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Modular network mechanism 
of CCN1‑associated resistance 
to HSV‑1‑derived oncolytic 
immunovirotherapies 
for glioblastomas
Dileep D. Monie 1,2,3, Cristina Correia4,5, Cheng Zhang4,5, Choong Yong Ung4,5, 
Richard G. Vile2 & Hu Li4,5*

Glioblastomas (GBMs) are the most common and lethal primary brain malignancy in adults. Oncolytic 
virus (OV) immunotherapies selectively kill GBM cells in a manner that elicits antitumor immunity. 
Cellular communication network factor 1 (CCN1), a protein found in most GBM microenvironments, 
expression predicts resistance to OVs, particularly herpes simplex virus type 1 (HSV‑1). This study 
aims to understand how extracellular CCN1 alters the GBM intracellular state to confer OV resistance. 
Protein–protein interaction network information flow analyses of LN229 human GBM transcriptomes 
identified 39 novel nodes and 12 binary edges dominating flow in  CCN1high cells versus controls. Virus 
response programs, notably against HSV‑1, and cytokine‑mediated signaling pathways are highly 
enriched. Our results suggest that  CCN1high states exploit IDH1 and TP53, and increase dependency 
on RPL6, HUWE1, and COPS5. To validate, we reproduce our findings in 65 other GBM cell line (CCLE) 
and 174 clinical GBM patient sample (TCGA) datasets. We conclude through our generalized network 
modeling and system level analysis that CCN1 signals via several innate immune pathways in GBM 
to inhibit HSV‑1 OVs before transduction. Interventions disrupting this network may overcome 
immunovirotherapy resistance.

Glioblastomas (GBMs) are particularly aggressive primary brain tumors that are relatively common in  adults1. 
The disease comes with a dismal prognosis, often with expected survival just over a year when treated with 
surgery, chemotherapy, and  radiation2. Immunotherapies such as checkpoint inhibitors and chimeric antigen 
receptor (CAR) T cells are emerging as a fourth arm in the treatment arsenal against GBM. Another class of 
immunotherapy now in clinical trials for GBM is oncolytic viruses (OVs)3. Unlike CAR-T cell immunothera-
pies, OVs have been FDA approved for a solid tumor: an engineered herpes simplex virus type 1 (HSV-1) for 
 melanoma4. More recently, an engineered HSV-1 OV has demonstrated response in pediatric high-grade glioma 
with evidence of an immunological  mechanism5. OVs debulk by targeting tumors with high specificity and may 
offer immune-mediated protection against tumor recurrence. The most effective OVs home in on local and 
metastatic cancer cells, lysing them and releasing tumor-associated antigens in the context of proinflammatory 
signals that elicit antitumor  immunity6. This effectiveness, however, varies greatly depending on the cell state as 
defined by its transcriptomic profile.

GBM cell states are dynamic and influenced by several  factors7, including the composition of the extracel-
lular matrix (ECM). Cellular communication network factor 1 (CCN1) is a protein found in the ECM of the 
majority of GBMs and is predictive of resistance to OVs, particularly those derived from HSV-18.  CCN1high 
expressing GBMs also confer worse progression-free and overall survival  prognoses9. A prior study found that 
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CCN1 binds and activates cell surface integrin α6β1, promoting an antiviral and protumoral state via the secre-
tion of interferon-α8. Microarray-based heatmap and pathway analysis from this study showed type I interferon 
stimulated gene (ISG) expression and associated signaling in LN229 GBM cells. Haseley et al. conclude that 
CCN1 is a marker of HSV-1 OV resistance and propose blocking CCN1–integrin α6 interactions to restore 
permissiveness to this therapy.

Because the ECM is difficult to disrupt pharmacologically and CCN1 is stoichiometrically abundant, we 
asked if there are downstream protein–protein interactions (PPIs) essential for the observed  CCN1high GBM 
phenotype. In this study, we constructed global PPI networks from the published datasets using process-guided 
flow  algorithms10 and then analyzed information flows to derive a prioritized subnetwork, as well as identify 
high impact genes, network routers, key targets, and CCN1-specific edges. We elucidated novel pathways, pro-
teins, and interactions critical to  CCN1high GBM phenotype that are potentially druggable and can guide the 
engineering of precision OVs.

Results
Our systems biology approach to identify opportunities for improved HSV-1 OV design consisted of network 
and motif modeling, overrepresentation analysis, assessment of gene dependencies, and confirmation of gene 
expression in clinical tissue samples. Publicly available microarray data on CCN1-induced and control  samples8 
were used as the starting point for our investigation. Our NetDecoder analysis yielded several high impact genes, 
notable for their differential edge flows, organized in a prioritized subnetwork. Our results indicate 39 nodes that 
may influence susceptibility of CCN1-expressing GBM to OV. Of these, a router (IKBKE) and a sink (YBX1) 
have been implicated in GBM pathogenesis. Furthermore, category enrichment suggests that measles virus may 
be more effective in these types of tumors.

GBM CCN1 context‑specific network model. We used previously identified differentially expressed 
 genes8 as the starting point for our PPI networks to derive the prioritized context-specific GBM subnetwork 
shown in Fig. 1. By comparing the  CCN1low and  CCN1high PPI networks we derive a subnetwork that captures 
key differences between the two biological states. Our NetDecoder analysis yielded 50 genes in a prioritized sub-
network of high impact genes, notable for their differential edge flows. Of these, 11 genes are flow sources that 
were previously reported as differentially expressed between CCN1 induced and control cells. Within our pri-
oritized network, the source genes collaborate via 34 network routers to signal to 5 downstream targets (XRN2, 
PAN2, YBX1, SUMO1, and RPL6) (Fig. 1a and Supplementary Table S1). Of these, IKBKE (inhibitor of nuclear 
factor kappa-B kinase subunit epsilon) and YBX1 (Y box binding protein 1) have been previously implicated in 
glioblastoma pathogenesis and metabolic targeting of  virotherapy11,12. IKBKE was identified as a 4-edge router 
showing a lower flow in CCN1 induced cells, this gene has been described to have an impact on and glioblastoma 
resistance to apoptosis and engaging NF-κB activation leading to antiviral  program11. Our methodology allows 
us to dissect novel subnetwork nodes and expose other targets for biological validation and possible therapeutic 
intervention. FN1 (fibronectin 1), a 6-edge router with higher flow in  CCN1high, is one of the most upregulated 
genes in  gliomas13. In Fig. 1b, we elucidate several high impact (IP) genes, including UBC, a 7-degree hub within 
the CCN1 subnetwork. UBC has been described to be involved in the viral and replication  control14 and its inter-
action with the proteasome facilitates HSV  entry15 which leads us to postulate that this ubiquitin proteasome 
system confers OV resistance to CCN1-expressing glioblastomas.

Figure 1c captures the flow difference across biological states and we observe that the flow through TP53 is 
greatly impacted. The TP53 gene encodes tumor suppressor protein p53, a transcription factor in the p53-ARF-
MDM2 pathway that is dysfunctional in 84% of GBM cases and 94% of GBM cell lines, including  LN22916. In the 
context of CCN1 the cell signaling is decreased for NFKB. Additionally, we find that several key edges that domi-
nate in or are exclusive to  CCN1high cells (Fig. 1d). For example, IKBKE interaction with the pattern recognition 
receptor NLRC5 forms a key edge, further suggesting that this may play an important role in CCN1-mediated 
immunovirotherapy resistance. This is consistent with decreased flows to NFKB1 because NLRC5 drives tran-
scription of the NF-κB inhibitor IKBKB17. Another edge unique to  CCN1high GBM is PIK3R1 phosphorylation 
of LAT, critical for initiation of immune cell  activation18.

Overrepresentation analysis. Next, to explore altered pathways identified in our biological subnetwork 
we performed a Kyoto Encyclopedia of Genes and Genomes (KEGG)19 pathway overrepresentation analysis 
(ORA) (Fig. 2a and Supplementary Fig. S1) and focused on the newly identified nodes in our prioritized subnet-
work. Our results confirm that the presence of CCN1 alone primes GBM cells to resist HSV-1 (-log10FDR = 3.67; 
enrichment ratio = 8.42). This analysis also suggests that other viruses, such as adenovirus, may be a more effec-
tive starting point for constructing an OV for  CCN1high GBM patients. To confirm that these key genes are 
expressed in GBM, we next explored The Cancer Genome Atlas (TCGA; https:// www. cancer. gov/ tcga) GBM 
 datasets20 (n = 174) to detect that most of the genes are present (Fig. 2b). To further interrogate the  CCN1high 
edges we selected the 12 most dominant edges from Fig. 1D and performed ORA for gene ontology biological 
processes (GOBP) to reflect an impact in cytokine signaling (Fig. 2c). We found that the cytokine-mediated 
signaling pathway (-log10FDR = 10.37; enrichment ratio = 15.76) and the cellular response to cytokine stimulus 
(-log10FDR = 8.50; enrichment ratio = 10.95) were highly enriched when mapped to these nodes. From these top 
GOBP terms for cytokine signaling, we selected the CXCL11:CXCR3 and HUWE1:STAT1 interaction edge pairs 
(Fig. 2d top panel) to inspect their network motifs in CCN1 control and CCN1-induced biological states. The 
CXCL11:CXCR3 interaction is present in both states but increased the flow through its receptor CXCR3. This 
suggests a mechanism for microglial activation and leukocyte  recruitment21. For the HUWE1:STAT1 interaction 
(Fig. 2d bottom panel) we observed that HUWE1 (very high flow node) suppresses N-Myc-DLL3, which may 

https://www.cancer.gov/tcga
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Figure 1.  Prioritized flow subnetwork in glioblastoma. (a) Prioritized protein–protein interaction subnetwork. 
These interactions are represented by nodes (genes) and edges (interactions) with higher (red) and lower 
(blue) differential flows under CCN1-induced phenotype versus the uninduced control phenotype. Nodes 
consist of sources (diamonds), routers (circles), and sinks or targets (squares). Sources are previously published 
differentially expressed genes CCN1 induced biological states. (b) High impact genes experience significant 
shifts in regulation due to the number and directionality of interacting partners across phenotypes. (c) Flow 
differences. Heatmap showing node flow differences across uninduced control and CCN1-induced LN229 
human GBM cells (n = 3 replicates) for top 20 network routers and key target genes showing high node flow 
difference (red) and low node flow difference (blue) in CCN1-induced GBM cells. (d) Key edges. Total edge 
flow profiles in uninduced control and CCN1-induced LN229 human GBM cells for edges with higher flows in 
CCN1-induced than in control subnetworks.
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be responsible for promoting neurogenesis. Genetic and epigenetic inactivation of HUWE1 has been shown 
to promote tumorigenesis in  GBM22. Modulation of HUWE1 is pharmacologically feasible and a promising 

Figure 2.  Glioblastoma enriched gene categories. (a) Overrepresentation enrichment KEGG analysis was 
performed using WebGestalt for the genes (n = 50) in CCN1 prioritized subnetwork. As expected, several genes 
used as flow sources in our network were reported within multiple enriched categories. (b) Violin plots showing 
the mRNA expression of HSV-1 (KEGG pathway: hsa05168) enriched genes in TCGA GBM patients (n = 174). 
(c) Overrepresentation enrichment GO Biological Process analysis was performed using WebGestalt for the 
genes (n = 21) involved in edges that dominate the network flow in CCN1-induced LN229 cells versus control 
(see Fig. 1d and Supplementary Fig. S1). We find that these edges comprise several cytokine signaling and 
immune response pathways. (d) CCN1-specific edge impact motifs for control and CCN1-induced. Rewiring is 
observed for CXCL11:CXCR3 and STAT1:HUWE1 pairs. Node degree and edge flows are drastically increased 
for HUWE1 in the context of CCN1 overexpression.
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therapeutic  strategy23. The number of biological partners (node degree) is dramatically altered across states, 
which suggests rerouting upon CCN1 overexpression.

Motif analyses in CCN1 induced states. Molecular determinants in GBM are IDH1 mutation status and 
MGMT promoter methylation, which impact disease outcome and therapy  strategy24. To uncover the IDH1 and 
2 we inspected the network neighborhood motifs in our CCN1 induced network (Fig. 3a). LN229 is an IDH1 
wild type glioblastoma and TP53 mutant cell line derived from the right frontal parieto-occipital cortex of a 
60-year old female. IDH1 is a limiting enzymatic factor in cellular energy metabolism and, consequently, IDH1 
mutations are prognostic of better overall survival in  GBM25. IDH1 was only detected in our CCN1-induced 
state network where it had significant flow, suggesting that IDH1 has a functional role in this state. Our motif 
analysis reveals its key interactions involve ANXA6, OXCT1, and NME1 that contribute for the rewiring of this 
state. Interestingly there is some supporting literature evidence linking these genes to GBM  pathophysiology26–28. 
Using Cancer Cell Line Encyclopedia (CCLE)  data29, CCN1 expression levels are weakly correlated with IDH1 
(ρ =  − 0.273; p value = 0.027) (Supplementary Fig. S2a).

Because we have TP53 mutant cell lines and TP53 mutations have been identified in  GBM20, we inspected 
its motif and observed that CCN1 increased the interaction with TP53 (Fig. 3b right panel). NFKB1 a central 

Figure 3.  Motif analysis of key genes. (a) GBM prognostic marker: IDH1 (only appears in CCN1-induced 
global network). (b) Key Targets: TP53 (increased connectivity in CCN1-induced) and NFKB1 (decreased 
connectivity in CCN1-induced). (c) High impact genes: HSP90AA1. Some rewiring is observed in this 
autophagy regulator.
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immune regulator was previously detected in our analysis (Fig. 3b left panel and Fig. 1c). We observe that 
CCN1 induced state as decreased edge flow and altered connectivity to the genes and mostly dependent on 
IRF1. Autophagy and chaperone interaction network regulator HSP90AA1, a critical 5-degree hub node, may 
be targeted to improve OV efficacy in CCN1-expressing glioblastomas (Fig. 3c)30. Such an approach would be 
anticipated to trigger type II cell death via AKT/mTOR inactivation in this  context31.

Gene dependency analysis. Since HSV-1 OV shows significant promise in some GBM, we wanted to 
explore how we can improve its efficacy in refractory GBM cells. Given that CCN1 is a critical factor for HSV-1 
resistance, we investigated the dependencies of the genes in our prioritized subnetwork using the gene depend-
ency datasets DEMETER2 (RNAi) and Avana (CRISPR) (Fig. 4a–c)32,33 to further dissect GBM cancer vulnera-
bilities. Here, we focused on CCN1 network dissected genes and inspected the LN229 cell line (Fig. 4a). We then 
expanded to all available GBM cell lines (range: n = 2–35) (Fig. 4b, c and Supplementary Table S2) to observe 
agreement of the genes showing dependencies in the GBM for RPL6, HUWE1, and COPS5. In Fig.  4d, we 
inspected the TCGA expression levels of genes that contribute to gene dependency in GBM, defined as having an 
Avana score less than -1.0. In Fig. 4e, we zoomed into COPS5—a network router and vulnerability gene—to find 
reduced connectivity and a rerouting through UBC and EEF1A1. Target XRN2, an exoribonuclease, suggests 
that our prioritized subnetwork confers some of its phenotype-defining effects through alteration in the DNA 
damage response, known to be mediated through Ku70 in LN229 and other GBM  cells34.

Validation of findings in CCLE and TCGA datasets. To validate our findings, we devised a two-fold 
validation approach by using CCLE and patient TCGA GBM RNA-seq datasets. First, we used CCN1 median 
expression level for each dataset to stratify cell lines into  CCN1high and  CCN1low bins (Supplementary Fig. S2b). 
This approach is similar to the strategy depicted for LN229 inducible CCN1 overexpressing system. Then we 
generated context specific networks in GBM cell lines. The same analysis was performed with TCGA GBM data. 
By using broader datasets we can better capture the spectrum of CCN1-driven networks across diverse bio-
logical contexts. Next our CCLE- and TCGA-context specific networks were subjected to NetDecoder analysis. 
Figure 5a shows herpes simplex infection in the top overrepresented KEGG pathways (-log10FDR = 6.87; enrich-
ment ratio = 16.63) in the  CCN1high-specific prioritized subnetwork of CCLE GBMs (n = 30) generated using the 
source genes (n = 57) most differentially expressed in  CCN1high LN229 cells (Supplementary Fig. S3a). Two other 
infection pathways triggered by similar Baltimore class I dsDNA viruses—Epstein Barr virus (EBV) and Kaposi’s 
sarcoma-associated herpesvirus (KSHV)—are also overrepresented. Overrepresented GOBP terms in this sub-
network all involve the immune response (Fig. 5b). A similar theme is seen in the TCGA GBM prioritized sub-
network nodes (n = 43) generated using the same source genes (Fig. 5c, d; Supplementary Fig. S3b). Even though 
individual node overlap (Supplementary Fig. S3c) is unremarkable, likely reflecting the heterogeneity of disease 
captured by broader CCLE and TCGA data, the overlap between the three prioritized subnetworks reproduces 
the same pathways. This is consistent with our initial findings in LN229 GBM cells and allows generalization to 
other GBM cell lines in vitro and patients’ tumors in situ.

We then identified the genes common across LN229 (n = 1,846), CCLE (n = 528), and TCGA (n = 540) global 
networks that are also found in the HSV-1 infection KEGG  pathway19 (hsa05168; n = 498), diagrammed in 
Fig. 5e. Cluster analysis of the total flow through the 4-way intersecting genes (n = 52) shown in Fig. 5f suggests 
that STAT1, IRF7, and DDX58 are the HSV-1 infection response genes with the highest flows and contribute 
to the modulation of  CCN1high networks. These genes are critical components of the innate immune response 
to  viruses35.

Strategies to increase HSV‑1 OV efficacy in CCN1‑expression GBM. Inspection of Drugbank 
(https:// go. drugb ank. com/) identified Lyn kinase, a low flow node in our prioritized subnetwork, as a potential 
targetable gene and previous studies in GBM identified Lyn kinase activity is significantly elevated in the glio-
blastoma biopsy  samples36. A clinical trial (NCT01234740) using the dual BCR-Abl/Lyn tyrosine kinase inhibi-
tor bafetinib did not yield clinically significant results due to poor neuropharmocokinetics so better agents or 
delivery systems may be  required37. More recently E3 ligase HUWE1 inhibition was described as a therapeutic 
strategy to target MYC in multiple  myeloma38 and small drugs are under  development39,40.

Given that CCN1-expressing glioblastomas activate an antiviral program that particularly resists HSV-1 OV, 
we examined how to improve the HSV-1 chassis. Studies have shown that HSV-1 vectors can carry short-hairpin 
RNA (shRNA) or microRNA (miRNA) payloads and these can silence target genes in the host  cells41,42. The 
miRNA strategy has been demonstrated to be effective at blocking interferon responses in vivo to enhance efficacy 
against nervous system-derived tumor  cells43. Therefore, this approach is particularly attractive for perturbing 
critical nodes in our network analysis since they exist in GBM cells targeted by, but resistant to, HSV-1 OV. If pre-
treatment resistance proves to be insurmountable, these shRNA and miRNA vectors could also be delivered using 
another viral vector to prime the cell state to be permissive to HSV-1 in a tandem OV therapeutic  approach44.

Discussion
In this work, we aimed to model and classify GBM responses to OVs. We utilized a computational systems biol-
ogy approach based on network analysis of transcriptomics data, gene dependencies datasets (DEMETER2 and 
Avana), and TGCA and CCLE expression in GBM. Our novel genome-wide flow-based systems strategy unravels 
protein–protein interactions that are important in GBM development and progression. Most importantly, our 
network approach prompts us to uncover the role of genes that importance derives from the number of interac-
tions and associated partners. By better understanding these networks, targeted therapies can be developed to 
improve outcomes for patients.

https://go.drugbank.com/
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Figure 4.  Gene dependencies in glioblastoma prioritized subnetwork. (a) Waterfall plot showing DEMETER2 
scores for the LN229 human GBM cell line for genes identified in the CCN1 NetDecoder subnetwork. (b) 
Violin plot showing RNAi gene dependencies (DEMETER2 scores) for nodes in our GBM NetDecoder analysis. 
Depicted are GBM cell lines (range: n = 2–31). (c) Violin plot showing CRISPR gene dependencies (Avana 
scores) for nodes in our GBM NetDecoder analysis. Depicted are the GBM cell lines (range: n = 28–33). (d) 
Violin plot showing TCGA RNA expression for selected genes with low gene dependency score in GBM patients 
(n = 174). Colors assigned to network source, router, target genes and CCN1 are green, purple, orange, yellow, 
respectively. (e) Network router motif: COPS5. Connections decrease when CCN1 is overexpressed.
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Figure 5.  CCN1high-specific networks in CCLE and TCGA GBMs. WebGestalt ORA of (a) KEGG pathways 
and (b) GOBP terms in the CCLE GBM prioritized subnetwork nodes (n = 30) generated using the source genes 
(n = 57) most differentially expressed in  CCN1high LN229 cells. WebGestalt ORA of (c) KEGG pathways and (d) 
GOBP terms in TCGA GBM prioritized subnetwork nodes (n = 43) generated using the source genes (n = 57) 
most differentially expressed in  CCN1high LN229 cells. (e) Venn diagram identifies network genes across LN229 
(n = 1,846), CCLE (n = 528), and TCGA (n = 540) datasets found in the HSV-1 KEGG pathway (n = 498). (f) 
Euclidean average cluster analysis heatmap of the total flow through the 4-way intersecting genes (n = 52).
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The results of this analysis suggest several novel potential therapeutic targets for OV of  CCN1high GBM. The 
presence of validated targets, IKBKE and YBX1, in our network indicate that flow differences can be served as 
indicators to guide precision engineering of OV. Overrepresentation analysis elucidated the role of CCN1 on OV 
therapies and highlighted the immune contribution through the CXL11:CXCR3 and NFKB1 axis. We further 
investigated the impact of known GBM molecular determinants in our full network and inspected motifs to 
find that the CCN1-induced state is more IDH1 flow dependent. Because TP53 mutation is a common event in 
primary glioblastoma and was both a high impact and key target gene in our network analysis, we inspected its 
network neighborhood to find a dramatic rewiring and increase of biological partners that contribute to  CCN1high 
state. These new interactions, combined with the loss of other interactions, likely inhibit the tumor suppressor 
activity of TP53 and thus may play a role in GBM progression.

To uncover additional GBM vulnerabilities we focused on hidden genes identified with our network analysis 
and utilized gene dependency scores to find that RPL6, HUWE1, and COPS5 contribute for GBM dependencies. 
Inspection of TCGA GBM dataset confirmed that these genes are expressed in GBM. Diving into our context-
specific networks to retrieve potential targetable pathways and individual genes revealed that HUWE1 is a 
targetable gene and consider further inspection on its role and regulation mechanisms in GBM.

To validate our LN229 findings we expanded our analysis to in vitro (CCLE) and in vivo datasets (TCGA). 
This analysis confirmed and further elucidated context-specific networks that captured biologically relevant dis-
ease heterogeneity and revealed key regulators in the HSV-1 pathway—specifically STAT1, IRF7, and DDX58—
generalizable to dsDNA-based oncolytic immunovirotherapy responses in GBM patients.

One limitation of this work is that the source data used to generate our context-specific subnetwork is based 
on microarrays of mRNA, which may not accurately represent functional proteins that interact in the predicted 
networks. Additionally, the mRNA samples were prepared from cell lines, which lack the complexity of an 
in vivo GBM tumor milieu (e.g. stromal, immune, and heterogeneous cancer cells). The use of this disease data 
was mainly driven by the availability of data but we believe that a similar benchmarking study on GBM patient 
derived xenograft (PDX) models will be amenable to such studies and we anticipate that flow differences will 
help predict tumor responses, adverse events, and suggest effective neoadjuvants (e.g. IKK inhibitors) and yield 
targetable genes. Our in silico findings across diverse datasets generate hypotheses that are testable in the wet 
lab, likely by perturbing genes identified with network differential flows (e.g. IKBKE and YBX1) that may alter 
OV susceptibility, suggesting biological significance.

Overall, our strategy and results may aid the design of next generation OVs. This may take the form of OVs 
armed with synthetic gene circuits, as well as OV cocktails with multiple tropisms and physiological effects. 
Desired outcomes are not only overcoming resistance, but also improved oncolysis, stimulation of antitumor 
immunity, and even promotion of tissue regeneration. Ultimately, the initial OV-mediated inflammation in the 
brain will need to be resolved and neuroimmune homeostasis restored.

Methods
Datasets and preprocessing. Raw microarray data (*.cel files) Affymetrix Microarray dataset (Human 
Genome U133 Plus 2.0) was retrieved from GEO accession GSE29384 (https:// www. ncbi. nlm. nih. gov/ geo/), 
and then processed with  Affy45 and  Limma46 R packages. CCLE RNA-seq data was downloaded (https:// porta ls. 
broad insti tute. org/ ccle/ data) in March 2021 and central nervous systems cell lines were selected (n = 66). RNA 
normalized expression of TCGA GBM patients (n = 174) was retrieved from the NCI Genomic Data Com-
mons Data Portal (https:// portal. gdc. cancer. gov) in January 2021. GDC-RNAseq tool (https:// github. com/ cprei 
d2/ gdc- rnaseq- tool) was used to compile RNA sequence (RNA-seq) data. R (version 1.3) ggplot2 was used for 
the RNA-seq analysis and fragments per kilobase of transcript per million mapped reads with upper quartile 
normalization (FPKM-UQ) was used for plotting and NetDecoder analysis.

Network analysis. We used  NetDecoder10 (https:// github. com/ HuLiL ab/ NetDe coder) to elucidate pro-
tein–protein interaction networks in publicly available microarray data from LN229 human GBM cells treated 
with HSV-1 OV. These cells have tetracycline-inducible expression of the OV-inhibitory ECM protein CCN1. 
Differentially expressed genes from Haseley et al.8 were used as sources in NetDecoder, which was run using 
default parameters. Co-expression networks were derived from transcriptome of LN229 CCN1-induced and 
-uninduced states. Our network analyses prioritize human genes that are differentially expressed (sources) 
between CCN1-induced and -uninduced control cell phenotypes.

For the CCLE dataset, we selected all central nervous systems (CNS) cell lines (n = 66). CCN1 expression was 
assessed and median expression levels were used to stratify CCLE cell lines as  CCN1high or  CCN1low. Differential 
expression analysis and normalization was performed with the DESeq2 R  package47. Co-expression context 
specific networks were derived from normalized counts of CCLE CNS for  CCN1high and  CCN1low states. Net-
work analysis was performed using the prioritized human genes across LN229 conditions as sources in a CCLE 
co-expression network. Size of functional neighborhood, SNF = 0.95, ratioThreshold = 5, and corThreshold = 0.5 
were used as the default parameters for NetDecoder runs.

For TCGA network analysis, first we used TCGA normalized RNA-seq counts to stratify all GBM patients 
(n = 174) according to median tumor CCN1 expression. Next, context specific co-expression networks were 
generated for  CCN1high and  CCN1low GBM states. NetDecoder analysis was then performed using TCGA GBM 
specific co-expression networks and prioritized human genes across LN229 conditions as sources.

Gene dependency analysis. Gene dependencies from two independent datasets were pulled: i) Combined 
RNAi (Broad, Novartis, Marcotte) gene dependencies (DEMETER2 v6) and ii) CRISPR Avana gene dependen-
cies (20Q4 v2) from the Cancer Dependency Map (DepMap) Portal (https:// depmap. org/ portal/). Selection and 

https://www.ncbi.nlm.nih.gov/geo/
https://portals.broadinstitute.org/ccle/data
https://portals.broadinstitute.org/ccle/data
https://portal.gdc.cancer.gov
https://github.com/cpreid2/gdc-rnaseq-tool
https://github.com/cpreid2/gdc-rnaseq-tool
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analysis of these data were performed using Python version 3.6.9 in a Jupyter Notebook environment. Visualiza-
tion was performed using Matplotlib version 3.3.3 (https:// matpl otlib. org/) and Seaborn version 0.11.1 (https:// 
seabo rn. pydata. org/).

Enrichment analysis. WEB-based GEne SeT AnaLysis Toolkit (WebGestalt; http:// www. webge stalt. org/) 
with KEGG and Gene Ontology (GO) functional databases was used for pathway enrichment  analysis48. Input 
gene symbol lists were analyzed for overrepresentation against the Homo sapiens genome protein-coding refer-
ence set.

Custom code. Analysis code, networks, and raw data are available at: https:// github. com/ HuLiL ab/ GBM_ 
CCN1.
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