAD [82]. However, the SBML-qual format is still incompati-
3166
ble with some tools such as RMut [74], NetDS [88] and CABEAN
[89], pointing out that further integration efforts are required to
allow reproducibility of SBML-qual models with the incompati-
ble tools.



Table 1
Summary of key tools and their functionalities that were implemented to perform Boolean analysis and simulations. GUI – Graphical User Interface, CL – Command Line.

Tools Interface Format Network generation Updating
scheme

Attractor search Attractor analysis Topological
analysis

CellCollective [7] Web, GUI SBML qual – Asynchronous Heuristic,
Exhaustive

– Centrality

GINSIM [8] GUI SBML qual – Asynchronous Heuristic,
Exhaustive

– –

BooleSim [81] Web, GUI Own – Synchronous – – –
ADAM [90] Web, GUI SBML core – Asynchronous Heuristic,

Exhaustive
– –

BoolNet [6 5] CL, Cytoscape SBML qual Random Asynchronous Heuristic,
Exhaustive

– Centrality,
Clustering

CellNopt [29] CL, Cytoscape SBML core, SBML
qual

– Synchronous – – Centrality

RMut [74] CL Own Random Synchronous – Stability,
Controlability

Centrality,
Clustering

SQUAD [82] GUI SBML core, SBML
qual

– Synchronous – – –

CABERNET [96] GUI,
Cytoscape

SBML core Random,
Augumented

Synchronous Heuristic,
Exhaustive

Stability Centrality,
Clustering

NetDS [88] GUI SBML core Random Synchronous Heuristic,
Exhaustive

Stability Centrality

GDSC [95] Web, GUI Own – Synchronous Heuristic,
Exhaustive

– Centrality

CANA [92] CL Own Random Synchronous Exhaustive Stability,
Controlability

–

CABEAN [89] CL Own – Asynchronous Exhaustive Stability,
Controlability

–

ASSA-PBN [93] CL Own Random Synchronous Heuristic,
Exhaustive

Stability,
Controlability

–

caspo [48] CL Own Augumented Synchronous – – –
BMA [94] Web, GUI, CL Own – Synchronous Exhaustive Stability,

Controlability
–

Table 2
selected some of applications of Boolean modelling in clinical and translational
medicine.

Models Size Type Reference

T cell signalling (MAPK signalling
and PI3K/PKB signalling)

94 nodes/
123
interactions

Cell
signalling

[104]

TCR signalling, Cytokine signalling,
and cell cycle

65 nodes/
135
interactions

Cell
signalling

[105]

Plasticity of CD4+ T cell
differentiation

38 nodes/
96
interactions

Cell
signalling

[106]

TGFB1, IL6, and TNF signalling 38 nodes/
59
interactions

Cell
signalling

[110]

Gastric adenocarcinoma 10 nodes/
34
interactions

Cancer
signalling

[97]

Simplified cancer network 96 nodes/
249
interactions

Cancer
signalling

[112]

RTKs, WNT/b-catenin, TGF-b/Smads,
Rb, HIF-1, p53, PI3K/AKT
signalling pathways

98 nodes/
254 edges

Cancer
signalling

[114]

Pro-apoptotic pathways with the
growth factor signalling

37 nodes/
63
interactions

Cancer
signalling

[116]

PI3K/AKT1 signalling pathway 30 nodes/
42
interactions

Cancer
signalling

[115]

Signalling pathways around BRAF in
colorectal and melanoma cancers.

33 nodes/43
interactions

Cancer
signalling

[100]

Signalling in prostate cancer 133 nodes/
449
interactions

Cancer
signalling

[120]
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In the modelling process, a range of tools is available for model
inference, simulation, and attractor analysis. In the case of model
inference, most represented tools in Table 1 generate Boolean
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models randomly based on selected information, which is known
as random network generation. The two software- CABERNET
and caspo- create a Boolean model by augmentation if the topolog-
ical/ functional characterization is incomplete (Table 1). A user can
generate ensembles of models by combining components and
interactions with the original network.

The synchronous updating scheme is a default simulation
method, supported by all the reviewed tools. Moreover, CellCollec-
tive [7], GINsim [8], ADAM [90], BoolNet, MaBoSS [91] and CABEAN
support the asynchronous scheme (Table 1).

Most of the represented tools identify the attractor dynamics
with heuristic and exhaustive search except BooleSim [81], Cell-
Nopt, RMut and SQUAD. Once the attractors are identified, the sta-
bility and controllability check can be performed by RMut, CANA
[92], CABEAN, ASSA-PBN [93], BioModel Analyzer BMA [94]. In
turn, BoolNet, RMut, GDSC [95] and CABERNET [96] perform the
topological analysis of the intrinsic structure of the network.

As mentioned, particular tools such as RMut, NetDS, and
CABEAN are incompatible with the SBML-qual modelling format.
There may be limitations to the reusability of models created with
these tools since they have their own formats. As a result, ensuring
interoperability and reproducibility of models is necessary when
incompatibilities exist.
4. Applications of Boolean modelling in clinical and
translational medicine

Boolean modelling was applied in clinical and translational
medicine research [50,97–99] for various purposes. Simulation of
the complex biological systems allowed to predict the activity of
pathway endpoints (phenotypes) [100], drug targets [76] and cel-
lular crosstalk [101]. Identifying attractors helped to understand
the activity of the phenotypes, since they represent the steady
states of biomolecules [102,103]. Finally, comparing attractors
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before and after perturbations allowed evaluating the model sta-
bility and gave insight into how the in-vivo systems maintain their
homeostasis. Below we discuss examples of such applications, as
summarised in Table 2.

4.1. Modelling of cell signalling

A complex signalling network can determine cellular decisions,
but the kinetic parameters and quantitative data that enable
dynamic modelling may not be sufficient. Therefore, computa-
tional approaches based on the qualitative structure of these net-
works are of great interest. Boolean modelling of cellular
signalling provided insights into the process of signals and the
interactions between regulators and target molecules. A model of
T cell signalling included: i) a T cell receptor, its co-receptors CD4/
CD8, and CD28 which regulates T cell function, ii) selected MAPK
signalling and PI3K/PKB signalling driving cellular activation and dif-
ferentiation. The model was able to reproduce the literature and
experimental results upon different activation scenarios of TCR,
CD4 and CD28. Moreover, it reproduced the T cell phenotype in
response to knockouts and predicted unexpected activation of
the PI3K/PKB signalling pathway after TCR activation [104]. This
model was extended [105] into large BNs modelling a regulatory
Th cell. TCR signalling, cytokine signalling, and cell cyclemodels were
studied separately, and integrated into a single model. The model
showed the naive cell differentiation into Th1, Th2, Th17 and Treg
subtypes. The analysis predicted an unexpected plasticity beha-
viour of the canonical cell types as well as the potential of regula-
tory T cells to differentiate into Th1 or Th2 subtypes.

Another BN modelled the plasticity of CD4 + T cell differentia-
tion [106] and showed that it is controlled by the dose and compo-
sition of cytokines. The model explained the T cell fate by defining
500 external conditions and considering all possible endogenous
interactions. These interventions were perturbed to control the
dynamics of the model from undesired to desired phenotypes.
The model reproduced known synergistic actions of feedback loops
on IL-12R expression and confirmed results from other studies
[107,108], showing that the balance between i-Treg and Th17
was regulated by IL-6. Furthermore, the model predicted a com-
plex phenotype (Th1-Th2) after activation of Tbet and GATA3 tran-
scription factors under the similar environmental conditions
proposed by an in vivo study [109].

Integrating different layers of biological data allowed for under-
standing the heterogeneity of multifactorial diseases and for
reducing the possibility of false positive results. A Boolean model
of an integrative network was used to analyse the regulation of
key transcription factors (TFs) in Rheumatoid Arthritis (RA) and
derive patient-specific models to understand the disease complex-
ity and the response to treatment [110]. The model highlighted the
impact of TGFB1, IL6, and TNF in response to the anti-TNF drugs on
the model outputs. The analysis showed that TFs are master
regulators- the activation of IL6 and/or TGFB1 positively regulates
TFs expression, even with deactivation of TNF cascade. Blocking IL6
and TGFB1, and TNF cascades deactivates TFs expression. Further,
the MAPK molecules depend on the activation of IL6 and TGFB1
and do not be affected by TNF deactivation.

4.2. Modelling of cancer growth signalling and apoptosis

In cancer, targeted therapies inhibit driver molecules of tumori-
genic pathways [112]. However, it is difficult to identify targets
that have crucial functions in tumour progression because of com-
plex interactions and feedback loops between implicated mole-
cules. Moreover, monotherapies were found to be additive in
their actions because tumours are highly complex and evolve con-
tinuously [30]. Therefore, they had limited efficacy and needed
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many clinical trials. Perturbation analysis may help to understand
this complexity, proposing the interventions between molecular
targets and predicting their possible synergistic action. The BNs
of gastric cancer used this analysis on seven known inhibitors that
target the gastric cancer pathways [97]. All possible combinations
were calculated then simulated in silico to identify new synergistic
targets, which were then experimentally validated. In another
work, PBN allowed associating the activity of the pathological phe-
notype to the perturbation probability of its regulators. Under a
given perturbation, the model tested the possible synergistic per-
turbations to decrease the activity of the phenotype [113].

Boolean modelling was proposed to simplify the complex inter-
actions and their downstream signals. The molecular intervention
analysis showed that the combinatory inhibition of oncogenic
molecules e.g. PDK1, AKT, and MDM2 or the activation of P53, RB
and CDH1 reduces the proliferation and increases quiescent phe-
notypes since the targeted drug associations blocked cancer path-
ways at different regions [112].

Signalling networks in cancer are complex cascades and their
pathological rewiring may alter cellular proliferation, migration
and apoptosis resistance [114], and BNs can help to understand
this complicated rewiring [111,115]. A Boolean model was con-
structed combining the main cancer pathways such as RTKs,
WNT/WNT/b-catenin, TGF-b/Smads, Rb, HIF-1, p53, PI3K/AKT sig-
nalling pathways [114]. Identified attractors were associated with
apoptosis, proliferation, and quiescent phenotypes in response to
environmental conditions. The model revealed that growth factor
signalling significantly increased the proliferation and quiescent
phenotypes but decreased the apoptosis. The similar result was
proposed by another model [116] which combined the intrinsic
and extrinsic pro-apoptotic pathways with the growth factor
signalling.

In another study, a BN describing the PI3K/AKT1 signalling path-
way showed increased tissue proliferation and cell invasion pheno-
types [115]. In particular, the oscillations of PI3K protein
expression were studied by simulating its different activity levels
at different cellular stages. Using different updating schemes can
be more appropriate in specific settings and this is an example that
illustrates it – While applying the synchronous updating scheme,
the inhibition effect of PI3K induced four phenotypes including
G2 arrest, mitotic catastrophe, and aberrant and normal anaphase.
However, the asynchronous scheme showed that the previous four
phenotypes didn’t occur at the same time, and they are not syner-
gistic in signal transduction because the asynchronous scheme
updates the biomolecules at different time intervals. Therefore,
depending on the biological process and the knowledge about
the real biological time, we get to decide which updating schemes
make more sense to achieve a desired output.

Logical models of cancer are usually generic because they use
heterogeneous data and require clinical data to calibrate them.
To generate precise BNs, a PROFILE framework [114] was proposed,
integrating the mechanistic insights of logical modelling with
multi-omics data. The PROFILE framework combined mutations
and expression data (METABRIC [117], TCGAdataset https://
www.cancer.gov/tcga) with the cancer BN to simulate different
cases and compare the model outputs. After data binarization,
the activity of the nodes and the transition rates were modified
based on specific cases. Stochastic simulations were performed
using MaBoSS [91] for a semi-quantitative analysis of model per-
turbations. This approach was used in another study to investigate
BRAF inhibition in melanoma and colorectal cancer which have sig-
nificant variations despite the similar omics profiles [100]. The
model was able to differentiate between the two cancers based
on different datasets. This approach extends the previous works
using the dynamic data [118] and the same pathways [119] to per-
sonalise the signalling behaviours in response to treatments.

https://www.cancer.gov/tcga
https://www.cancer.gov/tcga
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Recently, researchers tested the PROFILE framework on a pros-
tate model and infer patient-specific treatments [120]. The model
of prostate cancer includes major deregulated signalling pathways
integrated with mutation and RNAseq data. The biomolecules are
fixed to zero/one according to the type of the mutations. For the
continuous RNAseq data, the expression levels are translated as a
modulation of a signal to the initial conditions to influence the
probability of transitions. The analysis highlights that apoptosis
is activated by Caspase 8/9, while proliferation is activated by
cyclins D/B. Further, several readouts of cancer hallmarks (pheno-
typic outputs) were detected such as metastasis and DNA repair.
The analysis identifies a list of drug combinations that reduce the
proliferation phenotype or increase the apoptosis. The researchers
use Boolean simulations to grade the effect of the combined drugs
on patient-specific phenotypes, comparing the effects of treat-
ments on each patient to suggest suitable treatment.
5. Perspectives

Computational models can improve understanding of complex
disease mechanisms and help to develop treatment strategies
applicable in the clinical settings. These applications need to be
validated by closer integration with clinical research. To this end,
modelling results and predictions need to be presented side by side
with their uncertainties and biases. Despite successful applications
of Boolean models in disease mechanism predictions and therapy
(Table 2), scientists need to work on challenges of data integration,
model building, precision, and standardisation.

We believe that working collectively toward solving these chal-
lenges will increase the development of decision-making pipelines
using Boolean models in the future. Currently, clinical evaluation of
Boolean models focuses on proposing personalised treatments.
Further systematic approaches are required to study modes of
action and doses besides studying the combinatorial effect on a
single therapeutic target. Such approaches need to be tested and
validated in vitro and on large cohorts, to better understand
response and resistance to treatment, on a patient level.

The examples discussed in Section 4 show the ability of logical
models to represent the dynamics of complex mechanisms. Still,
more systematic approaches, including model curation, annotation
and referencing in standardised formats, are needed to advance
their application. Moreover, the application of Boolean models
requires mathematical and bioinformatics expertise and can be
made more understandable and reproducible by following estab-
lished protocols [121]. Important parts of such protocols, to be
defined before running simulations and experimental validations,
should involve identifying the scope of the model, a choice of a jus-
tified modelling approach, and the strategy to reproduce the
known behaviours.

It is important to keep the reproducibility of the generated
models. This can be achieved using standardised formats (e.g.,
SBML packages) which facilitate the development of logical mod-
elling pipelines (e.g., ColoMoTo notebook). Repositories like GIN-
sim and CellCollective allow to construct, annotate, and share
models. Still, reproducibility is a challenge and further integration
of bioinformatic repositories with logical modelling, similarly to

the BioModels platform (https://www.ebi.ac.uk/biomodels/) which
already supports logical models [5]. However, a wide support to
logical models requires involvement of communities Computa-
tional Modelling in Biology Network (COMBINE), the Simulation
Experiment Description Markup Language (SED-ML) and SBML to
advance the standards they develop. An example is the initiative
of the ColoMoTo community and the Computational Modelling of
Biological Systems (SysMod) community [122] to develop best
practices for the curation and annotation of the logical models in
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biology [123]. Another example is the reproducibility scorecard, a
list of eight questions to evaluate the reusability and reproducibil-
ity of the systems biology models [124]. In essence, a minimum
information needs to be defined for the annotation of the logical
models and systematically applied to enable their storage and
reuse [123]. Automatic approaches of model annotation, quality
assessment and curation will be crucial for this task.

6. Conclusions

Boolean modelling is a powerful and promising formalism to
analyse a range of dynamic properties of the biological systems
and disease mechanisms. It allows the use of many existing for-
mats, including SBML-qual, SIF and GNA, offering the interoper-
ability and the annotation of the created model. Boolean models
need less parametrization than the quantitative models, making
them a helpful approach to analyse less explored mechanisms.
However, insufficient details in model construction may lead to
inaccurate predictions. To avoid this, modellers can perform
exploratory investigation, gathering the associated information of
the model from literature and data resources. The missing details
can be inferred by omics data integration that identifies the miss-
ing components and optimises the model accuracy. Another chal-
lenge is the model scale - complex models are harder to analyse
and makes the attractor reachability very difficult [125–127]. This
challenge motivates the scientists to propose different approaches
to control complex models by reduction techniques.

Accurate and computable models improve the efficiency of sim-
ulations and the resulting analysis of their controllability. This
makes Boolean models better suited for application in the areas
of complex diseases such as cancer and immune cell differentia-
tion. Therefore, it is crucial to emphasise the model quality in the
construction and the analysis step. In parallel, the maintenance
of the model repositories and sharing the models in easily interop-
erable formats are also important to improve their reproducibility.
Further, the modelling community should cope with the advances
in the experimental workflows and the new research findings by
setting the best practices for the modelling process. This can be
achieved by improving the existing models and trying to develop
dedicated approaches to update the models automatically. Such
reproducible models, further refined by omics data integration,
will help to analyse the heterogeneity of complex diseases, simu-
late personalised responses to perturbations, and identify person-
alised treatments.
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